Magnetic and Topological Properties of Strong Interactions

Francesco Negro

24 June 2015

INFN

INFN

Istituto Nazionale

di Fisica Nucleare

24 June 2015

1 / 28

LNF Miniworkshop-Series: Rewarding Science. LNF, Roma.

Università di Genova

Many many thanks to: C. Bonati, M. D'Elia, M. Mariti, M. Mesiti, F. Sanfilippo.

Outline

- Introduction and phenomenological motivations
- ▶ QCD ⊕ background (electro-)magnetic fields
 - Magnetic Catalysis
 [D'Elia and N, PRD 83 (2011) 114028]
 - Magnetic Susceptibility at finite temperature [Bonati, D'Elia, Mariti, N and Sanfilippo, PRL 111 (2013) 182001] [Bonati, D'Elia, Mariti, N and Sanfilippo, PRD 89 (2014) 054506]
 - Susceptibility of the QCD vacuum to CP-odd backgrounds [D'Elia, Mariti and N, PRL 110 (2013) 082002]
- Phase diagram in the T θ plane.
 [D'Elia and N, PRD 88 (2013) 034503] [D'Elia and N, PRL 109 (2012) 072001]
- Conclusions

Intro: the gauge theory of strong interactions

Quantum ChromoDynamics (QCD)

Gauge Quantum Field Theory to describe the way quarks and gluons interact.

 Λ_{QCD} \sim 200 MeV

Asymptotic freedom High Energy $g_s \ll 1$ Low Energy $g_s \sim 1$

< ロ > < 同 > < 回 > < 回 >

Intro: the gauge theory of strong interactions

Quantum ChromoDynamics (QCD)

Gauge Quantum Field Theory to describe the way quarks and gluons interact.

 Λ_{QCD} ~ 200 MeV

Asymptotic freedom

High Energy $g_s \ll 1$ Low Energy $g_s \sim 1$

$$\begin{aligned} \mathcal{L}_{QCD} &= \overline{\psi}(i\not\!\!D - m)\psi - \frac{1}{4}F^{A\mu\nu}F^{A}_{\mu\nu}\\ D_{\mu} &= \partial_{\mu} + ig_{s}A^{A}_{\mu}T^{A} \end{aligned}$$

Local gauge symmetry $\longrightarrow SU(3)$ Non-perturbative properties

- confinement
- topological activity
- spontaneous breaking of chiral symmetry

$$\begin{cases} \psi \longrightarrow e^{i\alpha_j\sigma_j\gamma_5}\psi \\ \overline{\psi} \longrightarrow \overline{\psi}e^{i\alpha_j\sigma_j\gamma_5} \end{cases} \qquad \langle \overline{\psi}\psi \rangle \neq 0 \end{cases}$$

These properties change according to: *T*, μ_B , EM Fields, Topological θ term, ...

X···XL magnetic fields

Electroweak corrections are usually small if compared to the strong interactions. But what happens if there is magnetic field large enough to be comparable with the scale Λ_{QCD} ?

- Astrophysics
 Large magnetic fields (eB ~ 10¹⁰ Tesla) in a class of neutron stars called magnetars
 [Duncan and Thompson, '92]
- Cosmology Large magnetic fields (eB ~ 10¹⁶ Tesla, √eB ~ 1.5 GeV) may have been produced at the cosmological electroweak phase transition [Vachaspati, '91; Grasso and Rubinstein, '01]
- Non-central heavy ion collisions (HIC) In **non-central HIC** the largest magnetic field ever created in a lab (*eB* up to 10^{15} Tesla $\sim 0.3 \text{ GeV}^2 \sim 15m_{\pi}^2$ at LHC) [Skokov, Illarionov and Toneev, '09]

Possible effects of the B field on QCD

The presence of a large B field may have various impacts on QCD. Some examples and possible questions:

- Phase Diagram:
- Shift of the deconfinement transition \rightarrow T_C (or T_{PC}) decreases with |B|
- New unconventional phases?
- Equation of State:
- Magnetic contribution to the EoS \checkmark
- Is strongly interacting matter paramagnetic of diamagnetic? \checkmark
- Vacuum Structure:
- Magnetic catalysis ightarrow Enhancement of chiral symmetry breaking \checkmark
- Influence on the topological properties of QCD? \checkmark
- Presence of anisotropies due to the B-field
- The Chiral Magnetic Effect [Vilenkin, '80; Kharzeev, McLerran, Warringa, Fukushima, Zhitnitsky, ...]

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The Non-Perturbative Approach: Lattice QCD

Feynman path integral formulation of the euclidean gauge theory $\langle \hat{O} \rangle = \frac{\int \mathcal{D}[\phi] O[\phi] e^{-S_{\mathcal{E}}[\phi]}}{\int \mathcal{D}[\phi] e^{-S_{\mathcal{E}}[\phi]}} = \int \mathcal{D}[\phi] O[\phi] P[\phi]$

We regularize the integral by introducing a lattice

$$\langle \hat{O} \rangle = \lim_{a \to 0} \lim_{V \to \infty} \int \left(\prod_{n=1}^{N} d\phi(n) \right) O[\{\phi(n)\}] P[\{\phi(n)\}] P[\{\phi(n$$

24 June 2015 7 / 28

Lattice QCD & magnetic field

A background QED field enters the Lagrangian by modifying the covariant derivative:

$$D_{\mu} = \partial_{\mu} + igA^{a}_{\mu}T^{a} \longrightarrow \partial_{\mu} + igA^{a}_{\mu}T^{a} + iqa_{\mu}$$

On the lattice:

- ► Gluon field $A^a_\mu(x)T^a \longrightarrow U_\mu(n) = \exp(iagA^a_\mu T^a)$, SU(3) (integration link vars)
- ▶ Photon field $a_{\mu}(x) \longrightarrow u_{\mu}(n) = \exp(iaqa_{\mu}), \quad U(1)$ (fixed link vars)

The lattice discrete covariant derivative will read:

$$D_{\mu}\overline{\psi}\longrightarrow rac{1}{2a}\left(U_{\mu}(n)u_{\mu}(n)\psi(n+\hat{\mu})-U^{\dagger}_{\mu}(n-\hat{\mu})u^{*}_{\mu}(n-\hat{\mu})\psi(n-\hat{\mu})
ight)$$

Quantization of *qB* [an IR Effect]

Finite volume \rightarrow periodic b.c. quantization of the *B* field $(qB) = 2\pi b/(L_x L_y)$

The same as what happens for the quantization of the magnetic monopole.

Magnetic Catalysis at T = 0

Enhancement of chiral symmetry breaking due to B: $\partial_B \langle \overline{\psi} \psi \rangle \neq 0$

Magnetic Catalysis at T = 0

Enhancement of chiral symmetry breaking due to $B: \partial_B \langle \overline{\psi} \psi \rangle \neq 0$

• Total Signal:

$$\langle \overline{\psi}\psi\rangle(\mathbf{B}) = \int \mathcal{D}U \mathcal{P}[m,\mathbf{B}] \operatorname{Tr}(M^{-1}[m,\mathbf{B},q])$$

• Valence Contribution (or pseudo-quenched):

$$\langle \overline{\psi}\psi\rangle^{\mathsf{val}}(B) = \int \mathcal{D}U \mathcal{P}[m,0] \operatorname{Tr}(M^{-1}[m,B,q])$$

• Sea Contribution (or dynamical):

$$\langle \overline{\psi}\psi \rangle^{dyn}(\mathcal{B}) = \int \mathcal{D}U \mathcal{P}[m, \mathcal{B}] \operatorname{Tr}(M^{-1}[m, 0, q])$$

We define r(B) the relative change in the condensate:

$$r(B) = rac{1}{\langle \overline{\psi}\psi
angle(0)} \left(\langle \overline{\psi}\psi
angle(B) - \langle \overline{\psi}\psi
angle(0)
ight)$$

Assuming that the effect of B on \mathcal{P} and on the observable are small we have:

$$r_{u/d}(B) = r_{u/d}^{\mathsf{val}}(B) + r_{u/d}^{\mathsf{dyn}}(B) + \mathcal{O}(B^4)$$

イロト 不得 トイヨト イヨト 三日

Valence and Dynamical contributions

Simulation of $N_f = 2$ QCD at higher than physical pion mass.

A sizeable part of the signal is due to the modification of the gluon field distribution induced by the magnetic field!

F. Negro

24 June 2015 10 / 28

Diamagnet or Paramagnet?

Questions:

Does strongly interacting matter behaves like a paramagnet or like a diamagnet? What are the magnetic properties of QCD at finite temperature? Magnetic susceptibility $\chi(T)$: positive or negative? depends on T?

How to answer (?):

in principle one could evaluate directly the magnetization and higher order derivatives

$$M = \chi^{(1)} = \frac{\partial \log \mathcal{Z}}{\partial (eB)}; \quad \chi^{(n)} = \frac{\partial^n \log \mathcal{Z}}{\partial (eB)^n}$$

The free energy density $(f = -(T/V) \log \mathcal{Z})$ can be formally expandend close to B = 0

$$f(T,B) = f(T,0) - \frac{T}{V} \sum_{n=1}^{\infty} \frac{\chi^{(n)}|_{eB=0}}{n!} (eB)^n$$

and the magnetic susceptibility would be $\chi^{(2)}|_{eB=0} \equiv \chi$.

<u>But</u>

On the lattice the magnetic field is quantized, hence the derivative $\partial/\partial(eB)$ is not a well defined operation.

Our approach: free energy finite differences

- 1 We find a way to compute $\Delta f(T, b) = f(T, b+1) f(T, b)$.
- 2 The determination of Δf can be used to extract χ (*e.g.* by means of suitable fitting procedure).

The approach we devised (based *a posteriori* on a theorem by Jarzynski [Jarzynski, PRL '97]) can be summarized as "differentiate and, then, integrate".

$$f(T, b+1) - f(T, b) = \Delta f = -rac{T}{V} \int_{(T, b)}^{(T, b+1)} dec{p} \; rac{\partial \log \mathcal{Z}}{\partial ec{p}}$$

The efficiency of the method is related to the shape of the path.

Our choice is to go straight from b to b + 1 by introducing a real valued magnetic field:

$$\Delta f = -\frac{T}{V} \int_{b}^{b+1} db \,\, \frac{\partial \log \mathcal{Z}}{\partial b}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

24 June 2015

12 / 28

Warning:

The integrand $\partial \log \mathcal{Z}/\partial b$ is not the magnetization, it is the derivative of the interpolating free energy defined at real *b*.

Our approach: free energy finite differences

The pseudo-magnetization $M = \partial \log Z / \partial b$ is an oscillating function.

24 June 2015 13 / 28

Renormalization

Quadratic in B divergences are still present in the finite difference $\Delta f(T,B) = f(T,B) - f(T,0)$: they must properly subtracted. We are interested in the magnetic properties of the strongly interacting medium.

Hence our renormalization prescription is to subtract the vacuum (T = 0) contribution

$$\Delta f_R(T,B) = \Delta f(T,B) - \Delta f(0,B)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

24 June 2015

14 / 28

No further divergences (depending on both B and T) are present. This procedure has to be carried out at the same UV cutoff.

Numerical Setups

Preliminary Lattice study & discussion of the method [Bonati, D'Elia, Mariti, N, Sanfilippo, PRL]

Naive fermionic and gauge discretization Higher than physical quarks

Improved Lattice study at the physical point [Bonati, D'Elia, Mariti, N and Sanfilippo, PRD]

Stout smeared rooted staggerd fermions Tree level Symanzik improved gauge action Physical quark masses Inclusion of the *strange* quark Simulations @ 3 lattice spacings: 0.2173, 0.1535, 0.1249 fm Large scale parallel computer: BGQ Fermi - CINECA

・ロト ・得ト ・ヨト ・ヨト - ヨ

Magnetic Susceptibility - Comparisons

Other methods

- half half method (or Taylor expansion method) [Levkova and DeTar]
- anisotropy method [Bali, Bruckmann, Endrodi et. al.]
- recently → generalized integral method [Bali, Bruckmann, Endrodi et. al.]

Magnetic Susceptibility - Continuum Limit

Fit function for the continuum limit:

$$\tilde{\chi}(T) = \begin{cases} A \exp(-M/T) & T \leq \tilde{T} \text{ inspired by HRG} \\ A' \log(T/M') & T > \tilde{T} \text{ inspired by Perturbation Theory} \end{cases}$$
(1)
Continuous and differentiable matching at $\tilde{T} \to (5\text{-}2)\text{=}3$ parameters
We perform the continuum limit by letting either $A = A_0 + a^2A_2$ or $M = M_0 + a^2M_2$.
Remarkably $\tilde{T} = 160(10)$ MeV.

24 June 2015

17 / 28

Diamagnetism at low T?

The HRG model predicts a diamagnetic behaviour, due to pions. We plot at low T the magnetic contribution to the pressure $\Delta P(B, T)$ (both as data and as continuum extrapolation).

Our data are not enough precise to disinguish a possible (small) diamagnetic behaviour.

Recently, (lattice) indications of a possible diamagnetic regime up to $T \sim$ 120 MeV. [Bali, Bruckmann, Endrodi et. al., JHEP 2014]

¹⁸⁰ The answer is not yet clear!

< ロ > < 同 > < 回 > < 回 >

Future Development: in order to give a precise answer regarding this issue, we are adopting another approach, inspired by [DeTar and Levkova]. Work in progress.

Nonlinearities \leftrightarrow Going to large fields

Future Development: determination of higher derivatives of the free energy with respect to the magnetic field.

- We can compute Δf between large quanta.
- Then, we fit according to $f(b) = \frac{c_2}{2}b^2 + \frac{c_4}{4!}b^4 + \frac{c_6}{6!}b^6 + \dots$

Preliminary results at large magnetic fields at a = 0.1535 fm.

24 June 2015

19 / 28

We have seen that the magnetic field influences and modifies significantly the gluon field distribution. (in particular Magnetic Catalysis & Anisotropic Potential!) How does a CP symmetry breaking in the EM sector propagates to the strong sector?

1) we fix an EM background which breaks CP $\rightarrow \vec{E} \cdot \vec{B} \neq 0$. 2) this field induces an effective θ_{eff} term:

$$heta_{eff} \simeq \chi_{CP} e^2 \vec{E} \cdot \vec{B} + \mathcal{O}((\vec{E} \cdot \vec{B})^3)$$

3) the susceptibility $\chi_{\it CP}$ is related to the intensity of the effective pseudoscalar QED - QCD interaction

$$\mathcal{L}_{eff} = \chi_{CP} q(x) e^2 \vec{E} \cdot \vec{B} = \kappa \alpha \alpha_s (\vec{E}^a \cdot \vec{B}^a) (\vec{E} \cdot \vec{B})$$

▲日▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー つくつ

24 June 2015

20 / 28

 \Rightarrow As a consequence we expect $\langle Q \rangle \neq 0!!$

We measured χ_{CP} in [D'Elia, Mariti e N, PRL '12]

Distribution of the topological charge after cooling for $\vec{E}_I \cdot \vec{B} \neq 0$.

Lattice Spacing $a \simeq 0.12$ fm and $m_{\pi} = 480$ MeV. The lattice is 16^4 so to be close to $T \sim 0$.

F. Negro

24 June 2015 21 / 28

F. Negro

24 June 2015 22 / 28

Estimate for χ_{CP} and final remarks:

• By fitting in the regime of small $\vec{E} \cdot \vec{B}$ we can extract the value of χ_{CP}

 $\chi_{CP} = (7 \pm 1) GeV^{-4}$ at a pion mass of $m_{\pi} = 480$ MeV.

• Preliminary result (only 1 lattice spacing a = 0.15 fm):

$$\chi_{CP} = (10 \pm 1) GeV^{-4}$$
 a $m_{\pi} = 280$ MeV.

• The phenomenological estimate of [M. Asakawa et al., Phys. Rev. C 81, 064912 (2010)] is based on the effective coupling of the η and η' mesons with 2 photons and 2 gluons:

$$\chi_{CP} = 0.73/(\pi^2 f_\eta^2 m_{\eta'}^2) \sim 3 \; {
m GeV}^{-4}$$

24 June 2015

23 / 28

Limitations of this study:

Higher than physical pions \oplus unimproved discretization

Future development:

Perform the same analysis at the physical pion mass and adopting an improved discretization. We are now running the simulations.

Phase diagram in the $T - \theta$ plane

Aim: SU(3) gauge theory phase diagram in the $T - \theta$ plane.

Does T_c depend on θ ? Is it growing or decreasing?

- PNJL model [Mizher, Fraga, Sakai, Kouno et al.]
- semiclassical approximations [Anber, Unsal, Poppitz and Schaefer]
- Lattice Studies [D'Elia and N, PRL '12 & PRD '13]
 - + work in progress with Bonati and Capponi.

Topological θ term

We consider the following continuum action in euclidean metric:

$$S = S_{YM} + S_{\theta}$$

The pure gauge term:

$$S_{YM} = -\frac{1}{4} \int d^4 x \ F^a_{\mu\nu}(x) F^a_{\mu\nu}(x)$$

and the topological θ -term:

$$S_{\theta} = -i\theta \frac{g_0^2}{64\pi^2} \int d^4 x \ \epsilon_{\mu\nu\rho\sigma} F^a_{\mu\nu}(x) F^a_{\rho\sigma}(x) \equiv -i\theta \int d^4 x \ q(x) \equiv -i\theta Q[A]$$

LGT techniques are based on the possibility to interpret the partition function integrand

$$Z(T,\theta) = \int D[A] e^{-S_{YM} + i\theta Q[A]}$$

・ロト ・戸 ・ ・ ヨ ・ ・ ヨ ・ うへつ

24 June 2015

25 / 28

as a probability distribution for the gauge field configurations.

But it is complex! Bad news... sign problem! \implies Analytic continuation

Curvature of the critical line.

We fix θ and we search for T_c by monitoring the Polyakov Loop (order parameter) and its susceptibility.

For small θ holds: $T_c(\theta)/T_c(0) \simeq 1 - R_{\theta}\theta^2$

We determine R_{θ} at fixed N_t , *i.e.* at fixed lattice spacing.

₩

Assuming $O(a^2)$ corrections we get: $R_{A}^{\text{cont}} = 0.0178(5)$

 T_c increases for imaginary coupling then, by analytic continuation, it decreases for real θ .

ヘロト ヘヨト ヘヨト ヘ

Large N_c estimate

We formulated the following prediction for R_{θ} in the large N_c limit:

$$R_{\theta}^{large N_{c}} = \frac{\chi}{2\Delta\epsilon}$$

This equation is based on the assumption that the topological susceptibility χ is non-zero below T_c and then sharply drops to 0. $\Delta \epsilon$ is the latent heat.

Adopting the determination of χ and $\Delta \epsilon$ in the large N_c given in [Lucini, Teper and Wenger, JHEP 2005] we get:

$$\mathcal{R}_{ heta}^{ extsf{large N_c}} = rac{0.253(56)}{N_c^2} + O(rac{1}{N_c^4})$$

The argument in [Witten, PRL 1998] supports this dependence on N_c . Large- N_c limit \rightarrow expansion variable $\frac{\theta}{N_c} \rightarrow R_{\theta}\theta^2 \rightarrow R_{\theta} \propto \frac{1}{N_c^2}$

Let's recall both our results and compare them in the case $N_c = 3$:

$$R_{\theta}^{\text{cont}} = 0.0178(5)$$
 $R_{\theta}^{\text{large } N_c}(N_c = 3) = 0.028(6)$

Future development: compute directly R_{θ} for $SU(N_c)$ with $N_c > 3$ and test the validity of the large N_c prediction.

24 June 2015

27 / 28

Conclusions and perspectives

• Determination of the magnetic susceptibility at $T \neq 0$

- \rightarrow Diamagnetism below T_c ?
- Preliminary results on the nonlinearities
 - $\bullet \ \rightarrow {\sf Determine \ higher \ orders \ coefficients}$
- Propagation of CP-breaking: determination of χ_{CP}
 - $\bullet~\rightarrow$ Study the case at physical pion masses
- Curvature of the critical line in the $T \theta$ plane
 - $\bullet \ \rightarrow$ Extend the computations to other gauge groups.

24 June 2015

28 / 28

• \rightarrow Check for the validity of the large N_c estimate.