

Measurement of the properties of the new particle observed within the search for the Standard Model Higgs boson in the $H \rightarrow ZZ \rightarrow 4\ell$ decay channel at ATLAS

VALERIO IPPOLITO

Harvard University

PhD Thesis defended at Sapienza Università di Roma thesis advisors: Carlo Dionisi, Stefano Giagu, Marco Rescigno

we discovered a new fundamental particle!

Higgs Boson (not to scale)

we discovered a new fundamental particle!

we have reasons to be happy!

Higgs Boson (not to scale)

we discovered a new fundamental particle! we have reasons to be happy

was it obvious? -> making of a discovery

we discovered a new fundamental particle! we have reasons to be happy

was it obvious? -> making of a discovery

+ where are we actually going next

The (Unnecessary) Outline Slide

- discovery
 - ✤ H->ZZ*->4l
 - happiness
- discovery, more in detail
 - crucial ingredients
 - characterising our signal
- what's next (or, why should we keep on running)

PhD thesis defended on February 18th, 2014

Why Do We Even Care?

or: a short slide about motivations

- tremendous agreement between SM and experimental results
 - + missing particle (Higgs boson)
 - + unsolved mysteries (e.g. Dark Matter, baryon/antibaryon asymmetry)
- knowledge advances usually require attentive scrutiny of newfoundthings
 - Iike no-more-missing particles (Higgs boson)
 - Iike the SM itself (probe possible extensions)
- TeV scale is our sky, LHC our telescope!

O Higgs Boson, where Art Thou?

Status in ~October 2011 (my PhD thesis day-o)

Discovery

Phys. Lett. B 726 (Jul, 2013) 88-119 Phys. Lett. B 716 (Aug, 2012) 1-29

The Golden Channel

charged leptons give the cleanest signatures:

The Golden Channel

charged leptons give the cleanest signatures:

Reconstruction: a Challenge

pile-up is the price you have to pay if you want a discovery in <3 years...

L up to 7.7×10³³ cm⁻² s⁻¹

Electrons

Event Selection

four leptons with $p_T > (20, 15, 10, 6/7)$ GeV

- ★ isolated (ptcone20/pT < 15%, etcone20/pT < 20/30%)
- * from primary interaction (ld_ol/err < 3.5/6.5)

 m_{4l} -dependent mass cut on Z_1 , Z_2

★ 50 < m₁ < 106 GeV

 * m₂ > 12 GeV if m_{4l} < 140 GeV growing linearly up to m₂ > 50 GeV if m_{4l} > 190 GeV

overall signal efficiency is (4µ, 2µ2e+2e2µ, 4e) = (39%, 26%, 19%)

Background processes

irreducible background

- * pp→ZZ^(*)→4ℓ [MC]
- * same final state as signal
- * dominant at high m_н

reducible backgrounds

- * Z+bb, Z+jets, tt [data, мС]
- * relevant contribution at low m_H
- * rejection: ask leptons to be isolated and compatible with the primary interaction
- * estimated from data [MC modeling is hard]

The Z Mass Constraint Fit

good mass resolution is crucial in the low m_H region

- * one way to improve it at analysis level is to refit leptons from on-shell Z with a constraint on their mass m_{2l}
- * we can't do that using m_z=91 GeV, but must use m_z^{true} which is an event-by-event observable HOW?

From m_{2l} to m_ztrue

we need a meaningful constraint $m_{2l}=m_Z^{true}$

- * the more uncertain the momentum measurement, the more m_{2l} is let to go back to m_Z
- * the way this happens is a consequence of event-by-event resolution

Z Mass Constraint Fit

O(10%) improvement in resolution

need 5% less luminosity to obtain the same significance

m_H [GeV]

120

140

160

180

200

m_H [GeV]

100

channel (125 GeV)	σ [GeV]	σ ^{constr} [GeV]		
4μ	2.00	1.64		
2µ2е	2.38	2.15		
2e2µ	2.10	1.85		
4e	2.70	2.54		

Intermezzo: Building a Discovery

CERN 40/4-Co8 - Sunday June 24th, 2012 - ~2 AM

an exciting team work!

* first hints at a 5**σ**discovery on June 19th,
2012 (at 1ho2 AM...)

* different layers well represented by the "discovery whiteboard" team

* from day-to-day candidate search with increasing integrated luminosity to paper editors, group conveners, ATLAS management...

Born on the Fourth of July (2012)

V. Ippolito - Frascati - June 24th, 2015

Q

Q

Combined results

$\mu = \frac{\text{events observed}}{\text{events expected}}$

From B-physics to A-physics

(or, the importance of spin-parity studies)

Phys. Lett. B 726 (Jul, 2013) 120–144 ATLAS-CONF-2013-013 arXiv:1506.05669

Why Spin-Parity?

the SM requires H to be a parity-even scalar (o^+)

- * it could be a J=1 state (and $H \rightarrow \gamma \gamma$ would be a different particle)
- * it could be a graviton-like J=2 state, or a pseudo scalar...
- * it could be a CP-even/odd admixture

Know Your Onions Bosons!

we write the most general Lorentz-invariant decay amplitude $A(H \rightarrow ZZ)$

e.g.: for J=0

$$A(X \to Z_1 Z_2) = v^{-1} \left(g_1 m_Z^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_3 f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

SM Higgs pseudoscalar

we relate it to the differential mass and angular distribution

$$\frac{d\Gamma_{J}(m_{1}, m_{2}, \Omega)}{dm_{1}dm_{2}d\Omega} \propto P(m_{1}, m_{2}) \cdot \sum_{i} K_{i}(m_{1}, m_{2})f_{i}(\Omega)$$

$$\stackrel{\text{J=0: three helicity combinations (A_{++}, A_{--}, A_{00})}{\underset{\text{} \Rightarrow \text{ K}_{i} = |A_{++}|^{2}, \text{Re}(A_{++}A_{00}^{*}), \text{ Im}(A_{++}A_{00}^{*}) \dots (9 \text{ terms})}$$

$$\Omega = \{\cos \theta^{*}, \phi_{1}, \cos \theta_{1}, \cos \theta_{2}, \phi\}$$

Jm⁺ Jh⁺ Jh[−]

collapse the 7D information on the final state on a single observable

it is the Bayes discriminant between data likelihood in Ho and H1 hypotheses

mathematically it's the optimal discriminant in the ideal case

the difference between "real" and "ideal" is the effect of reconstruction and selection criteria

V. Ippolito - Frascati - June 24th, 2015

How Good ?

The J^P-MELA Discriminant

distributions of the discriminant D are calculated on full-sim MC

obtain discriminant shapes for the two signal hypotheses and for backgrounds

build a likelihood model in the observable D J^P-MELA discriminant $L(\epsilon|\mu) = \operatorname{Pois}(N|\mu N_s + N_b) \cdot \left\{ f_s \left[\epsilon \cdot p(\operatorname{data}|H_0) + (1-\epsilon) \cdot p(\operatorname{data}|H_1) \right] + \sum_{i=ZZ, \operatorname{red}} f_{b_i} p(\operatorname{data}|B_i) \right\}$ sum across two m4l bins: $4 \times 2 \times 2$ channels **E**=0,1 V. Ippolito - CSN1 - January 19th, 2015

([121,127] and [115,130] [121,127] GeV)

The J^P-MELA Discriminant

shapes of the discriminant with 7+8 TeV data

 J^{P} -MELA = **o** for alternative hypothesis, **1** for SM Higgs

8 TeV	7 TeV							
Final State and bin	Signal	ZZ	Reducible		Final State and bin	Signal	ZZ	Reducible
4μ High	4.62	1.42	0.29		4μ High	0.83	0.27	0.06
4μ Low	0.93	1.92	0.39		4μ Low	0.17	0.40	0.09
4e High	1.95	0.58	0.32		4e High	0.24	0.09	0.07
4e Low	0.77	0.83	0.43		4e Low	0.11	0.12	0.10
2e2μ High	3.01	1.02	0.31		$2e2\mu$ High	0.51	0.20	0.07
$2e2\mu$ Low	0.79	1.41	0.42		2 <i>e</i> 2μ Low	0.13	0.28	0.09
2µ2e High	2.22	0.68	0.44		2µ2e High	0.33	0.11	0.10
$2\mu 2e$ Low	0.65	0.94	0.61		2µ2e Low	0.09	0.17	0.14

statistical analysis is split in 4 final states, 2 c.o.m. energies, 2 m4l bins \Rightarrow enhanced H₀/H₁ separation

V. Ippolito - CSN1 - January 19th, 2015

Hypothesis Testing Results

use distribution of $\log[L(H_0)/L(H_1)]$ sampled on pseudo-events to build a test statistics

Probing the HZZ vertex

ATL-PHYS-PUB-2013-013 arXiv:1506.05669

Can We Say More?

— yes, if we assume J=o

let's take again the most general $H \rightarrow ZZ$ decay amplitude

$$A(X \to Z_1 Z_2) = v^{-1} \left(g_1 m_Z^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_3 f^{*(1),\mu\nu} f_{\mu\alpha}^{*(2)} \frac{q_\nu q^\alpha}{\Lambda^2} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$$

in the SM:
$$0(10^{-2})$$
(suppressed by scale² of NP)
$$\approx 0$$
(three loops diagrams)
2i

non-zero g₂, g₄ affect final state distributions

* CP even/odd admixture present if g4 and g1 are both non-zero

- can hint to CP violation (e.g. mixing between multiple Higgs particles
 - à la 2HDM) which might explain matter/antimatter asymmetry

(excluded) pure pseudoscalar state corresponds to the limit $|g_4/g_1| \rightarrow \infty$

* new physics could contribute in loops giving g2≠0

The Idea

Q: How good will we be able to probe the HZZ vertex in the next future?

sensitivity to CP-even/odd admixtures

$$f_{g_i} = \frac{|g_i|^2 \sigma_i}{|g_1|^2 \sigma_1 + |g_2|^2 \sigma_2 + |g_4|^2 \sigma_4}; \quad \phi_{g_i} = \arg\left(\frac{g_i}{g_1}\right)$$

$$f_{CP} = \frac{|A_{\perp}|^2}{|A_0|^2 + |A_{\parallel}|^2 + |A_{\perp}|^2} ~\sim \mathsf{f}_{g_4}$$

start from the parton-level description of the 7D final state

- * add acceptance corrections (2D for m_1 vs m_2 , 1D for angular observables)
- * add m_{4l} to obtain discrimination power against backgrounds

parametrise backgrounds

- * use full-simulation Monte Carlo
- * empirical parametrisation (2D for m_1 vs m_2 , 1D for angular observables)

perform 8D fit for imaginary and complex parts of either g_4 or g_2

cross-check validity of empirical parametrisations

with 2D MELA-like discriminant method

How it looks like

closure test of 8D fitting technique (injection)

ATLAS Preliminary Simulation

8D Fit: injection test $g_{4} = 2 + 2i$

2

 $\Re(g_4)/g_1$

-2

3(g4)/g1

Prospects @HL-LHC

High Luminosity upgrade of the LHC foreseen in the next future (> 2020)

* studied sensitivity on HZZ vertex structure with 300 and 3000 fb⁻¹ at 14 TeV

Final State	Signal	ZZ^*	Reducible Backgrounds
4μ	1186	427	214
$2\mu 2e$	867	287	144
$2e2\mu$	1035	383	191
4e	871	317	158

* systematics: 3% (lumi) + 5% (lepton reco) + 7-10% (bkg, acc) $\frac{1}{\sqrt{2}}$

Beyond

LHC as a Higgs Factory

* test for NP in loops, wider H sector, custodial symmetry... * typically need 0(1-5%) precision to test sensible SM extensions

g

Going Forward (in **ŋ**)

- extending tracking capabilities in forward region for HL-LHC
 - improved pileup rejection, VBF sensitivity, MET resolution...
- silicon tracker (ITK) extension up to 4.0 (depends on funding)
- foresee 20/30% gain in HZZ acceptance
 - aim at significant s/sqrt(s+b) improvement in bbH
 - 10-20% better precision on couplings
- <u>http://atlas.web.cern.ch/Atlas/GROUPS/</u> <u>PHYSICS/UPGRADE/PLOT-</u> <u>UPGRADE-2014-002/</u>

V. Ippolito - Frascati - June 24th, 2015

Seeing Through The Invisible

- invisible Higgs decays are precious for looking for new physics
 - many models predict H as "interface" between SM and a dark sector
- ▶ BR_H can be probed with direct or indirect searches

ATLAS-CONF-2015-004 ATLAS-CONF-2015-007 arXiv:1402.3244

- VBF H->inv: BR < 0.29 @ 95% CL</p>
- Z(II)H->inv: BR < 0.75 @ 95% CL</p>
- W/Z(qq)H->inv: BR < 0.78 @ 95% CL</p>
- couplings: BR < 0.27 @ 95% CL

- most sensitive to Dark Matter!
 - coupling either directly to H or via scalar mediators/ mixing/MSSM-like scenarios...

V. Ippolito - Frascati - June 24th, 2015

A Dark Matter Factory?

"Higgs portal" models: unique sensitivity at LHC to low-mass DM

- for each value of m_{DM}<m_H/2, BR_H is connected to DM/nucleon scattering cross-section measured by direct detection experiments
- EFT approach allows to look for massive DM probing coupling to Higgs boson
 - complementary to (more general) mono-X searches, e.g. via
 e.g. H(->γγ)+MET

Can We Get Into That Plane?

- how (and how far) can LHC go in the comparison to direct DM detection experiments?
 - the answer is quite far provided we use both EFT and simplified-model eyeglasses (arXiv:1506.03116)
- our ultimate job is to produce and study particles, and DM is a particle...
- experimental challenge for Run-2 and beyond
- most signatures based on MET/jet/e-γ reconstruction, need to fight against pile-up!
 data will tell us how the DM puzzle talks to our brand new SM-ish
 V. Ippolito - Higgs, and if there are surprises...

Surprises

<intentionally left blank>

V. Ippolito - Frascati - June 24th, 2015

Conclusions

July 4th 2012 marked an historic milestone for particle physics

- a new era of precision measurements and searches for new physics is now open
- the aim of this thesis was to contribute to the reaching of this milestone...
 - optimisation of selection criteria and Higgs mass resolution to achieve a timely discovery
- ... and to go beyond
 - * J^{PC} of the new particle, perspective studies for probing HZZ tensor structure
- they were (and are!) exciting times, which shed light on paths for new physics
 - can it be a doorway to the unknown? (e.g. Dark Matter)
 - LHC is an unique opportunity to be a Higgs-factory first, and a Dark Matter factory possibly...

new data will tell us... let's remain open to the unknown!

V. Ippolito - Frascati - June 24th, 2015

Backup

ATLAS - the Instrument

[ID] B = 2 T, up to $|\mathbf{\eta}| < 2.5$ $\mathbf{\sigma}/\mathrm{pT} \sim 3.4 \times 10^{-4} \mathrm{pT} \oplus 0.015$

[ECAL]

up to |**η**| < 3.2 **σ**/Ε ~ 10%/√Ε ⊕ 1÷3%

[HCAL]

up to |**η**| < 3.2 (FCAL: 4.9) **σ**/E ~ 50%/√E ⊕ 0.03

[MS] up to |**η**| < 2.7 **σ**/p_T < 10% up to 1 TeV

Reconstruction: a Challenge

V. Ippolito - CSN1 - January 19th, 2015

Muon Reconstruction

V. Ippolito - CSN1 - January 19th, 2015

Events/GeV

Electron Reconstruction

Isolation on ll+ee

optimization of electron isolation criteria

- introduced topocluster iso
- working point against electron fakes
- * $\Delta R(e,\mu)$ to reject FSR fakes

Choosing the model

Z mass resolution for different constraint methods

- * include tails in m_{Z_1} for low m_H
- * use crystal ball model (fitted on MC) instead of gaussian resolution

Comparing different models

Higgs mass resolution vs m_H for different constraint methods

improvement in mass resolution from more complex models is negligible (covered by systematics needed for a m_H-dependent model)

V. Ippolito - CSN1 - January 19th, 2015

introduced in $H \rightarrow 4\ell$ search

the Z mass constraint fit

with gaussian resolution

and Breit-Wigner mz^{true} prior

Building a Discovery

CERN 40/4-Co8 - Sunday June 24th, 2012 - ~2 AM

an exciting team work!

* first hints at a 5**σ** combined discovery on June 19th, 2012 at 01h02 AM

* from day-to-day candidate search with increasing integrated luminosity to paper editors, group conveners, ATLAS

Valerio Ippolito

To: Konstantinos Nikolopoulos Cc: Luis Roberto Flores Castillo, and 2 more... Re: resolutions

Hi Kostas,

you can find under

/afs/cern.ch/work/v/vippolit/kostas/candidate_lists

what you asked for. There you have three candidate lists:

- data11 - data12 (the 79 candidates)

- my list for data12 (full dataset available up to yesterday evening

Let me know, particularly for the third one! My biased and tired eye finds interesting the following:

4mu	204769 71902630	398 124.09	86.34 31.57	125.09 bb
4mu	204769 82599793	447 123.25	84.01 34.21	123.47 bbbb
4e	203602 82614360	429 124.49	70.63 44.66	124.61 bbbb
4e	204910 22993546	376 125.52	88.93 22.28	126.36 bbbb

(keep in mind that everything beyond run 204668 I accept blindly without GRL, so those three candidates might disappear - but maybe Fabien has hints on these runs/lumiblocks?)

19 Jun 2012 01:02

Building a Discovery

CERN 40/4-Co8 - Sunday June 24th, 2012 - 2:13 AM

an exciting team work!

first hints at a 50
discovery on June 18th,
2012

* different layers well represented by the "discovery white board" team

* from day-to-day candidate search with increasing integrated luminosity to paper editors, group conveners, ATLAS management...

Detector effects

Impact of different reconstruction regions on m₄₁ resolution

channel	name	description	frequency	$m \; [\text{GeV}]$	σ [GeV]	events outside $\pm 2\sigma$
$\mu\mu\mu\mu$	all	all events	1.00	124.89 ± 0.02	1.64 ± 0.02	0.15
$\mu\mu\mu\mu$	bbbb	all muons in the barrel	0.19	124.81 ± 0.04	1.42 ± 0.04	0.16
$\mu\mu\mu\mu$	bbb	three muons in the barrel	0.28	124.86 ± 0.04	1.69 ± 0.04	0.14
$\mu\mu\mu\mu$	bb	two muons in the barrel	0.26	124.91 ± 0.04	1.56 ± 0.04	0.17
$\mu\mu\mu\mu$	other	any other event	0.26	125.05 ± 0.04	1.74 ± 0.05	0.17
$\mu\mu ee$	all	all events	1.00	124.24 ± 0.04	2.15 ± 0.04	0.19
$\mu\mu ee$	any_onecrk	at least one electron in the crack region	0.10	124.15 ± 0.18	2.97 ± 0.04	0.19
μμее	bb_bb	all leptons in the barrel	0.29	124.40 ± 0.06	1.73 ± 0.06	0.22
μμее	other_bb	electrons in the barrel, at least a muon in the endcap	0.35	124.32 ± 0.07	2.08 ± 0.06	0.17
μμее	other_other	any other event	0.26	124.05 ± 0.08	2.28 ± 0.08	0.21
$ee\mu\mu$	all	all events	1.00	124.22 ± 0.03	1.85 ± 0.03	0.25
$ee\mu\mu$	onecrk_any	at least one electron in the crack region	0.10	124.05 ± 0.14	2.62 ± 0.14	0.23
$ee\mu\mu$	bb_bb	all leptons in the barrel	0.31	124.34 ± 0.05	1.58 ± 0.04	0.25
$ee\mu\mu$	bb_other	electrons in the barrel, at least a muon in the endcap	0.25	124.32 ± 0.06	1.64 ± 0.05	0.24
$ee\mu\mu$	other_other	any other event	0.34	124.03 ± 0.07	2.10 ± 0.06	0.25
eeee	all	all events	1.00	123.37 ± 0.05	2.54 ± 0.05	0.20
eeee	bbbb	all electrons in the barrel	0.46	123.66 ± 0.07	2.08 ± 0.06	0.22
eeee	onecrk	at least one electron in the crack region	0.18	123.59 ± 0.16	3.05 ± 0.13	0.20
eeee	bbb	three electrons in the barrel (none in the crack)	0.22	123.15 ± 0.12	2.80 ± 0.12	0.20
eeee	other	any other event	0.15	122.91 ± 0.14	2.60 ± 0.13	0.23

Systematics

normalization systematics

- ▶ signal cross-section + MC statistics: 20%
- ZZ cross-section + MC statistics: 7%
- data-driven reducible background: 32%
- > all: (anticorrelated) high/low $m_{4\ell}$ bin migration due to ESS and assumed m_{H} : 14%

shape systematics

- wrong-pairing: very small with new selection
- ► ESS: negligible effect on J^P-MELA shapes
- reducible background shape parametrization: from variations in the multi-gaussian adaptive KDE models + variations related to the available data-driven statistics

all systematics taken as not correlated between 2011 and 2012

with the exception of reducible background (same sample for both years)

[parton-level]

Where does sensitivity come from?

V. Ippolito - CSN1 - January 19th, 2015

[parton-level]

Where does sensitivity come from?

V. Ippolito - CSN1 - January 19th, 2015

Reweighting samples

2D discriminant

SM

ZZ bkg

64

 m_{41}

2D: statistical approach

we assume SM and explore sensitivity in the complex plane g4/g1 (g2/g1)

full information on g4 (g2) is obtained

with a scan of the complex plane g_4/g_1 (g_2/g_1)

approach similar to Higgs search vs m_{H}

V. Ippolito - Frascati - June 24th, 2015

Compatibility 2D vs 8D

	Luminosity (fb^{-1})	f_{g_4}	f_{g_2}
2D	300	0.12	0.34
	3000	0.04	0.15

	Luminosity (fb^{-1})	f_{g_4}	f_{g_2}
8D	300	0.20	0.29
	3000	0.06	0.12

compatible within granularity of the scan in the f_{gi} vs Arg(g_i) plane (~0.02x0.02)

Conclusions

discovery

Iooking for a low mass Higgs boson

how we improved sensitivity

a new particle has been found

is it the Standard Model Higgs boson?

- J -MELA discriminant: exploit final state kinematics
- spin-parity studies: excluded o-, 1+, 1-, 2+ against SM o+

• ... enough for 2013 EPS Prize and for the Nobel Prize in Physics!

- is it <u>really</u> the Standard Model Higgs boson?
 - probing the HZZ vertex: 8D and 2D matrix-element techniques
 - projections for high luminosity (300/3000 fb⁻¹): sensitive to 6-20% CPV fraction

Reducing the Reducible l+ jet jet р n ut Variables: lowest pT etcone20/p TMVA Input Variables: lowest pT ptcone20/p1 TMVA Inc st pT et/ (1/N) dN/ 0.234 Signal (1/N) dN/ 0.13 72:0 /NP (N/L) Background 10 10 10 ₽+ 10 10-2 10⁻² 10 10 10 -2 10 0 2 з 5 2 0 2 4 6 12 2nd lowest pT etcone20/pT lowest pT etcone20/pT lowest pT ptcone20/pT MVA Input Variables: 2nd Iowest pT (d0/d0_sig MVA Input Variables: lowest pT (d0/d0_sig 10 (1/N) dN/ 0.184 (1/N) dN/ 1.63 (1/N) dN/ 1.37 N / (0.0, 0.2)? 10 10 10 10 10-2 10⁻² 10⁻³ 10 10⁻³ 10 10 20 30 50 10 20 30 lowest pT |d0/d0_sig| 2nd lowest pT |d0/d0_sig| 2nd lowest pT ptcone20/pT

Valerio Ippolito - In the Footsteps of the Higgs Boson $({\mbox{Sep}}_{4^{th}}, {\mbox{2013}})$

Reducing the Reducible

FSR

sum back to on-shell $Z_1 \rightarrow \mu \mu$ final states up to a single photon with $E_T > 1$ GeV

4% effect on number of selected events

effect on Z peak
Angular Observables

 θ_i : angle, in Z_i reference frame, between lepton and Z_i flight line

Where does sensitivity come from?

Spin 2⁺: gg vs qq

 2^+ : qq production yields a softer p_T spectrum

V. Ippolito - CSN1 - January 19th, 2015

Low mass searches

Signal cross-section

m_H	$\sigma\left(gg\to H\right)$	$\sigma \left(qq' \to Hqq' \right)$	$\sigma \left(q\bar{q} \to WH \right)$	$\sigma \left(q\bar{q} \to ZH \right)$	$BR\left(H \to ZZ^{(*)} \to 4\ell\right)$						
[GeV]	[pb]	[pb]	[pb]	[pb]	$[10^{-3}]$						
$\sqrt{s} = \S7 \text{TeV}$											
123	$15.8^{+2.3}_{-2.4}$	1.25 ± 0.03	$0.60\substack{+0.02\\-0.03}$	0.33 ± 0.02	0.103						
125	15.3 ± 2.3	1.22 ± 0.03	0.57 ± 0.02	0.32 ± 0.02	0.125						
127	14.9 ± 2.2	1.20 ± 0.03	0.54 ± 0.02	0.30 ± 0.02	0.148						
400	$2.05\substack{+0.30 \\ -0.29}$	0.18 ± 0.01	—	_	1.21						
600	$0.34\substack{+0.06\\-0.05}$	$0.062\substack{+0.005\\-0.002}$	—	_	1.23						
$\sqrt{s} = 8 \mathrm{TeV}$											
123	20.2 ± 3.0	1.61 ± 0.05	0.73 ± 0.03	0.42 ± 0.02	0.103						
125	19.5 ± 2.9	$1.58\substack{+0.04 \\ -0.05}$	0.70 ± 0.03	0.39 ± 0.02	0.125						
127	18.9 ± 2.8	1.55 ± 0.05	$0.66\substack{+0.02\\-0.03}$	0.37 ± 0.02	0.148						
400	$2.92\substack{+0.41 \\ -0.40}$	0.25 ± 0.01	—	_	1.21						
600	$0.52\substack{+0.08 \\ -0.07}$	0.097 ± 0.004	_	_	1.23						

Reducible background

Method	Estimate for $\sqrt{s} = 8 \text{ TeV}$	Estimate for $\sqrt{s} = 7 \text{ TeV}$		
	4μ	4μ		
m_{12} fit: $Z + jj$ contribution	$2.4\pm0.5\pm0.6^{\dagger}$	$0.22 \pm 0.07 \pm 0.02^{\dagger}$		
m_{12} fit: $t\bar{t}$ contribution	$0.14 \pm 0.03 \pm 0.03^{\dagger}$	$0.03 \pm 0.01 \pm 0.01^{\dagger}$		
$tar{t} ext{ from } e\mu + \mu\mu$	$0.10 \pm 0.05 \pm 0.004$	-		
	$2e2\mu$	$2e2\mu$		
m_{12} fit: $Z + jj$ contribution	$2.5\pm0.5\pm0.6^{\dagger}$	$0.19 \pm 0.06 \pm 0.02^{\dagger}$		
m_{12} fit: $t\bar{t}$ contribution	$0.10 \pm 0.02 \pm 0.02^{\dagger}$	$0.03 \pm 0.01 \pm 0.01^{\dagger}$		
$tar{t}$ from $e\mu+\mu\mu$	$0.12 \pm 0.07 \pm 0.005$	-		
	$2\mu 2e$	$2\mu 2e$		
$\ell\ell + e^{\pm}e^{\mp}$ relaxed cuts	$5.2\pm0.4\pm0.5^{\dagger}$	$1.8\pm0.3\pm0.4$		
$\ell\ell + e^{\pm}e^{\mp}$ inverted cuts	$3.9\pm0.4\pm0.6$	-		
$3\ell + \ell$ (same-charge)	$4.3\pm0.6\pm0.5$	$2.8\pm0.4\pm0.5^{\dagger}$		
same-charge, full analysis	4	0		
	4e	4e		
$\ell\ell + e^{\pm}e^{\mp}$ relaxed cuts	$3.2\pm0.5\pm0.4^{\dagger}$	$1.4\pm0.3\pm0.4$		
$\ell\ell + e^{\pm}e^{\mp}$ inverted cuts	$3.6\pm0.6\pm0.6$	-		
$3\ell + \ell \; (ext{same-charge})$	$4.2\pm0.5\pm0.5$	$2.5\pm0.3\pm0.5^{\dagger}$		
same-charge, full analysis	3	2		

Isolation efficiency

V. Ippolito - Frascati - June 24th, 2015

Systematic uncertainties

- muon ID/reco
 - ✤ 0.8% (4µ), 0.4% (2µ2e,2e2µ)
- electron ID/reco
 - * m_H = 125 GeV: 9.5% (4e), 8.7-2.4% (2e2μ, 2μ2e)
 - ★ m_H = 1 TeV: 2.4% (4e), 1.8-1.6%
 (2e2µ, 2µ2e)
- Iuminosity
 - ◆ 7 TeV: 1.8%
 - ◆ 8 TeV: 3.6%

- signal
 - ✤ QCD: 8% (ggF), 1% (VBF/VH)
 - alpha strong: 8% (ggF), 4% (VBF)
- ZZ background
 - ◆ QCD: 5%
 - alpha strong: 4% (VBF), 8% (ggF)
- energy and momentum scale
 - electrons: 0.4% (4e), 0.2% (2e2µ)
 - muons: 0.2% (4μ), 0.1% (2μ2e)

V. Ippolito - Frascati - June 24th, 2015

Single resonant

20 GeV < m₁ < 106 GeV 1 GeV < m₂ < 115 GeV pT > (20, 15, 10/8, 4) GeV

The likelihood model

$$gnal = \left(\sum_{i} \mu_{i} \sigma_{i,SM} \times A_{if}^{k} \times \varepsilon_{if}^{k}\right) \times \mu_{f} \times B_{f,SM} \times \mathcal{L}^{k}$$

$$L(\mu, \hat{\theta}(\mu))$$

$$\Lambda(\boldsymbol{\mu}) = \frac{L(\boldsymbol{\mu}, \hat{\boldsymbol{\theta}}(\boldsymbol{\mu}))}{L(\hat{\boldsymbol{\mu}}, \hat{\boldsymbol{\theta}})}$$

$$\Lambda(m_H) = \frac{L(m_H, \hat{\hat{\mu}}_{\gamma\gamma}(m_H), \hat{\hat{\mu}}_{4\ell}(m_H), \hat{\hat{\theta}}(m_H))}{L(\hat{m}_H, \hat{\mu}_{\gamma\gamma}, \hat{\mu}_{4\ell}, \hat{\theta})}$$

V. Ippolito - Frascati - June 24th, 2015

Results

mass measurement

m_H = 125.5 GeV

+1

34

Results

4-lepton breakdown

		observed		expected		
	data set	$\min p_0$	significance	$m_H(p_0)$	$\minp_0(m_H)$	significance
		$[\sigma]$			$[\sigma]$	
	$\sqrt{s} = 7 \mathrm{TeV}$	$2.5 imes 10^{-3}$	2.8	$125.6{ m GeV}$	$3.5 imes 10^{-2}$	1.8
	$\sqrt{s} = 8 \mathrm{TeV}$	$8.8 imes 10^{-10}$	6.0	$124.1\mathrm{GeV}$	$2.8 imes 10^{-5}$	4.0
V. Ippolito - Frascati - June	combined	$2.7 imes 10^{-11}$	6.6	$124.3\mathrm{GeV}$	$5.7 imes 10^{-6}$	4.4

86

Results

is it the SM Higgs boson?

mass measurement

 $\mu = 0.82_{-0.32}^{+0.33}$

 $\mu = 1.4^{+0.1}$

 $\mu = 1.33^{+0.21}$

Comb. H→γγ, ZZ*, WW* ±0.1

√s = 7 TeV ∫Ldt = 4.6-4.8 fb

√s = 8 TeV ∫Ldt = 20.7 fb⁻¹

±0.2

±0.5

±0.1

0+1 jet

2 jet VBF

Q

q

87