Searching for New Physics in the Flavour Sector

Luca Silvestrini INFN, Rome

- Introduction
- Bounds on NP from Flavour
- Impact of BelleII
- Conclusions

How much "natural" is Nature?

illustration by G. Villadoro

Courtesy of Marco Ciuchini

WHY FLAVOUR?

- No tree-level flavour changing neutral currents in the SM
- GIM suppression of FCNC @ the loop level
- Tiny CP violation in K and D mesons due to small CKM angles
- Unobservable LFV

\Rightarrow Flavour & CP violation ideal places to get indirect evidence of NP

ROLE OF FLAVOUR

- In the framework of future experimental developments, Flavour physics should:
- Guarantee that the flavour structure of any directly discovered NP can be efficiently probed, and/or
- Push the NP scale that can be indirectly probed up by (at least) one order of magnitude

• A generic FCNC amplitude has the form $A_{SM} + A_{NP} = K_{SM} \frac{\alpha_W}{4\pi} \frac{F_{CKM}}{M_W^2} + K_{NP} L \frac{F_{NP}}{\Lambda^2}$

where L is a possible loop factor, F_{NP} denotes the NP flavour coupling and $K_{SM,NP} O(1) \# s$.

- For any directly observed NP, we know Λ and L and can extract $F_{_{NP}}$
- Assuming a value for $L \ge \alpha_w / 4\pi$ and $F_{NP} \ge F_{SM}$, we can extract the NP scale Λ

• Need to improve A & A SM (where present) Roma Tre, 11/06/2015

LEPTONIC SECTOR

- LFV decays are theoretically very clean but scale as $1/\Lambda^4$; present MEG bound 5.7 10⁻¹³ corresponds to O(100 TeV).
- Complementing $\mu {\rightarrow} e \gamma$ with other processes:

- μ \rightarrow eee and μ \rightarrow e conversion

- $\tau \rightarrow \mu(e)\gamma$ and $\tau \rightarrow \mu(e)II$

is crucial to pin down NP flavour couplings

NP analysis results

NP parameter results K system

8

< 17% @68% prob. (25% @95%) in B_s mixing

PRESENT BOUNDS ON NP

Bounds from $\Delta F=2$ processes

 $\Delta F\text{=}2$ processes scale as $1/\Lambda^2$

- Best bound from $\boldsymbol{\epsilon}_{\rm K},$ dominated by CKM error
- CPV in charm mixing follows, exp error dominant
- Best CP conserving from $\Delta m_{\rm K}$, dominated by long distance
- B_d and B_s behind, error from both CKM and Bparams

INTERPRETING THE BOUNDS

- generic case (no loop, no flavour suppression, all chiral structures): Λ>4.2 10⁵ TeV
- Extra-Dim case (no loop suppression, CKM suppression, all chiral structures): Λ>96 TeV
- MFV case (no loop suppression, CKM suppression, only left-handed): Λ>9 TeV
- weakly-interacting MFV case (EW loop & CKM suppression, left-handed): Λ>300 GeV

IMPACT OF BELLE II

- Belle II and LHCb upgrade will drastically improve exp data on B, D and τ physics
 - Direct impact on NP bounds in the B, D and $\tau\, \text{sectors}$
 - Indirect impact on NP bounds in the K sector via CKM determination

Flavour Golden Modes

Experiment: Theory:

Moderately clean

No Result Moderately precise Precise Clean, needs Lattice

©A. Stocchi

Very precise

Clean

Comparison of present and future flavour experiments on "golden modes" (an incomplete list) Marco Ciuchini

Precision flavour physics & theory uncertainties

no theory improvements needed	β(J/ψ K), γ(DK), α(ππ)*, lepton FV and UV, CPV in B→X _{s+d} γ, τ decays zero of FB asymmetry B→X _s l ⁺ l ⁻	NP insensitive or null tests of the SM or SM already known with the required accuracy	
improved lattice QCD	meson mixing, $B \rightarrow D(*)Iv$, $B \rightarrow \pi(\rho)Iv$ $B \rightarrow K^*\gamma$, $B \rightarrow \rho\gamma$, $B \rightarrow Iv$, $B_s \rightarrow \mu\mu$	target error: ~1-2% Feasible	
improved OPE+HQE	Β→Χ _{u,c} Ιν, (Β→Χ _s γ)	target error: ~1-2% Possibly feasible with large samples. Detailed studies required	
improved QCDF/SCET or flavour symmetries	S from TD A_{CP} in b \rightarrow s transitions	target error: ~2-3% large and hard to improve uncertainties on small corrections. FS+data can bound the th. error	
Marco Ciuchini	KEK-FF 2014	Courtesy of M. Ciuchini Page 14	

Therefore, my tentative (INACCURATE!) estimates are:

Hadronic parameter	L.Lellouch ICHEP 2002 [hep-ph/0211359]	FLAG 2013 [1310.8555]	2025 [What Next]	
f ₊ ^{Kπ} (0)	- First Lattice result in 2004 [0.9%]	[0.4%]	[0.1%]	
Β _κ	[17%]	[1.3%]	[0.1-0.5%]	
f_{Bs}	[13%]	[2%]	[0.5%]	
f_{Bs}/f_{B}	[6%]	[1.8%]	[0.5%]	
Â _{Bs}	[9%]	[5%]	[0.5-1%]	
B_{Bs}/B_{B}	[3%]	[10%]	[0.5-1%]	
F _{D*} (1)	[3%]	[1.8%]	[0.5%]	C. Tarantino LTS1
B→π	[20%]	[10%]	[>1%]	Elba 2014

7

More unpredictable but more surprising progresses can occur for the observables that today are very difficult (or infeasible): $K \rightarrow \pi \nu \overline{\nu}, K \rightarrow \pi | I^+ | I^-, K \rightarrow \pi \pi, \Delta m_K$

errors from tree-only fit on ρ and η : $\sigma(\rho) = 0.008 [currently 0.051]$ $\sigma(\eta) = 0.010 [currently 0.050]$

errors from 5-constraint fit on ρ and η : $\sigma(\rho) = 0.005$ [currently 0.034] $\sigma(\eta) = 0.004$ [currently 0.015]

M. Bona @ CKM2014

L. Silvestrini

M. Bona @ CKM2014

L. Silvestrini

CHARM CPV EXTRAPOLATED

- SM contribution to ϕ_{M12} negligible, while one could envisage $\phi_{\Gamma12}$ O(1°) due to LD penguins
- Present fit:

- ϕ_{M12} = [-4,12]° @ 95% prob., no reach on $\phi_{\Gamma12}$ - Λ >3.5 10⁴ TeV

• LHCb upgrade / Belle II:

 $-\delta\phi_{M12} = \pm 1^{\circ} \text{ and } \delta\phi_{\Gamma12} = \pm 2^{\circ} @ 95\% \text{ prob.}$

- Λ>10⁵ TeV

CONCLUSIONS

- In a global strategy for NP searches, improving the accuracy on FCNC and CPV processes has a key role to ensure that:
 - we are able to determine the flavour structure of any NP directly seen, and hopefully understand its origin; roughly 3x in $M_{NP} \Leftrightarrow 10x$ in exp & th $\Leftrightarrow 100x$ in L

 we increase the sensitivity of indirect searches (flavour has the lead in this field) and maybe detect an indirect NP signal

L. Silvestrini

CONCLUSIONS II

- Belle II will play a key role in improving NP constraints in B, D and τ physics, with special emphasis on modes with neutrinos or neutral mesons in the final state
- Success of the NP search program requires both experimental and theoretical efforts: B2TIP excellent framework for progress on both sides