

Measurement of $\bar{\nu}_{\mu}$ interactions with the ND280 detector of the T2K experiment

Lorenzo Magaletti

24 June 2015

Outlook:

- Neutrino Oscillation (PMNS Matrix)
- T2K experiment and main results obtained in 2013-2014
 - Physics goals and description of experimental setup
 - Results of ν_e appearance and ν_μ disappearance
- $\stackrel{\star{\scriptstyle \wp}}{=}\overline{oldsymbol{
 u}}_{\mu}$ analysis motivations
- onsimilar $\overline{\nu}_{\mu}$ analysis in neutrino beam mode
 - $\overline{\nu}_{\mu}$ selection criteria
 - Signal extraction with likelihood ratio fit
 - Evaluation of systematics uncertainties
- $\stackrel{\scriptscriptstyle \ensuremath{\smallel{Phi}}}{\overline{\nu}_{\mu}}$ analysis in anti-neutrino beam mode
 - + $\overline{\nu}_{\mu}$ selection criteria
 - Performance and data/MC ratios of selected $\overline{\nu}_{\mu}$ samples
 - Evaluation of the impact of systematic uncertainties on the selected samples
- Final results and future plans

one of the biggest international collaboration of neutrino LBL

Canada

TRIUMF U. Alberta U. B. Columbia U. Regina U. Toronto U. Victoria U. Winnipeg

York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Poland

IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T. Wroklaw U.

Russia

INR

Germany

Aachen U.

~350 physicists, 58 institutions, 11 nations, 3 countries

1

United Kingdom

Imperial C. London Lancaster U. Oxford U. Queen Mary U. L. STFC/RAL/Daresbury U. Liverpool U. Sheffield U. Warwick

Spain

IFAE, Barcelona IFIC, Valencia

Japan

ICRR Kamioka ICRR RCCN Kavli IPMU KEK Kobe U. Kyoto U. Miyagi U. Edu. Osaka City U. Okayama U. Tokyo Metropolitan U. U.Tokyo

USA

Boston U. Colorado S. U. Duke U. Louisiana S. U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester U. Washington

ITALY

INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma

Switzerland

ETH Zurich U. Bern U. Geneva

Neutrino mixing (PMNS*)

$\delta_{cp} = ?$ accessible only from **accelerators neutrinos**

* Pontecorvo-Maki-Nakagawa-Sakata

T2K: Goal di fisica

T2K is sensitive to:

 $\boldsymbol{\vartheta} \quad \boldsymbol{\theta}_{13} \in \boldsymbol{\delta}_{cp}$ in the v_e **appearance** channel

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{13}^{2} L}{4E} + (\text{termine MSW}) + (\text{termine MSW}) + \dots$$

$$P(\nu_{\mu} \to \nu_{\mu}) \simeq 1 - \sin^2 2\theta_{23} \sin^2 \frac{\Delta m_{13}^2 L}{4E} + (\text{termini sub-leading})$$

 $\Theta_{23} \in \Delta m^{2}_{23}$ in the v_{μ} disappearance channel

Measurement of θ₁ (θ ₁) Direct measurement of ν_µ→ν_e appearance (and ν _µ→ν_e appearance) up to 3σ level of significance can be achieved for ν _e appearance Precise measurement of atmospheric parameters θ₂₃, Δm²₂₃ θ₂₃ = 45°±5° (T2K can distinguish the octant) Initial measurement of δ_{cp} up to 2.5σ level of significance can be achieved X-section measurement in the GeV region @ ND280 Exotics: sterile neutrinos and sub-leading effects Measurement of sub-leading effects

The T2K experiment

T2K is a LBL experiment able to measure the neutrino oscillation in a high purity v_{μ} beam

6

ND280 (off-axis)

ND280 (Off-axis Near Detector @ 280 m from the target)

- Measure of the un-oscillated neutrino spectrum
- Measure of intrinsic beam contamination
- Study of π⁰ production in NC events
- Exclusive x-section measurements below IGeV
- Constraint x-section and flux systematic uncertainties at SK

The UAI/NOMAD magnet produce a magnetic field of 0.2 T.

The SMRD (installed in the magnet joke): modules of plastic scintillators able to reconstruct high angle μ , cosmic rays and "sand muons" events.

ECal: it surrounds all the internal detectors and it has the capability to distinguish $\gamma/e/\mu$. It is a sampling ECal made of 13 independent modules of X-Y planes of plastic scintillator/lead.

Super-Kamiokande ("off-axis")

Super-Kamiokande

- 50 kton water Cherenkov detector (25 kton Fiducial volume)
- 🏺 Detection of μ
 - Low scattering \Rightarrow "sharp rings"
- Detection of e
 - High scattering \Rightarrow "fuzzy rings"

Detection of π^0

- 2 e-like rings ($\pi^0 \rightarrow 2\gamma$)
- A π^0 event can be identified ONLY if two elike rings are detected

~99% capability in the μ /e separation

T2K highlights 2014

- $\stackrel{\scriptstyle{\scriptstyle{\frown}}}{=} \boldsymbol{9}_{13} \neq \mathbf{0}$ opens the door to the measurement of $\boldsymbol{\delta}_{cp}$
- $\stackrel{\scriptstyle \ensuremath{{}^{\circ}}}{=}$ T2K is the first experiment able to reject some values of δ_{cp} with 90% C.L.

$\overline{\nu}_{\mu}$ analysis motivations

- To achieve a precise measurement of the oscillation parameters, the systematic uncertainties must be reduced as much as possible
- Free main systematic uncertainties on the oscillation analyses are:
 - flux uncertainty at SK
 - neutrino x-section models

Beam And Nd280 Flux measurement task Force (BANFF) Fit

 $\frac{1}{2}$ The **BANFF fit** currently uses only the v_{μ} sample

- As a consequence, some systematic errors like the anti-NuMu flux uncertainty and $\sigma_{\bar{\nu}}/\sigma_{\nu}$ are slightly or not reduced.
- The measurement of anti-nu is useful to reduce these systematic uncertainties \Rightarrow analysis used in the BANFF

fit since 2014

- Solution $\widehat{\delta}_{CP}$ Main analysis at ND280 in anti-neutrino beam mode data taking to measure δ_{CP} (since 2014)
- Run 5 in anti-nu beam mode: 4-24 June 2014.
 Accumulated statistic: ~5 ×10¹⁹ POT
- Run 6 data taking in anti-nu beam mode since 26 October 2014

$\overline{\nu}_{\mu}$ analysis in neutrino beam mode

Data and MC samples

In this analysis I used the official T2K Monte Carlo production and the whole amount of data collected in the period 2010-2013 (Run1+Run2+Run3+Run4)

 $\frac{1}{2}$ Whole statistic used: 6.57×10²⁰ POT.

$\overline{\nu}_{\mu}$ selection criteria

At the T2K energy (0.6GeV), in 95% of cases, the most energetic positive particle produced in a anti-NuMu CC interaction is the $\mu^+ \Rightarrow \mu^+$ MUST BE SELECTED TO STUDY THE ANTI-NUMU (~4% beam component)

	# Cut	Cut Name	Cut Description		
Preselection	Ι	Bunch Cut	In defined Bunch		
	2	FGD FV	Origin of the track selected in FV	Selection of the Highest Momentum Positive Track (HMPT)	
	3	TPC track quality	Tracks with the first TPC segment with more than 18 nodes		
	4	Positive tracks	The selected track must be positive		
	5	TPC veto	Veto on backwards events or coming from P0D or Magnet		
μ ⁺ selection	6	TPC PID	μ^{+} selection: 0.1 < L_{μ} < 0.7 (if p < 500MeV => L_{MIP} > 0.9)		
	7	l track events	I FGD-TPC matching in the event	u ⁺ identification	
	8	Has ECAL info	Selection of events with the selected track in ECAL		
	9	ECAL PID	MIP-EM LLR < -10 && MIP-PION LLR < -5		

Selection of $\overline{\nu}_{\mu}$ CC interactions using the tracker

Result after the pre-selection:

The selected sample is dominated by v_{μ} interactions and moreover the TPC PID alone cannot select μ^+ with an acceptable purity.

Selection of $\overline{\nu}_{\mu}$ CC interactions using the ECal

In order to select μ + with a higher purity than the one obtained using the TPC PID alone, the ECal PID must be used. The ND280 ECal corresponds to ~10.6 X₀ and ~1 λ ₁. Thus it is possible to identify and reject the amount of showering protons and pions in the ECal.

Final result

NuMu CCQE	5,5%	
NuMu CCnQE	17%	
NuMu NC	11,4%	
anti-NuMu CCQE	33,2%	CC Inclusive
anti-NuMu CCnQE	17%	~50%
OOFV	14,4%	

More than 98% of background rejected

Final result: signal and background

Likelihood ratio fit for signal and backfround in p-cos(9) space

FIT STRATEGY: MC fitted on data in 0 (10 bins) and <math>-1 < cos(9) < 1 (4 bins)

$$F(p,\cos\theta) = f(\bar{\nu}_{\mu})g_{\bar{\nu}_{\mu}}(p,\cos\theta) + \sum_{i} f(BG_{i})g_{BG_{i}}(p,\cos\theta) \qquad (i=\mu,\pi,p)$$
$$-2\log\mathcal{L}_{\bar{\nu}_{\mu}} = 2 \times \sum_{i=1}^{10} \sum_{j=1}^{4} F_{i,j} - n_{i,j}^{data} + n_{i,j}^{data} \times \log\frac{n_{i,j}^{data}}{F_{i,j}}$$

Binning:

sbins edge={0,400,500,600,700,800,1000,1250,1500,2000,30000}, ybins edge={-1,0.8,0.9,0.95,1}

Finer binning around 0.6 GeV

 $\frac{1}{2} \geq 10$ entries per bin to avoid Poissonian fluctuations in the toy MC studies

Fit Stability

Systematic uncertainties

3 systematic error sources:

- detector systematic (data-MC discrepancies due to event reconstruction)
- Flux systematics (MC)
- X-section parameter systematics (MC)

TPC PID for protons is the main systematic uncertainty in this analysis

Detector systematics: Corrected Monte Carlo

Detector systematic error propagation

I produced 1000 MC toys varying simultaneously the effect of all detector uncertainties. The effect of the systematic error propagation is than evaluated in the Likelihood fit

Systematic source	detector syst. err. on $f_{\bar{\nu}_{\mu}}$
width of syst. throws	0.045
difference from corrected MC	0.025

FINAL RESULT INCLUDING THE DETECTOR SYSTEMATIC UNCERTAINTIES: f(anti-nu) = 0.97 +/- 0.07 (stat.) +/- 0.05 (det. syst.)

Flux and x-section systematic uncertainties: BANFF MC

The goal of the BANFF fit is the reduction of **flux** and **x-section** systematics in the oscillation analyses. The best fit values obtained from the 2013 BANFF fit are listed in the Table

Systematic	BANFF central values	parameters
ν_{μ} flux	$\sim 0.9-1.00$	11
$ar{ u}_{\mu}$ flux	~ 0.98 -1.01	5
$ u_e$ flux	~ 0.9 -1.01	7
$ar{ u}_e { m flux}$	~ 0.9 -1.0	2
FSI	~ -0.52 -0.38	6
M_A^{QE} [GeV]	1.22	1
M_A^{RES} [GeV]	0.96	1
CC Other Shape [GeV]	0.3	1
Spectral Function $(^{12}C \& ^{16}O)$	0.28	1
$E_b (^{12}C \& ^{16}O) [MeV/c]$	28.885	1
$P_F (^{12}C \& ^{16}O) [MeV/c]$	269.37	1
π -less Δ decay	0.17	1
CCQE norm.	0.96, 0.90, 0.87	3
$CC1\pi$ norm.	1.20, 1.07	2
CC Coh. norm.	0.47	1
NC Other norm.	1.32	1
$NC1\pi^0$ norm.	1.08	1

The MC must be re-weighted using the BANFF best fit values to be consistent with the oscillation analyses

Flux and x-section systematic errors propagation

I produced 1000 throws in the 2013 BANFF covariance matrix,. The effect of the systematic error propagation is than evaluated in the Likelihood fit

FINAL RESULT INCLUDING FLUX AND X-SEC SYSTEMATIC UNCERTAINTIES:

f(anti-nu) = 1.01 + -0.08 (stat.) + -0.05 (det. syst.) + -0.09 (flux x-sec syst.)

- The obtained results is in agreement with the MC expectation and it confirms a very good prediction of $\overline{\nu_{\mu}}$ background in the oscillation analyses.
- It is already possible to quantify how much this analysis can helps in the reduction of the anti-NuMu related systematic errors in the oscillation analyses:
 - Reduction of the systematic uncertainty related to the anti-NuMu flux component up to 9% on the whole energy spectrum
 - Reduction from 40% to 13% of the $\sigma_{ar{
 u}}/\sigma_{
 u}$ uncertainty.

$\overline{\nu}_{\mu}$ analysis in anti-neutrino beam mode

Data and MC samples

anti-nu beam mode data collected up to now: 1.808 × 10²⁰ POT

In the next slides:

run5 anti-nu data: ~5 ×10¹⁹ POT
 MC sample used: ~2 ×10²¹ POT

First \overline{v}_{μ} event in the anti-nu beam

The first \overline{v}_{μ} at ND280 was analyzed using the software developed by me during the PhD and the analysis was performed in Bari!

- Single positive track reconstructed in TPC and ECal
- Momentum: 572 ± 39 MeV/c
- Probability to be a μ^+ : 99.3%
- Vertex in the FGD2 Fiducial Volume
- Purity (MC) > 95%

$\overline{\nu}_{\mu}$ selection criteria

		# Cut	Cut Name	Cut Description
		0	Event quality	The event must occur in defined Bunch
	F	Ι	Total multiplicity	In the selected event, at least one track must cross the TPC
	ы НМР	2	Quality & Fiducial	The HMPT in the event must have its origin in FGD FV and more than 18 TPC nodes
	Preselection of th	3	Positive multiplicity	The HMPT must be the HMT in the event
		4	TPC veto	Veto on backwards events or coming from P0D or Magnet
		5	External FGD1	Rejection of external BKG from the last two layers of FGD1
	u⁺ selection	6	TPC PID	μ^{*} selection: 0.1 < L_{μ} < 0.7 (if p < 500MeV => L_{MIP} > 0.9)

CC Inclusive sample

CC-I-track (CCQE like) and CC-N-tracks (CCnQE like) samples

4500 5000

(MeV/c)

133

1676

1087

120

6051 Entries

1687 Mean

1110 RMS

Data

121.1 Integral

CCQE 2p2h RES

DIS COH

NC v_u

v.

3500

out FGD FV other

no truth

4000

p_{global}

Official T2K plots showed at Moriond 2015

Conclusions and future plans

The \overline{v}_{μ} component in the neutrino beam has been measured using the ND280 detector of the T2K experiment. The data/MC ratio obtained is:

f(anti-nu) = 1.01 + - 0.08 (stat.) + - 0.1 (syst.) = 1.01 + - 0.13 (total)

- The obtained results is in agreement with the MC expectation and it confirms a very good prediction of $\overline{\nu}_{\mu}$ background in the oscillation analyses.
- It is already possible to quantify how much this analysis can helps in the reduction of the anti-NuMu related systematic errors in the oscillation analyses:
 - Reduction of the systematic uncertainty related to the anti-NuMu flux component up to 9% on the whole energy spectrum
 - Reduction from 40% to 13% of the $\sigma_{ar{
 u}}/\sigma_{
 u}$ uncertainty.

The $\overline{\nu}_{\mu}$ flux at ND280 in anti-neutrino beam mode has been measured

- The selection criteria developed yield $\overline{\nu}_{\mu}$ CC inclusive sample with a purity of ~81% and an efficiency of ~67%
- This analysis is used to reduce the systematic uncertainties at Super-Kamiokande in the anti-nu beam mode oscillation analyses (summer conferences)

Next publications:

Precise measurement of $\overline{\nu}_{\mu}$ σ_{CC} e σ_{CCQE} on Carbon below 1 GeV with ~4×10²⁰ POT

Precise measurement of the $\sigma_{ar{
u}}/\sigma_{
u}$ ratio below I GeV

Backup slides