

Photodetectors for BelleII calorimeter

A. Rossi, INFN Perugia

JENNIFER Consortium General Meeting 10-12 June 2015

What we need

- R&D program to develop an electromagnetic calorimeter based on Pure Csl crystals
- Pure Csl Crystal
 - Low Light yield
 - Emission time ~25ns (also a slow component ~1200ns)
 - Peak emission (fast component). 310nm
- What characteristics of the readout sensor are required:
 - Good QE at 310nm
 - Large active surface
 - Work inside B field (~1Tesla)
- Goal: noise below 1MeV on single channel

What we studied

- During the R&D we studied different photodetectors
 - Hamamatsu 1-inch Photopentode
 - Hamamatsu 2-inch Photopentode (Belle2/Hamamatsu jonied R&D)
 - Hamamatsu \$8664-55 Avalanche PhotoDiode (APD)
 - Hamamatsu S8664-1010 APD
 - Excelitas C30739ECERH-2 APD
 - Advance Photonix SD630-70-73-500 APD
 - FBK UV SiPM (prototype)
- All the material shows in this presentation is the result of the work of the Belle2 ECL Italian group
 - o INFN Frascati
 - University and INFN Roma3
 - University and INFN Napoli
 - University and INFN Perugia
 - ENEA Casaccia

Photopentode

- 5 amplification stage PMT
- Low capacitance ~10pF
- QE at 310nm 25-30%
- Gain factor 150-200 in 0 magnetic field
- Gain reduction due to the magnetic field 30-40% (depend on angle between PP and B)

1-inch Photopentode

Istituto Nazionale di Fisica Nucleare

- 1-inch photopentode (standard Hamamatsu product)
- PP 1inch double read-out
 - \circ Total Active area: ~10cm²

- Test with cosmics
 - MPV deposited energy ~30MeV on Pure Csl crysal (5x5x30cm³)
- Combining the two channel we have S/N~78
- Noise level ~400KeV

2-inch Photopentode

 Special Hamamatsu product

Istituto Nazionale di Fisica Nucleare

• Active area: 20cm²

Vop PP	Peak (A.U.)	sigma (ns)	Noise (KeV)
750	380	1.4	270
850	450	1.5	230
1000	560	1.6	190

- Tested with 100MeV electron beam on a single crystal (~80MeV energy contained)
- Energy and time resolution exploited
- Noise level ~200KeV
- <u>Time resolution ~1.5ns</u>

Very good performances with PP Main problem: sensor depth (58mm) → mechanical structure backpannel replacement

• A. Rossi, JENNIFER Consortium General Meeting

APD Hamamatsu

- S8664-55
 - Active area 5x5 mm²
 - Capacitance 80pF
- S8664-1010
 - Active area 10x10 mm²
 - Capacitance 270pF
- Typical Gain 50
- Special product for \$8664-1010
 Gain 200 with ΔV>20V
- Inverse Bias ~400V

Small APD Hamamatsu

- 4 APDs with separate readout
 o Total active area 1 cm²
- Working point G=200
- Tested with cosmics
- Combining the 4 channels
 - Noise level ~4MeV

11/06/15 • 8

Large APD Hamamatsu

APD AA4932 ld

Dark Current

- Selected APD
 - o G=200

Istituto Nazionale di Fisica Nucleare

- Idark ~ 30nA (>50nA with non selected APDs)
- Better performance in terms of noise
- Gain is not λ independent

Current (nA) Light Current 10 10 10 200 300 50 100 150 250 350 400 450 Voltage (V) APD AA4932 Gain . 10[°] 10 150 200 250 300 100 350 400 Voltage (V)

A. Rossi, JENNIFER Consortium General Meeting

Large APD Hamamatsu

- 2 Large APDs with separate readout
 - \circ Total active area 2 cm^2

Istituto Nazionale di Fisica Nucleare

- Software shaping applied in order to simulate a CR-RC⁴ filter
- Tested with cosmics
- Noise level combining the 2 APDs
 - After preamp : 1.3MeV
 - After shaping : 0.7MeV \bigcirc

Software Shaping

CSP CREMAT - LAAPD Averange

0.03

Large APD Hamamatsu

Temperature dependency -7.5%/°C

APD Excelitas

C30739ECERH-2

Active Area 5.6x5.6mm2
Capacitance 60pF (low!)
Dark Current ~3nA (very low!)
Typical Gain 200
Typical ΔV ~15V

Typical Bias ~410V

INFN

Istituto Nazionale di Fisica Nucleare

• A. Rossi, JENNIFER Consortium General Meeting

11/06/15 • 12

APD Excelitas

- 4 APDs with separate readout
 - Total active area 1cm²
- Working point G=200
- Tested with cosmics
- Combining the 4 channels
 after software shaping
 - Noise level ~1MeV

σ[μV]	Signal [mV]	S/N	ENE [MeV]
177±8	5.27±0.03	30±1	1.00±0.05

APD Excelitas

• Temperature dependency -4.5%/°C

APD Radiation Hardness test

- Hamamatsu and Excelitas APD tested
- 250Gy with γ s
- 10¹² neutrons/cm²
- Monitored parameters
 - o Gain

INFN

Istituto Nazionale di Fisica Nucleare

- o Dark current
- o QE
- Gain \rightarrow Stable
- Dark current
 - Small effect after gamma
 - Orders of magnitude increase after neutrons
 - Stable dark current after 1 month at RT (40% recover)

Hamamatsu APD

APD Radiation Hardness test

- Small decrease in QE after γs (~10%)
- QE remains stable after
 neutrons irradiation

INFN

Istituto Nazionale di Fisica Nucleare

APD Advanced Photonix

- SD630-70-73-500
 - Active Area 2cm²
 - Capacitance 130pF
 - o Idark ~500nA (high!)
 - o Gain 250

INFN

Istituto Nazionale di Fisica Nucleare

- Typical bias 1800V
- 1mm gap between Si surface and crystal

11/06/15 • 17

50 F

45⊨

40[

35

30 25

20 15

10⊟

1 APD used

Istituto Nazionale di Fisica Nucleare

- Test with cosmics
- After shaping

 Noise Level 2MeV
- High temperature dependency

 -12%/°C
- No coating above silicon
- Very delicate structure
 <u>3 broken APD out of 4</u>

Scale

MPV

Width

Total Area

All events

Time selected events

10.93 ± 1.73

174.7 ± 2.0

3387 ± 141.6

25.41 ± 2.76

Advanced Photonix APD - Energy - T[15.5,16.0]

SiPM

• FBK UV-SiPM

- Prototype
- Active area 0.4x0.4 mm²
- \circ 50 μ m cells

• A. Rossi, JENNIFER Consortium General Meeting

- 2 SiPM in parallel • Total active area 0.32 cm²
- Preamp amplification 50db
- Test with cosmics
- Noise Level 2.8MeV
- Extrapolation with a 4x4 SiPM matrix
 - Noise level ~ 1MeV
- Limitation on dynamical range
- Radiation hardness (neutrons)
 is an issue

- Several photodetectors have been tested
- Photopentonde gives very good results: ~200KeV
 - Main problems: B field, mechanical structure replacement, no redundancy
- APD solution have been deep investigated
 - Good S/N is challenging due to the high detector capacitance
 - Noise level below 1MeV has been reached with 2 products
 - 2x Hamamatsu S8664-1010 APD
 - 4x Excelitas C30739ECERH-2
- Sensor used for the calorimeter prototype is the Hamamatsu APD