

External background and exotic physics at the T2K near detectors JENNIFER **WP3** - task **3.2** and **3.3** S. Bordoni (IFAE)

JENNIFER Consortium General Meeting Roma, June 10-12

The T2K experiment

- Long baseline neutrino oscillation experiment in Japan (Tokai to Kamioka)
- Muon (anti-)neutrino beam produced from a 30 GeV proton beam (JPARC)
- Neutrinos detected at 2 points :
 - the near detector (ND280) at 280 m
 - the far detector (Super-Kamiokande) at 295 Km

Japan Proton

• External background at ND280

deliverable: report on anti neutrino analysis; EMD:24

• Exotic physics

deliverable: combined muon and electron neutrino oscillation analysis report; EMD: 48

External background

- External background: interactions on the sand surrounding the detector and in the structures inside the detector pit
- A large number of particles enter in the detector, even from interaction at long distance
 - low energy photons and neutrons (most abundant)
 - muons

External background

- Charged particles entering the detector can be identified and vetoed (unless reconstruction error occurs)
- Neutral particles can re-interact inside active volume of the detector : Out of Fiducial Volume events
- Sand muon contamination is $\sim 1\%$ for ND280 samples used on the oscillation analysis

neutron re-interacts in FGD1, the produced negative pion is selected as muon candidate

MC simulation

- Simulation developed in 2012, never revised
- Model partially realistic (dimension of the pit and detector boxes) but with some simplifications
 - pit structures (no INGRID nor stairs in the simulation)
 - no information on the sand: density and chemical composition assumed
 - low energy particles not reaching the detector are not tracked

Stefania Bordoni (IFAE)

Data/MC comparison

- Study of the sand MC simulation using a sample enriched in sand interaction: charged tracks with starting point in the first few layers of the POD
- Rate in data: sand interactions + interaction in detector walls and coil

ν mode

- data/MC ratio ~1.1
- 10% accuracy is good enough
- set as systematic uncertainty for the sand contamination to selected signal samples

$\overline{\nu}$ mode

- data/MC ratio slightly worse
 - pretty good agreement for positive particles
 - big discrepancy for negative particles (~30% excess in data)
 - → investigation ongoing

Improvements and new ideas

- Optimisation of cuts (tested with neutrino beam MC only)
- Check of the influence of the sand density
- Modification of physics models used in GEANT propagation through the sand (neutron interactions)
- Modification of the pit geometry add more structures (stairs, Ingrid)

Some ideas :

- Can sand muons be used as beam monitoring?
 - much higher rate than from interaction in POD or FGD detectors
 - sand muon typical rate is 220 tracks/10¹⁷ POT, with a precision of about 0.58%
- Sand muons probe different energy range than events selected in the tracker
 - they can be used to **determine** the fraction of **wrong sign** neutrino in the beam
 - ullet can they be used to constrain the flux ?

External Background : outlook

- Tuning of the sand MC:
 - in the next months new sand MC productions with changed models/parameters
 - computer cluster in Warsaw will be used for production (software installed and tested)

- Sand muons as beam monitoring tool:
 - basic study and documentation will be ready by the end of the year \rightarrow work strongly connected to J. Lagoda's work (deadline at end of 2015)
 - improvements will then be possible using the tuned MC

Exotic physics

- Lorentz violation at INGRID
- Sterile neutrinos at ND280

Lorentz violation

- Predicted in most of the theories beyond the Standard Model
- Consequence of merging SM w/ gravity (Plank scale $\sim 10^{19}$ GeV)
- Effective theory:

Standard Model Extension (SME) = SM Lagrangian + all terms allowing a Lorenz violation <u>spontaneous</u> symmetry breaking

from B. Quilain, talk at Blois 2015

Lorentz violation

- Search for Lorentz violation looking for interference with neutrino oscillations at INGRID
 - Oscillations depends on the alignment of the baseline w/ the absolute LV direction
 - \bullet Focusing on ν_{μ} disappearance (high statistics)
 - \bullet Selection based on the e μ particle identification

- Analysis with data in neutrino mode achieved
- Results presented for the first time at a conference (Blois 2015)
- Paper under preparation
- Analysis with more data is foreseen

Anomalies to the 3 neutrino paradigm

- LSND : excess observed in $\overline{\mathbf{v}}_{\mu} \rightarrow \overline{\mathbf{v}}_{e}$
- KARMEN : no excess seen

Phys.Rev.Lett. 98 231801 (2007)

- MiniBooNE : excess observed in $\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e}$ but *not* in $\nu_{\mu} \rightarrow \nu_{e}$
- A depletion of the expected v_e events observed by nuclear reactors

Stefania Bordoni (IFAE)

Why sterile neutrinos ?

- \bullet Anomalies may be explained by introducing one (or more) neutrino with mass of the order of 1 eV^2
- Number of active neutrino measured at LEP
- Neutrinos must be sterile : do not interact via weak force

Introducing sterile neutrinos

- 3 (active)+1 (sterile) model is the simplest extension
- Because of the large mass of the sterile neutrino, the masse states for active neutrinos are degenerate : 2 neutrino approximation
- Other models exist (3+2, 1+3+1...) but seem not to be favoured by observations

The 3+1 model

$$\begin{aligned} P(\nu_{\alpha} \to \nu_{\beta \neq \alpha}) &= \sin^{2} 2\theta_{\alpha\beta} \sin^{2}(1.27\Delta p)^{2} \frac{L}{E}) \\ \text{Appearance: } P(\nu_{\alpha} \to \nu_{\beta \neq \alpha}) &= \sin^{2} 2\theta_{\alpha\beta} \sin^{2}(1.27\Delta m^{2} \frac{L}{E}) \\ P(\nu_{\alpha} \to \nu_{\alpha}) &= 1 - \sin^{2} 2\theta_{\alpha\alpha} \sin^{2}(1.27\Delta m^{2} \frac{L}{E}) \\ \text{Disappearance: } P(\nu_{\alpha} \to \nu_{\alpha}) &= 1 - \sin^{2} 2\theta_{\alpha\alpha} \sin^{2}(1.27\Delta m^{2} \frac{L}{E}) \\ \end{aligned}$$

Sterile neutrino searches at T2K

- No observation of ν_{μ} disappearance so far
- Tensions between some measurements
- Puzzling scenario, more measurements are needed

 10^{1}

- ND280 with its 280m baseline has good conditions to contribute the searches for SBL oscillations
 - Event selection based on tracker information
 - 3+1 model
 - binned likelihood fit to the neutrino energy
- Measurements on the three channels
 - $\bullet v_e$ disappearance (published)
 - $\bullet\,\nu_{\mu}$ disappearance (on-going)
 - joint fit (near future)

v_e disappearance

- v_e sample (67% purity) selected from the contamination (1%) of the v_μ beam
- Selection based on the ECal and TPC particle identification
- Sample of γ -conversion to constrain the main bkg (DIS and NC with π^0)

Analysis published: Phys. Rev. D. 91 051102 (2015)

v_{μ} disappearance: selection

- Simple selection done using information coming from the tracker (FGD and TPCs)
- Selected events classified into three topologies depending on the number of pions in the final state
 - CC0 π → CCQE
 - CCI π^+ \rightarrow Resonant pion production
 - CCOth \rightarrow mainly DIS

Stefania Bordoni (IFAE)

v_{μ} disappearance: sensitivity study

SBL : Outlook

Toward the joint ν_{e} - ν_{μ} fit :

- v_e disappearance published in early 2015
- $\bullet\,\nu_{\mu}$ disappearance analysis being finalised for fall 2015
- Analyses developed both the same framework
- Exploration of the feasibility to use new computing technology (GPU) to reduce the computing time
- Parallel (independent) study of the nuPRISM appearance sensitivity: joined ν_e ν_μ constraints look very promising!