Observation of the rare decay $B_s^0 \rightarrow \mu^+ \mu^-$ and search for $B^0 \rightarrow \mu^+ \mu^-$ with the CMS experiment

Università degli studi di Siena

Ph.D. thesis in Experimental Physics defended on December the 4th 2013

Luca Martini

Supervisor Dott. Fabrizio Palla Tutor Dott.sa Maria Agnese Ciocci

Summary

- The $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ decays are among the most sensitive channels for the indirect search of new physics
- OCMS tracker and muon detectors allow very clean identification and high reconstruction efficiency for muons
- **(3)** LHC during 2011 and 2012 produced large samples of B_s^0 and B^0 mesons
- In this thesis I presented
 - **1** the first measurement of $\mathcal{B}(B^0_s \to \mu^+ \mu^-)$
 - **2** the most recent upper limit on $\mathcal{B}(B^0 \to \mu^+ \mu^-)$
- $\rightarrow\,$ Performed with the CMS experiment using the full 2011 and 2012 data

- $B^0_{(s)} \rightarrow \mu^+ \mu^-$ decays are forbidden at tree level in the SM
 - FCNC, proceed through penguin and box diagrams, helicity suppressed by $(m_\mu/m_B)^2$, CKM suppressed
- Among the simplest and cleanest decays to evaluate [arXiv:1311.0903v3]

$$\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-)_{SM} &= (3.66 \pm 0.23) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-)_{SM} &= (1.06 \pm 0.09) \times 10^{-10} \end{aligned}$$

• Small values and small uncertainties (dominated by CKM and f_B), very sensitive to NP contributions

Correlations improve sensitivity on new physics

• Different SUSY models allow different BF values

- It is crucial to measure both $\mathcal{B}(B^0_s\to\mu^+\mu^-)$ and $\mathcal{B}(B^0\to\mu^+\mu^-)$

L. Martini

- Many HEP collaborations have published results on the search for $B^0_s\to\mu^+\mu^-$ or $B^0\to\mu^+\mu^-$ decays
- Over the past 30 years, significant progress has been made
- \rightarrow Limiting factor is acquired statistics

LHC and CMS operating conditions

INFN MCCXXX

- Proton-Proton collisions, $\sqrt{s} = 7 \text{ TeV}$ in 2011 and 8 TeV in 2012
- LHC delivered an even-increasing instantaneous luminosity

CMS Integrated Luminosity, pp

- At the cost of a challenging pile-up: $<\mu>_{2011}=$ 8 PV, $<\mu>_{2012}=$ 21 PV
- pile-up (PU) is the number of primary vertices per bunch crossing

CMS main features

- Cylinder detector with a barrel and two endcap regions covering the region $|\eta|<5$
- 3.8 T superconducting solenoid
- Inner full silicon tracker to reconstruct charged particle trajectories and vertices $|\eta|<2.5$
- Muon detectors to identify and reconstruct muons with $p_T \approx 4\,{\rm GeV}{-}1\,{\rm TeV}$ range
- Electromagnetic and Hadronic calorimeters for energy measurements

· High efficiency and resolution for track and vertex reconstructions

Muon detector performance

- Two reconstruction algorithms
 - Inside-out from tracker tracks extrapolating to muon system ("Tracker Muon")
 - Outside-in from muon tracks extrapolating to the tracker system ("Global Muon")

• For $B_{(s)}^0$ low p_T muons, the tracker drives the resolution

- Rare backgrounds depend heavily on the "muon misidentification"
- Kaon, pion and proton tracks wrongly identified as muons due to punch-through and decays-in-flight
- Starting from well reconstructed CMS "tight" muons, improve the separation with a multivariate analysis, a Boosted Decision Tree (BDT)
- Tracker and muon track parameters used to separate true muons (from $B_s^0 \to \mu^+\mu^-$) against fake muons (from $B_s^0 \to K^+K^-$)
- Examples of input parameters: Global track fit χ^2 , Tracker valid hits

Muon BDT results

Hadron	Misid. ($\times 10^{-3}$)
π	0.5-1.3
K	0.8-2.2
p	0.4-1.5

- Misidentification around 1‰
- With an uncertainty of 50%
- Muon efficiencies measured on data with $J/\psi \to \mu^+\mu^-$ with data-driven methods (*Tag & Probe*)
- Muon misidentification validated on data with:
 - $D^{*+} \rightarrow D^0 \pi^+ \rightarrow K^- \pi^+ \pi^+$ for kaon and pions
 - $B_s^0 \to J/\psi \phi$, $B^{\pm} \to J/\psi K^{\pm}$ for kaons
 - $\Lambda^0 \to p\pi^-$ for protons

Trigger

- CMS uses a two-level trigger to save only the most interesting events from the LHC bunch crossing rate (40 MHz)
- **1** L1 hardware algorithms (Maximum rate $< 100 \, \text{kHz}$)
- HLT software algorithms (Maximum rate $\lesssim 500 \text{ Hz}$)
- Designed, validated and maintained optimal trigger paths
 - **1** B_s^0 L1 paths: 2 muons with $p_T > 3$ GeV and $|\eta| < 2.2$
 - **2** B^0_{s} HLT paths: requests on muon and dimuon p_T and $|\eta|$, invariant mass, vertex probability and decay length

 \rightarrow High efficient triggers with rates of few Hz

- Given the expected CMS sensitivity, results are given in two ways
 - **1** $\mathcal{B}(B^0 \to \mu^+ \mu^-)$: counting experiment in the B^0 dimuon mass window
 - **2** $\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$: unbinned maximum likelihood fit to the full dimuon mass
- Results extracted using a normalization to $B^{\pm} \rightarrow J/\psi K^{\pm} \rightarrow \mu^{+}\mu^{-}K^{\pm}$
 - to avoid uncertainties on the $b\bar{b}$ production cross-section and luminosities
 - to cancel at first order many systematic errors

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \underbrace{\frac{N_{obs}^{B_s^0}}{N_{obs}^{B^\pm}}}_{\bullet B_s^0} \times \underbrace{\frac{\epsilon_{B^\pm}}{\epsilon_{B_s^0}}}_{\mathsf{Production ratio}} \times \mathcal{B}(B^\pm \to J/\psi K^\pm) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)$$

- A blind analysis: All selections are fixed without using events from the signal region to avoid biases
- B_s^0 signal distributions validated on data using $B_s^0 \to J/\psi \phi \to \mu^+ \mu^- K^+ K^-$

- **()** Combinatorial, formed by muons coming from b or c weak decays, $q \rightarrow X \mu \bar{\nu}$. Studied on side-bands
- **2** Rare semileptonic like $B_s^0 \to K^- \mu^+ \nu_{\mu}$, where a hadron is misidentified as a muon. Studied on data and MC
- **③** Rare peaking like $B_s^0 \to K^+K^-$, where both hadrons are misidentified as muons. Studied on data and MC
- **4** Cross-feeding between $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ due to the detector resolution. Studied on MC

- **1** Combinatorial, formed by muons coming from b or c weak decays, $q \rightarrow X \mu \bar{\nu}$. Studied on side-bands
- **2** Rare semileptonic like $B_s^0 \to K^- \mu^+ \nu_{\mu}$, where a hadron is misidentified as a muon. Studied on data and MC
- **③** Rare peaking like $B_s^0 \to K^+K^-$, where both hadrons are misidentified as muons. Studied on data and MC
- **(a)** Cross-feeding between $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ due to the detector resolution. Studied on MC

- **1** Combinatorial, formed by muons coming from *b* or *c* weak decays, $q \rightarrow X \mu \bar{\nu}$. Studied on side-bands
- **2** Rare semileptonic like $B_s^0 \to K^- \mu^+ \nu_{\mu}$, where a hadron is misidentified as a muon. Studied on data and MC
- **③** Rare peaking like $B_s^0 \to K^+K^-$, where both hadrons are misidentified as muons. Studied on data and MC
- **(a)** Cross-feeding between $B_s^0 \to \mu^+ \mu^-$ and $B^0 \to \mu^+ \mu^-$ due to the detector resolution. Studied on MC

- **1** Combinatorial, formed by muons coming from *b* or *c* weak decays, $q \rightarrow X \mu \bar{\nu}$. Studied on side-bands
- **2** Rare semileptonic like $B_s^0 \to K^- \mu^+ \nu_{\mu}$, where a hadron is misidentified as a muon. Studied on data and MC
- **③** Rare peaking like $B_s^0 \to K^+K^-$, where both hadrons are misidentified as muons. Studied on data and MC
- () Cross-feeding between $B_s^0 \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$ due to the detector resolution. Studied on MC

- · Combinatorial background is made by combining two uncorrelated muons
 - their secondary vertex is badly reconstructed
 - the candidate is not compatible with coming from an existing PV
 - there are other particles around them (not isolated)

- Variables related to the Secondary Vertex
 - vertex χ^2
 - pointing angle α_{3D}
 - 3D impact parameter δ_{3D}
 - distance of closest approach between the 2 muons $d_{\rm ca}^{\rm max}$
 - decay length $\ell_{\rm 3D}$

$B^0_{(s)}$ candidate selection: secondary vertex

- After a loose preselection the variables are given to a BDT training:
 - Signal = $B_s^0 \rightarrow \mu^+ \mu^-$ MC; Background = data side-bands
- Large separation between signal and combinatorial background:

 Separate the signal, which is an isolated candidate, from background events containing tracks from jets

candidate selections: isolation variables

() Sum over all tracks in a cone around the $B_{(s)}^0$ or around the two muons:

$$I = \frac{p_T(B)}{p_T(B) + \sum_{\text{trk}} p_T}$$

2 Minimum d⁰_{ca} of tracks
3 Number of close tracks

• This is a discovery analysis, figure of merit is the significance: $\frac{S}{\sqrt{S+B}}$

- No systematic effect nor dependence observed on pile-up and mass
- Systematic uncertainty taken from the difference of efficiency between data and MC in the normalization and control samples

L. Martini

$B^0_{(s)}$ BDT systematics

• Systematic uncertainty taken from the difference of efficiency between data and MC in the normalization and control samples

• Rare background normalized to the normalization channel $B^{\pm} \rightarrow J/\psi K^{\pm}$:

$$N(X) = \frac{\mathcal{B}(X)}{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm}) \times \mathcal{B}(J/\psi \to \mu^{+}\mu^{-})} \frac{f_{X}}{f_{u}} \frac{\epsilon_{X}^{\mathrm{ana}}}{\epsilon_{B^{\pm}}^{\mathrm{ana}}} N_{\mathrm{obs}}^{B^{\pm}}$$

- Include peaking and semileptonic decays from B_s^0 , B^0 , Λ_b^0
 - Uncertainties enter the likelihood as nuisance parameters

1 Yield ratios are stable versus time

- Production mechanisms, which could change acceptance and isolation, are in the right mixture in MC
- 3 Mass scale and resolution studied on data with J/ψ , $\psi(2S)$, $\Upsilon(nS)$

- 1 Yield ratios are stable versus time
- Production mechanisms, which could change acceptance and isolation, are in the right mixture in MC
- ${f (i)}$ Mass scale and resolution studied on data with J/ψ , $\psi(2S)$, $\Upsilon(nS)$

- 1 Yield ratios are stable versus time
- Production mechanisms, which could change acceptance and isolation, are in the right mixture in MC
- ${f 8}$ Mass scale and resolution studied on data with J/ψ , $\psi(2S)$, $\Upsilon(nS)$

at CMS

+ $f_{\rm s}/f_{\rm u}$ is taken from LHCb*, in a different ηp_T phase space

- Measure $B^{\pm} \to J/\psi K^{\pm}/B^0_s \to J/\psi \phi$ in p_T and η bins
- Results are consistent with flat
- ightarrow A further conservative systematic uncertainty of 5% is assigned

• Systematic summary table:

*JHEP 1304 (2013)

• $f_{\rm s}/f_{\rm u}$ is taken from LHCb*, in a different ηp_T phase space

- Measure $B^{\pm}
 ightarrow J/\psi K^{\pm}/B^0_s
 ightarrow J/\psi \phi$ in p_T and η bins
- Results are consistent with flat
- ightarrow A further conservative systematic uncertainty of 5% is assigned
- Systematic summary table:

Category	Barrel (%)	Endcap (%)
$f_{ m S}/f_{ m u}$: production ratio of u and s quarks	8.0	8.0
acceptance: production processes	3.5	5.0
mass scale and resolution	5.0	5.0
efficiency (signal): data/MC simulation efficiency (normalization): data/MC simulation efficiency (normalization): kaon track efficiency efficiency trigger efficiency muon identification	9.5 - 3.3 0.5 - 2.3 4.0 3.0 2.0	7.9 - 2.3 0.5 - 1.1 4.0 3.0 2.0
normalization: fit on the pdf	5.0	5.0

*JHEP 1304 (2013)

Unbinned maximum likelihood fit for $\mathcal{B}(B^0_s \to \mu^+ \mu^+ \mu^-)$

- Simultaneously fit in each data category to extract both $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-)$
- Extended likelihood is formed by 5 contributions:

$$L = N_{B_s^0} F_{B_s^0} + N_{B^0} F_{B^0} + N_{\text{comb}} F_{\text{comb}} + N_{\text{peak}} F_{\text{peak}} + N_{\text{semi}} F_{\text{semi}}$$

where

- N_i is the yield
- F_i is the corresponding Probability Distribution Function (pdf)
- The branching fraction is

$$\mathcal{B}(B^0_s \to \mu^+ \mu^-) = N_{B^0_s} \times K_{B^0_s}$$

where

$$K_{B_s^0} = (N_{B^{\pm}}) \left(\frac{f_s}{f_u}\right) \left(\frac{\epsilon_{B_s^0}}{\epsilon_{B^{\pm}}}\right) \left(\frac{1}{\mathcal{B}(B^{\pm} \to J/\psi K^{\pm}) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)}\right)$$

• Systematic uncertainties added as Gaussian nuisance parameters

- Crystal Ball pdf
- · Gaussian core portion and a power-law low-end tail, below a certain threshold
- Takes into account muon energy losses
- Width taken directly from the event mass error
 - Barrel width pprox 50 MeV
 - Endcap width \approx 80 MeV

- Combinatorial pdf = floating first order polynomial
 - Shape studied on SB and on non BDT muon data sample
- Peaking pdf = Crystal Ball + Gaussian, which takes into account:
 - **1** Spread due to muon wrong mass assignment to kaons, pions, protons
 - **2** Spread due to different mass values from B_s^0 , B^0 , Λ_b^0
- Semileptonic pdf described with the Gaussian kernel method
 - pdf is the sum of n Gaussians where n is the number of events

- Invariant mass distributions are sub-divided in bins of the BDT distribution
- Binning chosen to have the same event yield in each bin
- Total likelihood is the product of all independent categories L_i and of all constraints L_i^{constr}

$$L_{\rm tot} = \prod_{i=0}^{11} L_i L_i^{\rm constr}$$

- Final likelihood studied with MC toy experiments
 - Show no significant bias on the BF evaluation

- Null Hypothesis $\mathcal{L}_0: \mathcal{B}(B^0_s \to \mu^+ \mu^-) = 0.$
- Alternative Hypothesis $\mathcal{L}_1: \mathcal{B}(B^0_s \to \mu^+ \mu^-)$ is let floating.
- The significance is evaluated with the profile likelihood ratio test

- Expected significance higher for the Categorized BDT \rightarrow chosen method

- After the final choice of all selections, the analysis is "unblinded"
- Results on the searches can be extracted

Category	$N_{B^0}^{\rm exp}$	$N_{B^0}^{ m obs}$	$N_{B_s^0}^{\rm exp}$	$N_{B_s^0}^{\rm obs}$	$N_{B^{\pm}}^{\rm obs}$
Barrel 2011	1.3 ± 0.8	3	3.6 ± 0.6	4	$(71.2\pm4.1)\times10^3$
Endcap 2011	1.5 ± 0.6	1	2.6 ± 0.5	4	$(21.4\pm1.1)\times10^3$
Barrel 2012	$\textbf{7.9} \pm \textbf{3.0}$	11	17.9 ± 2.8	16	$(309\pm16)\times10^3$
Endcap 2012	2.2 ± 0.8	3	5.1 ± 0.7	4	$(69.3\pm3.5)\times10^3$

- Not significant excess in the $B^0 \rightarrow \mu^+ \mu^-$ mass window
- But more than expected events, corresponding to $1.9\,\sigma$

 $\mathcal{B}(B^0 \to \mu^+ \mu^-) \le 1.1 \times 10^{-9}$ at 95% CL

• Categorized BDT fit results:

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (3.0^{+1.0}_{-0.9}) \times 10^{-9} \qquad \left[\text{SM} : (3.46 \pm 0.18) \times 10^{-9} \right] \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= (3.5^{+2.1}_{-1.8}) \times 10^{-10} \qquad \left[\text{SM} : (1.07 \pm 0.10) \times 10^{-10} \right] \end{split}$$

ID-BDT fits:

 $B(s) \rightarrow \mu^+ \mu^-$ at CMS

• The significance, given no ${\cal B}(B^0_s\to\mu^+\mu^-)$ nor ${\cal B}(B^0\to\mu^+\mu^-)$ decays:

$$\operatorname{sign}(\mathcal{B}(B^0_s \to \mu^+ \mu^-) \cap \mathcal{B}(B^0 \to \mu^+ \mu^-)) = 4.7\,\sigma$$

$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$ measured!

$\mathcal{B}(B^0_s \to \mu^+ \mu^-) = \left(3.0^{+0.9}_{-0.8}(\text{stat.})^{+0.6}_{-0.4}(\text{syst.})\right) \times 10^{-9}$

- Fully compatible with the SM expectation
- Statistically limited
- Measured significance (4.3σ) lower than median expected (4.8σ)
 - Measured BF slightly lower than SM BF
- $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ compatible with upper limit
 - $\mathcal{B}(B^0 \rightarrow \mu^+ \mu^-) \leq 1.1 \times 10^{-9}$ at 95% CL
 - CMS upper limit still ten times SM expectation

34 / 36

- Also the LHCb collaboration reports measurements of the $B_c^0 \rightarrow \mu^+ \mu^-$ decay (4σ) , and the $B^0 \rightarrow \mu^+ \mu^-$ decay (2σ) [Phys.Rev.Lett. 111 (2013)]
- After a preliminary combination [CMS-PAS-BPH-13-007], a full combination of the likelihoods has been performed and results published on Nature [Nature 522, 68-72 (04 June 2015)]:

$$\begin{aligned} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= \left(2.8^{+0.7}_{-0.6}\right) \times 10^{-9} \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= \left(3.9^{+1.6}_{-1.4}\right) \times 10^{-10} \end{aligned} \tag{6.2$$\sigma$}$$

- LHC Run II is beginning its physics data taking this year
- We expect to get a hundred of $\rm fb^{-1}$ at $\sqrt{s}=13\,\rm TeV$ with an inst. lumi. doubled w.r.t. Run I
- A challenging environment, with $<\mu>=$ 50 PV and high trigger rates
- CMS will nevertheless continue the studies of $\mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-)$ with improved trigger and offline analyses
- $ightarrow \, {\cal B}(B^0_{(s)}
 ightarrow \mu^+ \mu^-)$ is a CMS flagship
 - The main focus will move to the search for $B^0 \to \mu^+ \mu^-$:

$\mathcal{L}(fb^{-1})$	$\delta {\cal B}/{\cal B}(B^0_s)$	$\delta {\cal B}/{\cal B}(B^0)$	B^0 sign.	$\delta \frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$
100 (2015–2017)	15%	66%	0.5–2.4 σ	71%

- In this thesis I presented the first measurement of $\mathcal{B}(B^0_s\to\mu^+\mu^-)$ and the most recent upper limit of $\mathcal{B}(B^0\to\mu^+\mu^-)$ using the 2011-2012 CMS data
- These results were published by the CMS collaboration on *Phys.Rev.Lett.* 111 (2013)
- $B_s^0 \rightarrow \mu^+ \mu^-$ BF measurement, with a relative uncertainty of 30%, is the most precise up-to-date and it is in agreement and at the same level of precision of the LHCb result
- Both results are fully compatible with the SM predictions
- Allow to set stringent limits on new physics parameters
- High precision measurements will be the key for the indirect searches of new physics in the next future

BACK UP

- $\bar{b}s \ 0^-$ bound-state
- B_s^0 is a flavor eigenstate, not a mass eigenstate
 - oscillates between B_s^0 - \bar{B}_s^0 before decaying
 - · important for comparing experimental and theoretical values
- mass $\approx 5.4 \, \text{GeV}$
 - relatively low invariant mass to detect
- long decay length c au pprox 450 $\mu{
 m m}$
 - possible to measure the distance from the production (primary) vertex to the decay (secondary) vertex

$$\begin{aligned} \mathcal{B}_{SM}^{0} \left(B_{s}^{0} \to \mu^{+} \mu^{-} \right) &= \frac{\tau \left(B_{s}^{0} \right)}{\pi} \left(\frac{G_{F}^{2}}{\pi} \left(\frac{\alpha}{4\pi \sin^{2} \theta_{w}} \right)^{2} \left| F_{B_{s}^{0}}^{2} m_{\mu}^{2} \times m_{B_{s}^{0}} \sqrt{1 - 4 \frac{m_{\mu}^{2}}{m_{B_{s}^{0}}^{2}}} \left| V_{tb}^{*} V_{ts} \right|^{2} Y^{2}(x_{t}) \end{aligned}$$

life time

- Gauge and CKM constants and short-distance function
 - with QCD NLO corrections
- Hadronic matrix element
- chiral suppression

• Pair creation

• Pair creation, Flavor Excitation, Gluon Splitting

- the LHC is a two-ring superconducting accelerator and collider installed at CERN
- 4 main detectors installed
 - CMC (general purpose)
 - Atlas (general purpose)
 - LHCb (B-Physics)
 - Alice (Heavy ions)

• the rate of produced events is

 $n_{\rm event} = \mathcal{L}\sigma_{\rm event}$

- $\sigma_{\rm event}$ is the production cross-section
- *L* depends only on collider parameters: number of particles per bunch, number of bunches, revolution frequency, bunch widths, ...
- at regime $\mathcal{L} = 1.0 \times 10^{34} \, \text{cm}^{-2} \, \text{s}^{-1}$

CMS uses a right-handed coordinate system centered at the nominal IP:

- the *y*-axis points vertically upward, orthogonal to the LHC plane;
- the x-axis points radially inward toward the center of the LHC;
- the *z*-axis points along the beam direction toward the Jura mountains.

The radial distance from the IP is defined as $r = \sqrt{x^2 + y^2}$. The azimuthal angle ϕ is measured from the *x*-axis in the *xy* plane. The polar angle θ starts from the *z*-axis, and the pseudorapidity variable is related to θ as $\eta = -\ln \tan(\theta/2)$.

Inner silicon tracker

- Full silicon technology
- 3 layers of pixel
 - + 100 $\mu m \times$ 150 μm pixel cell size
- 10 layers of strips
 - Thickness 320–500 μm, pitch 80–180 μm
- High redundancy, low occupancy
- Allow to have at least 9 hits ensuring high efficiency and good resolution

Inner silicon tracker performance

- PV: vertex finding (in z) and vertex fitting (in 3D)
 - iterative Kalman filter
 - minimizes the squared distances of all tracks from vertex position
- SV: least mean squared minimization with Lagrange multipliers for the hypothesis under study
 - e.g. $B^0_s \to J/\psi\phi \to \mu^+\mu^-K^+K^- \colon$
 - 4 final states
 - two muons coming from J/ψ
 - two kaons coming from ϕ
 - B_s^0 momentum pointing towards the PV

- Starting from the reconstructed hits:
- seed generation
 - triplet of hits or two hits plus a vertex constraint
- Ø pattern recognition
 - combinatorial Kalman filter, iterative, takes successive detection layers, updating the track parameters for each added hit
- 8 ambiguity resolution
 - to avoid double counting, remove tracks with shared hits
- ④ final track fit
 - final construction with all hits.
 - cuts on χ^2 , impact parameter, hits
 - tracks passing the tightest selection are labeled highPurity

- Muon identification and reconstruction
- 3 gas detectors:
 - 1 Drift tubes (barrel)
 - 4 muon stations containing 12 chambers to measure $r\phi$ and z
 - 2 Cathode strip chambers (endcaps)
 - In a higher flux environment, high segmentation and radiation resistance, 4 layers to measure the rφ plane
 - 8 Resistive plate chambers $(|\eta| < 1.6)$
 - Lower spatial resolution but better timing, crucial for triggering on the right bunch crossing

- All selections are fixed without using events from the signal region to avoid biases
- B_s^0 signal distributions validated on data using the Control Sample (CS) $B_s^0 \rightarrow J/\psi \phi \rightarrow \mu^+ \mu^- K^+ K^-$
- Background level and resolution depend strongly on muon η
 - $\rightarrow\,$ data are split in "barrel" and "endcap" categories:
 - barrel = both muons with $|\eta| < 1.4$
 - endcap = otherwise

Definition	Invariant mass range (GeV)
overall mass window $B^0 \rightarrow \mu^+ \mu^-$ signal window	[4.9, 5.9] [5.2, 5.3]
$B_s^0 \rightarrow \mu^+ \mu^-$ signal window	[5.3, 5.45]
side-band windows	[5.2, 5.45] $[4.9, 5.2] \cup [5.45, 5.9]$

Muon BDT validation

 $B(s) \rightarrow \mu^+ \mu^-$ at CMS

$B^0_{(s)}$ candidate selections

- INFN STATIS CONSTRATIS
- · Combinatorial background is made by combining two uncorrelated muons
 - their secondary vertex is badly reconstructed
 - not compatible with coming from an existing primary vertex
 - there are other particles around them (not isolated)
- These features are all used to separate signal from bkg with a multivariate analysis (BDT) with 10 variables

The $B^0_{(s)}$ candidate

_

_

-

• The two muon tracks are combined to form the B candidate

Definition	Invariant mass range (GeV)	
overall mass window $B^0 \rightarrow \mu^+ \mu^-$ signal window $B^0_s \rightarrow \mu^+ \mu^-$ signal window blind window side-band windows	$\begin{array}{c} [4.9, 5.9] \\ [5.2, 5.3] \\ [5.3, 5.45] \\ [5.2, 5.45] \\ [4.9, 5.2] \cup [5.45, 5.9] \end{array}$	
BREDOLVING MALL	0.9 Signah 0.8 Signah 0.9 Signah 0.9 Signah 0.9 Signah 0.7 Signah 0.5 Signah 0.5 Signah 0.5 Signah 0.6 Signah 0.7 Signah 0.7 Signah 0.6 Signah 0.7 Signah 0.6 Signah 0.7 Signah 0.6 Signah 0.7 Signah 0.6 Signah 0.7 Signah 0.6 Si	

-1.5 -1 -0.5 0 0.5

-2 -1.5 -1 -0.5 0 0.5

1 1.5

eta

1.5

eta

- The number of entries in each mass range is a random variable satisfying Poissonian statistics
 - mass range: $[4.9, 5.2, 5.3, 5.45, 5.9] \, \text{GeV}$
- total yield is a sum of Poissonian variables
 - comb + rare + signals
- the expected number of reconstructed decays is

$$\nu_i = \frac{\mathcal{B}_{\rm SM}(B^0_{(s)} \to \mu^+ \mu^-)}{\mathcal{B}(B^\pm \to J/\psi K^\pm) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-)} \frac{f_{\rm s}}{f_{\rm u}} \frac{\epsilon_{B^0_s}}{\epsilon_{B^\pm}} N_{\rm obs}^{B^\pm}$$

• the likelihood is the product of all Poissonians times the constraints (bifurcated Gaussians) for systematics

Binned analysis for the $\mathcal{B}(B^0 \to \mu^+ \mu^-)$ upper limit

- Yield is a sum of Poissonian variables: comb. + rare + signals
- Likelihood is the product of all Poissonians times Gaussian constraints
- Upper limit extracted with the CL_S method

		$N_{\rm signal}^{\rm exp}$	$N_{\rm total}^{\rm exp}$
	B^0 Barrel	0.27 ± 0.03	1.3 ± 0.8
2011	B^0_s Barrel	2.97 ± 0.44	$\textbf{3.6}\pm\textbf{0.6}$
2011	B^0 Endcap	0.11 ± 0.01	1.5 ± 0.6
	B^0_s Endcap	1.28 ± 0.19	2.6 ± 0.5
	B^0 Barrel	1.00 ± 0.10	$\textbf{7.9} \pm \textbf{3.0}$
2012	B^0_s Barrel	11.46 ± 1.72	17.9 ± 2.8
	B^0 Endcap	$\textbf{0.30} \pm \textbf{0.03}$	2.2 ± 0.8
	B^0_s Endcap	3.56 ± 0.53	5.1 ± 0.7

• $B^0 \rightarrow \mu^+ \mu^-$ BF expected UL:

$$\begin{array}{ll} 6.3^{+2.7}_{-2.0} \times 10^{-10} & {\rm SM} \\ 5.4^{+2.3}_{-1.6} \times 10^{-10} & {\rm Background \ only} \end{array}$$

- After the final choice of all selections, the analysis is "unblinded"
- Results on the searches can be extracted

Category	$N_{B^0}^{\rm exp}$	$N_{B^0}^{ m obs}$	$N_{B_s^0}^{\rm exp}$	$N_{B_s^0}^{\rm obs}$	$N_{B^{\pm}}^{\rm obs}$
Barrel 2011	1.3 ± 0.8	3	3.6 ± 0.6	4	$(71.2\pm4.1)\times10^3$
Endcap 2011	1.5 ± 0.6	1	2.6 ± 0.5	4	$(21.4\pm1.1)\times10^3$
Barrel 2012	$\textbf{7.9} \pm \textbf{3.0}$	11	17.9 ± 2.8	16	$(309\pm16)\times10^3$
Endcap 2012	2.2 ± 0.8	3	5.1 ± 0.7	4	$(69.3\pm3.5)\times10^3$

- Fits performed with both 1D-BDT and categorized BDT methods
- Categorized BDT fit results:

$$\begin{split} \mathcal{B}(B^0_s \to \mu^+ \mu^-) &= (3.0^{+1.0}_{-0.9}) \times 10^{-9} \qquad \left[\text{SM} : (3.66 \pm 0.23) \times 10^{-9} \right] \\ \mathcal{B}(B^0 \to \mu^+ \mu^-) &= (3.5^{+2.1}_{-1.8}) \times 10^{-10} \qquad \left[\text{SM} : (1.06 \pm 0.09) \times 10^{-10} \right] \end{split}$$

ID-BDT fits:

- + ${\cal B}(B^0_{(s)}\to \mu^+\mu^-)$ are dominated by statistical uncertainty
- More data will improve the measurements
 - the LHC will deliver hundred and thousand of ${\rm fb}^{-1}$ to CMS at $\sqrt{s}\approx 14\,{\rm TeV}$

$\mathcal{L}(fb^{-1})$	$\delta {\cal B}/{\cal B}(B^0_s)$	$\delta {\cal B}/{\cal B}(B^0)$	B^0 sign.	$\delta \frac{\mathcal{B}(B^0 \to \mu^+ \mu^-)}{\mathcal{B}(B^0_s \to \mu^+ \mu^-)}$
100 (2015–2017)	15%	66%	0.5–2.4 σ	71%
300 (2019–2021)	12%	45%	1.3–3.3 σ	47%
3000 (2023–)	12%	18%	5.4–7.6 σ	21%

- CMS upgrades on improved muon and tracker trigger capabilities are essential
- The most challenging aspects will be the trigger rates and the pile-up
 - $\rightarrow\,$ cope with up to $<\mu>=$ 140 PVs