Study of Lepton Number Conserving and Non-Conserving Processes Using GERDA Phase I Data

Sabine Hemmer INFN Padova

Università degli Studi di Padova

Frascati, 24 June 2015

- Neutrinos and Double Beta Decay
- The GERDA experiment
- Monte Carlo Simulation of the GERDA Experiment
- Background Model for the GERDA Phase I Data
- **2**νββ and 0νββχ(χ) in GERDA Phase I
- **Ονββ in GERDA Phase I**

Unveil the nature of the neutrino

- allowed by SM
- $\bullet \Delta L = 0$
- observed in many isotopes

•
$$T^{2\nu}_{1/2} \sim 10^{19} - 10^{21} yr$$

•
$$(T^{2\nu}_{1/2})^{-1}=G^{2\nu}(Q_{\beta\beta},Z)\cdot |M^{2\nu}|^2$$

Phase space nuclear matrix element

• Forbidden process in SM, needs Majorana neutrino • $\Delta L=2$ • $(T^{0\nu}_{1/2})^{-1} = G^{0\nu} (Q_{\beta\beta}, Z) \cdot |M^{0\nu}|^2 \cdot \langle m_{\beta\beta} \rangle^2 *$ Phase space $(\sim Q_{\beta\beta}^5)$ nuclear matrix $M_{ajorana neutrino mass}$

* Assuming exchange of light Majorana neutrino

24 June 2015

element

• Majoron χ : Additional particle emitted in $0\nu\beta\beta$ • $\Delta L = 2 \text{ or } \Delta L = 0$ • $(T^{0\nu\chi}_{1/2})^{-1} = |\langle g \rangle|^2 \cdot G^{0\nu\chi} (Q_{\beta\beta}, Z) \cdot |M^{0\nu\chi}|^2$ • $(T^{0\nu\chi\chi}_{1/2})^{-1} = |\langle g \rangle|^4 \cdot G^{0\nu\chi\chi} (Q_{\beta\beta}, Z) \cdot |M^{0\nu\chi\chi}|^2$ effective coupling constant Phase space $\sim (Q_{\beta\beta}^{-}-E)^n$, element Spectral index n

	LeptonicNumber of χcharge of χ Spectral index					
	Model	Mode	Goldstone boson	L	п	Matrix element
	IB	χ	no	0	1	$M_F - M_{GT}$
Lepton	IC	χ	yes	0	1	$M_F - M_{GT}$
number	ID	χχ	no	0	3	$M_{Fw^2} - M_{GTw^2}$
violating	IE	χχ	yes	0	3	$M_{Fw^2} - M_{GTw^2}$
	IF (bulk)	χ	bulk field	0	2	-
	IIB	χ	no	-2	1	$M_F - M_{GT}$
Lepton	IIC	χ	yes	-2	3	M_{CR}
number	IID	χχ	no	-1	3	$M_{Fw^2} - M_{GTw^2}$
conserving	IIE	χχ	yes	-1	7	$M_{Fw^2} - M_{GTw^2}$
	IIF	χ	gauge boson	-2	3	M _{CR}

Experimental signatures

Measure combined electron energy spectrum E:

Previous measurements

Isotope	$T^{2\nu}_{1/2}$ (10 ¹⁹ yr)	$T^{0\nu}_{1/2}$ (yr) (90% C.L.)	$\begin{array}{c} T^{0\nu\chi}_{1/2} (10^{21} \text{yr}) (90\% \text{ C.L.}) \\ (n\!=\!1) \end{array}$
⁷⁶ Ge	184 ⁺¹⁴ ₋₁₀ [1]	2.1·10 ²⁵ [2] 1.9·10 ²⁵ [3] 1.6·10 ²⁵ [4]	<mark>64</mark> [3]
¹⁰⁰ Mo	0.71±0.04 [5]	1.1·10 ²⁴ [6]	27 [7]
¹³⁰ Te	68±12 [5]	4.0·10 ²⁴ [8]	<mark>16</mark> [9]
¹³⁶ Xe	216.5±6.1 [10] 230±12 [13]	1.1·10 ²⁵ [11] 1.9·10 ²⁵ [14]	1.2·10 ³ [12] 2.6·10 ³ [15]

Claim of signal for $0\nu\beta\beta$:

 $T^{0\nu}_{1/2}$ (⁷⁶Ge) = 1.19^{+0.37}_{-0.23}·10²⁵ yr [14]

J. Phys. G: Nucl. Part. Phys. 40 (2013), 035110
 Phys. Rev. Lett. 111 (2013), 122503
 Eur. Phys. J. A12 (2001), 147-154
 Phys. Rev. D 65 (2002), 092007
 Phys. Atom. Nucl. 74 (2011), 603-613
 Phys. Atom. Nucl. 74 (2011), 312-317
 Nucl. Phys. A 765 (2006), 483-494
 arXiv:1504.02454

[9] Phys. Rev. Lett. 107 (2011), 062504
[10] Phys. Rev. C 89 (2014), 015502
[11] Nature 510 (2014), 229
[12] Phys. Rev. D 90 (2014), 092004
[13] Phys. Rev. C 86 (2012), 021601
[14] Phys. Rev. Lett. 110 (2013), 062502
[15] Phys. Lett. B 586 (2004), 198-212

$$\mathbf{S} \sim \boldsymbol{\epsilon} \cdot \mathbf{f} \cdot \sqrt{\frac{\mathbf{M} \cdot \mathbf{t}_{run}}{\mathbf{BI} \cdot \Delta \mathbf{E}}}$$

S: sensitivity ε: efficiency f: abundance of 0vββ isotope M: detector mass t_{run}: measurement time BI: background index ΔE: energy resolution at $Q_{\beta\beta}$

Germanium detector

Advantages of Germanium:

- High ε: Source = Detector
- Small instrinsic BI: High purity Ge
- Excellent ΔΕ: FWHM ~ (0.1-0.2)%
- Well-established technology

Disadvantages of Germanium:

- High external BI: $Q_{\beta\beta} = 2039 \text{keV}$
- Small f of ⁷⁶Ge:
 - $7.8\% \rightarrow$ Enrichment needed!
- Limited sources of crystal & detector manufacturers
- Small $G^{0\nu}(Q_{\beta\beta},Z)$

Additional background reduction

Point-like (single-site) energy deposition inside one HP-Ge diode (Range: ~ 1 mm)

Signal analysis:

- anti-coincidence between detectors
- pulse shape analysis (PSA)

Multi-site energy deposition inside HP-Ge diode (Compton scattering)

The GERDA experiment

- Situtated in LNGS underground laboratories (3500 m w.e. shielding)
- Graded shielding against ambient radiation
- Rigorous material selection, avoid exposure above ground for detectors

The GERDA experiment

GERIDA Phase I data

Golden data set: 17.9 kg·yr with 6 coaxial detectors FWHM at $Q_{\beta\beta}$ =(4.83±0.19) keV

Silver data set: 1.3 kg·yr with 6 coaxial detectors FWHM at $Q_{\beta\beta}$ =(4.63±0.24) keV

GERIDA Phase I data

BEGe sum data set: 2.4 kg·yr with 4 BEGe detectors FWHM at $Q_{\beta\beta}$ =(3.24±0.17) keV

Background in GERDA Phase I data

Backgrounds assessed from

photon line intensities

and

		Coaxial sum	Golden	Silver	BEGe sum
Isotope	Energy	r _s	r _s	r _s	r _s
	(keV)	cts/(kg·yr)	cts/ (kg·yr)	cts/(kg·yr)	cts/ (kg·yr)
⁴² K	1524.7	60.6 [58.8,62.6]	59.6 [57.6,61.5]	75.1 [67.7,83.5]	46.6 [41.7,51.2]
⁴⁰ K	1460.8	14.1 [12.9,15.2]	14.5 [13.2,15.6]	14.5 [13.2,15.6]	12.7 [9.6,15.9]
⁶⁰ Co	1173.2	2.9 [1.3,4.4]	2.5 [0.9,4.0]	5.1 [0.8,9.9]	<8.6
	1332.5	<1.9	<1.8	5.2 [1.5,9.1]	<6.3
²²⁸ Ac	911.2	3.1 [1.1,4.9]	4.0 [1.8,5.9]	<8.9	<8.0
	969.0	6.7 [4.6,8.5]	5.6 [3.5,7.6]	19.7 [12.2,27.5]	<8.2
²¹² Bi	727.3	2.3 [0.5,4.1]	<4.7	17.8 [8.7,24.9]	<6.7
²⁰⁸ Tl	583.2	4.0 [1.9,6.2]	3.0 [1.0,5.0]	14.0 [5.9,21.8]	<11.0
	860.6	<3.1	<3.6	<11.9	<7.0
	2614.5	1.5 [1.1,1.7]	1.5 [1.1,1.7]	1.2 [0.2,2.4]	0.6 [0.1,1.3]
²¹⁴ Pb	351.9	9.6 [4.3,14.1]	10.1 [5.0,15.2]	<34.8	13.5 [5.6,22.7]
²¹⁴ Bi	609.3	8.1 [5.6,10.3]	8.6 [5.9,10.8]	<16.1	12.0 [6.7,18.2]
	768.4	4.3 [2.1,6.3]	3.6 [1.4,5.5]	16.9 [8.1,23.9]	6.5 [1.6,10.7]
	1120.3	<2.9	<3.1	<8.9	6.7 [2.5,10.7]
	1238.1	<2.8	<2.8	<10.7	<6.6
	1764.5	3.2 [2.7,3.7]	3.3 [2.7,3.7]	2.2 [0.2,4.0]	<2.5
	2204.2	0.9 [0.6,1.2]	0.9 [0.6,1.2]	<3.3	1.0 [0.3,1.8]
¹³⁷ Cs	661.7	<4.6	<5.0	<14.7	7.0 [2.3,11.8]
e+e-					
& ²⁰⁸ Tl	511.0	10.4 [7.8,12.8]	10.6 [7.9,13.1]	<20.0	16.5 [10.4,21.9]

screening measurements:

Component	units	⁴⁰ K	²¹⁴ Bi/ ²²⁶ Ra	²²⁸ Th	⁶⁰ Co	²²² Rn	BI
		Close source	s: up to 2 cm fro	om detectors			
Copper det. support	μ Bq/det	<7	<1.3	<1.5			< 0.2
PTFE det. support	μ Bq/det	6.0 (11)	0.25 (9)	0.31 (14)			0.1
PTFE in array	μ Bq/det	6.5 (16)	0.9 (2)				0.1
minishroud	μ Bq/det		22 (7)				2.8
Li salt (n ⁺ -contact)	mBq/kg		17 (5)				≈ 0.003
	Mediu	ım distant sou	irces: 2 cm to 50) cm from det	ectors		
CC2 preamps	μ Bq/det	600 (100)	95 (9)	50 (8)			0.8
cables and suspension	mBq/m	1.40 (25)	0.4 (2)	0.9 (2)	76 (16)		0.2
	Dist	ant sources: f	urther than 50 c	m from detec	tors		
cryostat	mBq					54.7 (35)	< 0.7
copper of cryostat	mBq	<784	264 (80)	216 (80)	288 (72)		<0.0E
steel of cryostat	kBq	<72	<30	<30	475		<0.05
lock system	mBq					2.4 (3)	< 0.03
²²⁸ Th calib. source	kBq		20				<1.0

Monte Carlo Simulation

• Detailed description of geometry in GEANT4 based MaGe framework

Account for energy resolution and data selection cuts

Monte Carlo Simulation

Simulate all relevant contributions to the energy spectra

```
• <sup>76</sup>Ge (2\nu\beta\beta and 0\nu\beta\beta\chi(\chi))
intrinsic
<sup>214</sup>Bi sub-chain
holders, shroud, p<sup>+</sup>-contact, minishrouds,
n<sup>+</sup>-contact, in LAr
● <sup>228</sup>Ac
holders, shroud
<sup>228</sup>Th sub-chain
holders, shroud, heat exchanger
● <sup>60</sup>Co
holders, intrinsic
• <sup>68</sup>Ga (only for BEGe data set)
intrinsic
● <sup>40</sup>K
holders
● <sup>42</sup>K
in LAr, p<sup>+</sup>-contact, n<sup>+</sup>-contact
• a-decays from <sup>226</sup>Ra sub-chain and <sup>210</sup>Po
p<sup>+</sup>-contact, LAr close to p<sup>+</sup>-contact
```


Background model

Binned maximum likelihood approach using BAT framework \rightarrow posterior probability distribution for model λ given data spectrum n:

 $P(\boldsymbol{\lambda}|\boldsymbol{n}) = \frac{P(\boldsymbol{n}|\boldsymbol{\lambda})P_0(\boldsymbol{\lambda})}{\int P(\boldsymbol{n}|\boldsymbol{\lambda})P_0(\boldsymbol{\lambda})d\boldsymbol{\lambda}}$

derived with Bayes' theorem from likelihood

$$P(\mathbf{n}|\boldsymbol{\lambda}) = \prod_{i} P(n_{i}|\boldsymbol{\lambda}_{i}) = \prod_{i} \frac{e^{-\lambda_{i}}\boldsymbol{\lambda}_{i}^{n_{i}}}{n_{i}!}$$

λ_i= ∑_c λ_i^c: sum of contributions from single components, c, in i-th bin
 n_i: number of events in i-th bin of data spectrum
 one parameter for each model contribution!
 best-fit results and marginalized results!

Background model

- Build separate models for golden and BEGe sum data set
- Alpha models:
 - fit to high energy region with alpha components
 - → [3500; 7500] keV in 50 keV bins

Full background models:

- fit to full energy range
 - \rightarrow [570; 7500] keV in 30 keV bins
- alpha model contributes as one component
- ²¹⁴Bi on p⁺-surface, intrinsic ⁶⁰Co and ⁶⁸Ga,
 - ²¹⁴Bi sub-chain on holders and shroud,

²²⁸Th sub-chain on holders and shroud informative prior based on prior knowledge

region between 2019 keV and 2059 keV blinded

Background model around Q_{BB}

- BI in [1930; 2190] keV can be approximated as flat
- Dominant contributions:

²¹⁴Bi and ²²⁸Th sub-chain decays, ⁴²K decays, and a-decays

• BI predictions around $Q_{\beta\beta}$ stable for variations within uncertainties of priors, active volume fractions, enrichment fractions, as well as for different source positions and binning

$2\nu\beta\beta$ - Analysis

Measure $T^{2\nu}_{1/2} \rightarrow$ combine information from golden and BEGe sum data set:

$$P(\mathbf{n}^{\text{gold}}, \mathbf{n}^{\text{BEGe}} | \boldsymbol{\lambda}^{\text{gold}}, \boldsymbol{\lambda}^{\text{BEGe}}) = \prod_{i} P(n_{i}^{\text{gold}} | \boldsymbol{\lambda}_{i}^{\text{gold}}) \cdot \prod_{j} P(n_{j}^{\text{BEGe}} | \boldsymbol{\lambda}_{j}^{\text{BEGe}})$$

 $\rightarrow T^{2\nu}_{1/2}$ common parameter for both data sets

 $T^{2\nu}_{1/2} = 1.96 [1.93, 1.99] \cdot 10^{21} \text{ yr}$ (systematic uncertainty not accounted for)

 $2\nu\beta\beta$ - Analysis

Signal to background: 3:1

Golden: Data: 35868 events Best-fit model: 35902.3 events

 $OV\beta\beta\chi(\chi)$ - Analysis

Add also contributions from Majoron mode (n=1, 2, 3, or 7) to model

 $\rightarrow 1/T^{0\nu\chi(\chi)}_{1/2}$ common parameter for both data sets

Τ^{0νχ(χ)} _{1/2}	(90% quantile)
n=1	> 4.36·10 ²³ yr
n=2	> 1.91·10 ²³ yr
n=3	> 0.94·10 ²³ yr
n=7	$> 0.35 \cdot 10^{23} \text{ yr}$

(systematic uncertainty not accounted for)

ovßßx(x) - Amalysis

 For all spectral modes good agreement of best-fit model with data

 Result for T^{2v}_{1/2} in all cases in agreement with previous result

Systematic uncertainties estimated by cross-checks changing conditions in fit or input parameters (case n=1 chosen as representative)

Item	Uncertair	ty on $T_{1/2}^{2v}$	Uncertainty on $1/T_{1/2}^{0v\chi(\chi)}$	
	0	%)	(% on 90)% quantile)
Screening results	-		+0.5 -1.3	
Binning	±0.5		+16.1	
Active volume fraction	±5.6		+5.7 -8.0	
Enrichment fraction	± 2.0		±1.7	
Source positions	-		+12.6 -8.3	
Transition layer	±0.5		±0.5	
Total fit model		±6.0		+21.3 -11.7
MC geometry	±1.0		±1.0	
MC tracking	±2.0		±2.0	
Total MC simulation		±2.2		±2.2
Data acquisition and selection		±0.5		±0.5
Total systematic uncertainty	±6.4			+21.4 -12.0

Add individual contributions in quadrature

For limits on $1/T^{0\nu\chi}_{1/2}$: Fold systematic uncertainty in posterior distribution

Good agreement with previous measurement using GERDA data

 $ov\beta\beta\chi(\chi) - Final results$

Model	n	Mode	Goldstone	L	$T_{1/2}^{0\nu\chi}$	$\mathcal{M}^{0\nu\chi}$	$G^{0\nu\chi}$	$\langle g \rangle$
			boson		$[10^{23} yr]$		$[yr^{-1}]$	
IB	1	χ	no	0	> 4.2	(2.30 - 5.82)	$5.86 \cdot 10^{-17}$	$< (3.4 - 8.7) \cdot 10^{-5}$
IC	1	$\boldsymbol{\chi}$	yes	0	> 4.2	(2.30 - 5.82)	$5.86 \cdot 10^{-17}$	$< (3.4 - 8.7) \cdot 10^{-5}$
ID	3	xx	no	0	> 0.8	$10^{-3\pm 1}$	$6.32 \cdot 10^{-19}$	$< 2.1^{+4.5}_{-1.4}$
IE	3	$\chi\chi$	yes	0	> 0.8	$10^{-3\pm 1}$	$6.32 \cdot 10^{-19}$	$< 2.1^{+4.5}_{-1.4}$
IF	2	x	bulk field	0	> 1.8	-	_	
IIB	1	χ	no	-2	> 4.2	(2.30 - 5.82)	$5.86 \cdot 10^{-17}$	$< (3.4 - 8.7) \cdot 10^{-5}$
IIC	3	$\boldsymbol{\chi}$	yes	-2	> 0.8	0.16	$2.07 \cdot 10^{-19}$	$< 4.7 \cdot 10^{-2}$
IID	3	$\chi\chi$	no	-1	> 0.8	$10^{-3\pm 1}$	$6.32 \cdot 10^{-19}$	$< 2.1^{+4.5}_{-1.4}$
IIE	7	xx	yes	-1	> 0.3	$10^{-3\pm 1}$	$1.21 \cdot 10^{-18}$	$< 2.2^{+4.9}_{-1.4}$
IIF	3	x	gauge boson	-2	> 0.8	0.16	$2.07 \cdot 10^{-19}$	$< 4.7 \cdot 10^{-2}$

Most stringent limits obtained to date for Majoron accompanied decay of ⁷⁶Ge

Blinded analysis

```
Use Pulse Shape Analysis (PSA):
```

Event selection based on charge and current pulse characteristics

Combine information from golden, silver, and BEGe sum data set:

Total likelihood $L = L_{golden} \cdot L_{silver} \cdot L_{BEGe}$

Fit function: constant + gaussian peak centered at $Q_{\beta\beta}$ \Rightarrow 4 parameters (background of three data sets and $T^{0\nu}_{1/2)}$

Systematic uncertainties folded in with Monte Carlo approach: Probability distribution for each source of uncertainty

- Detection efficiency ($< \epsilon > = < f_{76} \cdot f_{act} \cdot f_{FEP} >$)
- Energy resolution
- Signal acceptance after PSA
- Position of the signal peak

$ov\beta\beta$ – Final Results

Expectation in ROI (after PSA): 2.0 \pm 0.3 events Observation in ROI (after PSA): 3 events (none in $\pm \sigma$ around $Q_{\beta\beta}$)

Final GERDA result *: $T^{0v}_{1/2} > 2.1 \cdot 10^{25} \text{ yr} (90\% \text{ C.L.})$

Combine with information from energy spectra of HDM and IGEX: $T^{0\nu}_{1/2} > 3.0 \cdot 10^{25}$ yr (90% C.L.)

Assuming exchange of light Majorana neutrino as dominating mechanism for $0\nu\beta\beta$: $\leq m \geq \leq (0.2-0.4) \text{ eV}$

 $< m_{\beta\beta} > < (0.2-0.4) \text{ eV}$

*frequentist approach, with Bayesian approach: $T_{1/2}^{0v} > 1.9 \cdot 10^{25}$ yr (90% C.I.)

Signal claim of T^{0v}_{1/2}=1.19^{+0.37}_{-0.23}·10²⁵ yr [1] not supported [1] H.V. Klapdor-Kleingrothaus et al., Phys. Lett. B 586 (2004) 198-212

Conclusions

Analysis of GERDA Phase I data comprising:

- Description of all relevant background sources with MC simulation
- Development of complete background model
- + Measurement of half-life of $2\nu\beta\beta$ of ⁷⁶Ge with unprecedented precision: $T^{2\nu}_{1/2} = (1.96 \pm 0.13) \cdot 10^{21}$ yr
- Search for 0νββχ(χ) modes of ⁷⁶Ge leading to improved lower limits for all four modes
- + Search for $0\nu\beta\beta$ of ⁷⁶Ge resulting in $T^{0\nu}_{1/2} > 2.1 \cdot 10^{25}$ yr

Additional material

Previous measurements and claim

Previous $ov\beta\beta$ experiments

	ЦАМ	ICEV
	nulvi	IGEA
Location	LNGS	Homestake, Baksan, Canfranc
Exposure [kg·yr]	71.1	8.8
Bg [cts/(keV·kg·yr)]	≥ 0.11	0.17
T _{1/2} limit (90% CL) [yr]	1.9·10 ²⁵ [1]	1.6·10 ²⁵ [2]
[1] Fur Dhys I A19 147 154 (900	11)	

[1] Eur. Phys. J. A12, 147-154 (2001)
[2] Phys. Rev. D 65, 092007 (2002)

Claim of signal from part of HdM: $T_{1/2}$ (⁷⁶Ge) = 1.19^{+0.37}_{-0.23}·10²⁵ yr Phys. Lett. B 586, 198-212 (2004)

HdM claim

Data acquisition and analysis of the ⁷⁶Ge double beta experiment in Gran Sasso 1990–2003

Fig. 17. The total sum spectrum of all five detectors (in total 10.96 kg enriched in 76 Ge), for the period November 1990–May 2003 (71.7 kg year) in the range 2000–2060 keV and its fit (see Section 3.2).

Comparison: IGEX

- Nov 1990 May 2003
- **●** 71.7 kg·yr
- **9** 4.2σ/6σ evidence for $0\nu\beta\beta$

 (0.69 – 4.18)·10²⁵ yr (3σ) Best fit: 1.19·10²⁵ yr
 Phys. Lett. B 586, 198-212 (2004)

2.23^{+0.44}_{-0.31}·10²⁵ yr Mod. Phys. Lett. A 21, 1547-1566 (2006) Criticism in Ann. Phys. 525, 269-280 (2013)

• $m_{\beta\beta} = (0.24-0.58) \text{ eV}$ (best fit 0.44 eV) / 0.32±0.03 eV

Note: statistical significance depends on background model!

Refusal of signal claim

Assuming $T_{1/2}^{0v} = 1.19^{+0.37}_{-0.23} \cdot 10^{25}$ yr: expect **5.9±1.4 signal events** in ROI

Expectation from background (after PSA): 2.0±0.3 events in ROI

Observation: 3 events

From analysis:

BF<<1 for both frequentist and Bayesian approaches

Best fit value: $N^{0\nu}=0$ for both approaches

 $P(N^{0\nu}=0|T^{0\nu}_{1/2}=1.19\cdot10^{25} \text{ yr})=0.01 \text{ for frequentist approach}$

\phi Claim of observation of $0\nu\beta\beta$ not supported by GERDA Phase I data

BI definition

Definition of BI

BI (10⁻³ cts/(keV·kg·yr)) after partial unblinding:

	Before PSA	After PSA
Golden: Silver: BEGe sum:	$18.5^{+2.3} \\ 63.4^{+18.0} \\ {}^{-14.3} \\ 41.3^{+10.4} \\ {}^{-8.4}$	$10.9^{+1.9}$ $30.1^{+13.7}$ $5.4^{+5.2}$ -2.9

Pulse Shape Analysis

Pulse shape analysis - BEGe detectors

Cut based on A/E \rightarrow keep events with $2\sigma_{A/E} < A/E < 4\sigma_{A/E}$ (tuned using DEP, compton continuum and $2\nu\beta\beta$ events)

 $\epsilon_{PSA} = 0.92 \pm 0.02$ for SSE

BI (10^{-3} cts/(keV·kg·yr)) after partial unblinding:

	Before PSA	After PSA
BEGe sum:	41.3 ^{+10.4} _{-8.4}	5.4 ^{+5.2} -2.9

In ROI: 1 event detected \rightarrow rejected by PSA

Pulse shape analysis - coaxial detectors

Cut based on ANN using rising part of charge pulse (tuned using DEP, $2\nu\beta\beta$, compton edge events)

ε_{PSA}=0.90^{+0.05}_{-0.09} for SSE BI (10⁻³ cts/(keV·kg·yr)) after partial unblinding: Before PSA After PSA

Golden: $18.5^{+2.3}$
-2.2
63.4^{+18.0}
-14.3 $10.9^{+1.9}$
-1.6
30.1^{+13.7}
-9.8

In ROI (golden/silver): 5/1 event detected \rightarrow 3/0 rejected by PSA Good agreement with alternative PSA methods

Pulse shape analysis in ROI

Data set	Detector	E (keV)	Date	Passed PSA
golden	ANG5	2041.8	Nov 18, 2011 22:52	_
silver	ANG5	2036.9	Jun 23, 2012 23:02	
golden	RG2	2041.3	Dec 16, 2012 00:09	
BEGe	GD32B	2036.6	Dec 28, 2012 09:50	-
golden	RG1	2035.5	Jan 29, 2013 03:35	
golden	ANG3	2037.4	Mar 2, 2013 08:08	-
golden	RG1	2041.7	Apr 27, 2013 22:21	-

Decay chains

²³⁸ U chain						
Nuclide	mode	$T_{1/2}$	Q-value (keV)	decay product	E_{γ} (keV)	
²³⁸ U	α	$4.5 \cdot 10^9 \mathrm{yr}$	4270.0	²³⁴ Th	_	
²³⁴ Th	β	24.1 d	273.0	^{234m} Pa	-	
^{234m} Pa	β	1.2 min	2195.0	²³⁴ U	-	
²³⁴ U	α	$2.5\cdot10^5\mathrm{yr}$	4858.5	²³⁰ Th	_	
²³⁰ Th	α	$7.5 \cdot 10^4 \mathrm{yr}$	2770.0	²²⁶ Ra	_	
²²⁶ Ra	α	$1.6 \cdot 10^3 \mathrm{yr}$	4870.6	²²² Rn	_	
²²² Rn	α	3.8 d	5590.3	²¹⁸ Po	-	
²¹⁸ Po	α	3.1 min	6114.7	²¹⁴ Pb	-	
²¹⁴ Pb	β	26.8 min	1024.0	²¹⁴ Bi	351.9	
²¹⁴ Bi	β	19.9 min	3272.0	²¹⁴ Po	609.3	
					768.4	
					1120.3	
					1238.1	
					1764.5	
					2204.2	
²¹⁴ Po	α	164.3 μs	7833.5	²¹⁰ Pb	-	
²¹⁰ Pb	β	22.3 yr	63.5	²¹⁰ Bi	-	
²¹⁰ Bi	β	5.0 d	1162.1	²¹⁰ Po	-	
²¹⁰ Po	α	138.4 d	5407.5	²⁰⁶ Pb	-	

²³² Th chain							
Nuclide	mode	$T_{1/2}$	Q-value (keV)	decay product	E_{γ} (keV)		
²³² Th	α	$1.4\cdot10^{10}\mathrm{yr}$	4082.8	²²⁸ Ra	_		
²²⁸ Ra	β	5.8 yr	45.9	²²⁸ Ac	_		
²²⁸ Ac	β	6.2 h	2127.0	²²⁸ Th	911.2		
					969.0		
²²⁸ Th	α	1.9 yr	5520.1	²²⁴ Ra	_		
²²⁴ Ra	α	3.7 d	5788.9	²²⁰ Rn	_		
²²⁰ Rn	α	55.6 s	6404.7	²¹⁶ Po	-		
²¹⁶ Po	α	0.1 s	6906.5	²¹² Pb	-		
²¹² Pb	β	10.6 h	573.8	²¹² Bi	-		
²¹² Bi	β/	60.6 min	2254.0 /	²¹² Po /	727.3		
	α		6207.1	²⁰⁸ Tl			
²¹² Po	α	0.3 µs	8954.1	²⁰⁸ Pb	_		
²⁰⁸ Tl	β	3.1 min	5001.0	²⁰⁸ Pb	510.8		
					583.2		
					860.6		
					2614.5		

⁴²Ar: β (599 keV, 33 yr) → ⁴²K: β (3525.4 keV, 1524.7 keV photon, 12 h) ⁴⁰K: β/β⁺+ec (1311.1/1504.9 keV, 1460.8 keV photon, 1.3·10⁹ yr) ⁶⁰Co: β (2823.9 keV, 1173.3 keV & 1332.5 keV photon, 5.3 yr) ⁶⁸Ge: ec (106.0 keV, 270 d) → ⁶⁸Ga: ec+β⁺ (2921.1 keV, 1077.4 keV photon, 67.6 min)

Details on Background Models

Alpha models

data -model

68%

95%

99.9%

5000

10 h

> 1

10-1

10-2 F

20

10

0

data/model

4000

data/model ratio

Isotope	Location	Number of counts
²¹⁰ Po	p^+ -surface	1355 [1310,1400]
²²⁶ Ra	p^+ -surface	51 [36,65]
²²² Rn	p^+ -surface	25 [18,33]
²¹⁸ Po	p^+ -surface	14 [9,19]
²¹⁴ Po	p^+ -surface	<10
²²⁶ Ra	LAr	<159
²²² Rn	LAr	<64
²¹⁸ Po	LAr	<30
²¹⁴ Po	LAr	20 [10,29]

Isotope	Location	Number of counts
²¹⁰ Po	p^+ -surface	14.0 [9.4,19.4]
²²⁶ Ra	p^+ -surface	6.1 [2.2,10.2]
²²² Rn	p^+ -surface	<7.1
²¹⁸ Po	p^+ -surface	<4.8
²¹⁴ Po	p^+ -surface	<4.3
²²⁶ Ra	LAr	<51.2
²²² Rn	LAr	<28.6
²¹⁸ Po	LAr	<20.4
²¹⁴ Po	LAr	<12.0

Golden

data set

24 June 2015

6000

0

0

E (keV)

7000

²¹⁰Po on surface
 ²²⁶Ra & daughters on surface
 ²²⁶Ra & daughters in LAr

Background model fits golden data

p-value: 0.07 35847 events in data and best-fit model $T^{2\nu}_{1/2}$ =1.94 [1.91,1.97] ·10²¹ yr

Background model around Q_{BB}

Item	$\Delta BI_{\rm global}$	$\Delta BI_{\rm marg}$	Model composition varied	
			global	marg.
Screening results	-	-	-	-
Active volume fraction				
for internal sources	-	_	-	-
for 42 K on n^+ -surface	+0.5	+0.4	\checkmark	\checkmark
Enrichment fraction	-	_	-	-
Source positions	$^{+1.6}_{-0.2}$	$^{+0.2}_{-0.1}$	\checkmark	\checkmark
Binning	-0.1	-0.1	\checkmark	\checkmark

Table 9.2: Estimates of the *BI* from the background model in a 10 keV-window around $Q_{\beta\beta}$. Listed are the results for the total model and all individual model components whose spectrum extends up to the window. The global modes, as well as the modes and smallest 68% interval of the marginalized distributions are given. In case the 68% interval contains zero, the 90% quantile of the marginalized distribution is shown. All values are given in units of $10^{-3} \text{ cts}/(\text{keV} \cdot \text{kg} \cdot \text{yr})$.

Isotope	Source position	Global mode	Marg. mode	68% interval/
				90% quantile
alpha model	p ⁺ -surface	2.1	2.1	[2.0,2.1]
²¹⁴ Bi chain	close	3.6	2.9	[2.6,3.4]
²¹⁴ Bi chain	medium distant	0.3	0.3	[0.3,1.2]
²¹⁴ Bi chain	p ⁺ -surface	1.3	1.3	[0.9,1.7]
²²⁸ Th chain	close	1.0	0.8	[0.1,1.4]
²²⁸ Th chain	medium distant	2.6	0.8	[0.8,2.3]
²²⁸ Th chain	distant	-		<3.3
⁶⁰ Co	close	1.0	1.0	[0.5,1.5]
⁶⁰ Co	in Ge	0.5		<0.5
⁴² K	LAr	1.7	2.2	[1.9,2.4]
⁴² K	p ⁺ -surface	-		<4.9
⁴² K	n ⁺ -surface	6.2		<5.5
Total		20.3	21.0	[19.8,22.2]

Data (in background window): BI=18.5^{+2.3}_{-2.2}·10⁻³ cts/(keV·kg·yr)

Background model fits BEGe data

p-value: 0.42 5032 events in data and best-fit model $T^{2\nu}_{1/2}$ =2.10 [2.02,2.19] ·10²¹ yr

Background model around Q_{BB}

Item	$\Delta BI_{\rm global}$	$\Delta BI_{\rm marg}$	Model composition varied	
			global	marg.
Screening results	-	-	-	\checkmark
Active volume fraction				
for internal sources	_	+0.3	-	\checkmark
for 42 K on n^+ -surface	-0.4	+0.5	\checkmark	\checkmark
Enrichment fraction	_	_	-	\checkmark
Source positions	$^{+1.1}_{-0.5}$	+1.1	\checkmark	\checkmark
Binning	+1.3 -0.5	$^{+1.3}_{-1.2}$	\checkmark	\checkmark

Table 9.5: Estimates of the *BI* from the background model in a 8 keV-window around $Q_{\beta\beta}$. Listed are the results for the total model and all individual model components whose spectrum extends up to the window. The global modes, as well as the modes and smallest 68% interval of the marginalized distributions are given. In case the 68% interval contains zero, the 90% quantile of the marginalized distribution is shown. All values are given in units of 10^{-3} cts/(keV · kg · yr).

Isotope	Source position	Global mode	Marg. mode	68% interval/
				90% quantile
alpha model	p ⁺ -surface	1.8	1.8	[1.5,2.1]
²¹⁴ Bi chain	close	5.4	3.2	[2.7,5.1]
²¹⁴ Bi chain	medium distant	0.3	0.3	[0.3,2.7]
²¹⁴ Bi chain	p^+ -surface	0.5	0.5	[0.2,0.8]
²²⁸ Th chain	close	0.1	0.1	[0.1,3.0]
²²⁸ Th chain	medium distant	3.7	0.8	[0.8,4.2]
²²⁸ Th chain	distant	-		<8.4
⁶⁰ Co	close	1.2		<4.2
⁶⁰ Co	in Ge	0.3		<0.3
⁶⁸ Ga	in Ge	-		<3.6
⁴² K	LAr	2.0	2.1	[1.9,2.3]
⁴² K	p^+ -surface	11.8	5.1	[0.5,10.5]
⁴² K	n ⁺ -surface	12.9		<16.4
Total		40.0	40.6	[36.5,45.2]

Data (in background window): BI=41.3^{+10.4}_{-8.4}·10⁻³ cts/(keV·kg·yr)

Background model prior knowledge

Prior information for single background components:

 ²¹⁴Bi on p⁺-surface gaussian prior derived from ²²⁶Ra activity determined with alpha model

 ⁶⁰Co in germanium and ⁶⁸Ga flat prior with maximum number of events deduced from activation calculations

 Flat prior with minimum number of events for ²¹⁴Bi on holders and shroud and ²²⁸Th on holders and shroud derived from screening measurements

All remaining background components:
 Flat priors without restrictions

Component	units	⁴⁰ K	²¹⁴ Bi/ ²²⁶ Ra	²²⁸ Th	⁶⁰ Co	²²² Rn	BI
		Close sources:	up to 2 cm fr	om detecto	s		\frown
Copper det. support	$\mu Bq/det$	<7	<1.3	<1.5			<0.2
PTFE det. support	$\mu Bq/det$	6.0 (11)	0.25 (9)	0.31 (14)			0.1
PTFE in array	μ Bq/det	6.5 (16)	0.9 (2)				0.1
mini-shroud	$\mu Bq/det$		22 (7)				2.8
Li salt	mBq/kg		17 (5)				≈ 0.003
Medium distance sources: 2 cm to 50 cm from detectors							
CC2 preamps	$\mu Bq/det$	600 (100)	95 (9)	50 (8)			0.8
cables and suspension	mBq/m	1.40 (25)	0.4 (2)	0.9 (2)	76 (16)		0.2
	Dista	nt sources: fur	ther than 50 o	em from det	tectors		$\overline{}$
cryostat	mBq					54.7 (35)	<0.7
copper of cryostat	mBq	<784	264 (80)	216 (80)	288 (72)		<0.05
steel of cryostat	kBq	<72	<30	<30	475		<0.05
lock system	mBq					2.4 (3)	< 0.03
²²⁸ Th calib. source	kBq		20				<1.0

Details on Majoron Analysis

Majoron results

Data: 35868 events in golden, 5035 events in BEGe sum data set

n=1: p-value=0.13 35834.0/5081.4 events 54.5/7.8 Majoron $T^{2\nu}_{1/2}=1.96\cdot10^{21}$ yr n=2: p-value=0.14 35794.7/5061.8 events 234.0/33.6 Majoron $T^{2\nu}_{1/2}$ =1.97·10²¹ yr

Majoron results

Data: 35868 events in golden, 5035 events in BEGe sum data set

n=3: p-value=0.12 35841.5/5046.4 events 384.9/55.1 Majoron $T^{2\nu}_{1/2}$ =1.98·10²¹ yr n=7: p-value=0.13 35795.8/5049.6 events 9.7/1.4 Majoron $T^{2\nu}_{1/2}$ =1.99·10²¹ yr

Previous results

Half-life $T_{1/2}^{0\nu\chi(\chi)}(10^{23} \text{ yr})$

	This analysis	KamLAND-Zen ¹⁾	EXO-200 ²⁾	HdM ³⁾
n=1	>4.2	> 26	> 12	> 0.64
n=2	> 1.8	> 10	> 2.5	-
n=3	> 0.8	> 4.5	> 0.27	>0.14
n=7	> 0.3	> 0.11	> 0.06	>0.07

 ¹⁾ A. Gando et al., Phys. Rev. C 86 (2012)
 ²⁾ Phys. Rev. D 90 (2014), 092004
 ³⁾ H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12 (2001), M. Günther, et al., Phys. Rev. D 54 (1996), 3641–3644

Previous results

Coupling constant $\langle g_{\alpha} \rangle$

	This analysis	KamLAND-Zen ¹⁾	EXO-200 ²⁾	HdM ³⁾
n=1, χ (IB, IC, IIB)	< (3.4-8.7)·10 ⁻⁵	< (0.8-1.6)·10 ⁻⁵	< (0.8-1.7)·10 ⁻⁵	< 8.1·10 ⁻⁵
n=3, χχ (ID, IE, IID)	< 2.1 ^{+4.5} -1.4	< 0.68	< (0.6-5.5)	< 3.3
n=3, χ (IIC, IIF)	< 0.047	< 0.013	< 0.06	< 0.12
n=7, χχ (IIE)	< 2.2 ^{+4.9} -1.4	< 1.2	< (0.5-4.7)	< 3.3

 ¹⁾ A. Gando et al., Phys. Rev. C 86 (2012))
 ²⁾ Phys. Rev. D 90 (2014), 092004
 ³⁾ H. V. Klapdor-Kleingrothaus et al., Eur. Phys. J. A 12 (2001), M. Günther, et al., Phys. Rev. D 54 (1996), 3641–3644

Sterile Neutrinos

Sterile neutrinos

Case of one additional sterile neutrino with $m_{st} >> m_{1,2,3}$: • $< m_{\beta\beta} > = < m_{\beta\beta} >^{act} + < m_{\beta\beta} >^{st}$ • If $m_{light} < 0.01 \text{ eV} \rightarrow < m_{\beta\beta} >$ cannot vanish for NH • $< m_{\beta\beta} >$ can vanish for IH also for small active neutrino masses

References for Phase Spaces and Matrix Elements

References G and M

$G^{0\nu}$:

J. Kotila and F. Iachello, Phase space factors for double- β decay, Phys. Rev. C 85 (2012), 034316

$M^{0\nu} \& M^{0\nu\chi} (n=1):$

- F. Šimkovic, V. Rodin, A. Faessler, and P. Vogel, Phys. Rev. C 87 (2013), 045501
- M. T. Mustonen and J. Engel, Phys. Rev. C 87 (2013), 064302
- T. R. Rodriguez and G. Martinez-Pinedo, Phys. Rev. Lett. 105 (2010), 252503
- J. Menéndez, A. Poves, E. Caurier, and F. Nowacki, Nucl. Phys. A 818 (2009), 139–151
- J. Barea, J. Kotila, and F. Iachello, Phys. Rev. C 87 (2013), 014315
- J. Suhonen and O. Civitarese, Nucl. Phys. A 847 (2010), 207 232
- A. Meroni, S. Petcov, and F. Šimkovic, J. High Energy Phys. 2013 (2013), 1-29

$G^{0\nu\chi}(n=1):$

J. Suhonen and O. Civitarese, Phys. Rep. 300 (1998), 123 - 214

 $G^{0\nu\chi(\chi)} \& M^{0\nu\chi(\chi)} (n=2, 3, 7):$

M. Hirsch, H. Klapdor-Kleingrothaus, S. Kovalenko, and H. Päs, Phys. Lett. B 372 (1996), 8-14