Cuore Upgrade with Particle IDentification

Joward a bolometric Inverted Hierarchy Explorer

Stefano Pirro on behalf of the CUPID interest group

R&D towards CUPID: <u>arXiv:1504.03612</u>

CUPID : <u>arXiv:1504.03599</u>

The CVPID Interest Group

1

High Energy Physics Division, Argonne National Laboratory, Argonne, IL, USA Materials Science Division, Argonne National Laboratory, Argonne, IL, USA INFN - Laboratori Nazionali del Gran Sasso, Assergi (AQ), Italy Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA Department of Nuclear Engineering, University of California, Berkeley, CA, USA Department of Physics, University of California, Berkeley, USA Università di Bologna and INFN Bologna, Bologna, Italy Massachusetts Institute of Technology, Cambridge, MA, USA Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA Technische Universität München, Physik-Department E15, Garching, Germany Dipartimento di Fisica, Università di Genova and INFN - Sezione di Genova, Genova, Italy Institute for Nuclear Research, Kyiv, Ukraine INFN - Laboratori Nazionali di Legnaro, Legnaro, Italy Lawrence Livermore National Laboratory, Livermore, CA, USA Department of Physics and Astronomy, University of California, Los Angeles, CA, USA INFN sez. di Milano Bicocca and Dipartimento di Fisica, Università di Milano Bicocca, Italy State Scientific Center of the Russian Federation - Institute of Theoretical and Experimental Physics (ITEP), Moscow, Russia Max-Planck-Institut für Physik, D-80805 München, Germany Nikolaev Institute of Inorganic Chemistry, SB RAS, Novosibirsk, Russia Sobolev Institute of Geology and Mineralogy, SB RAS, Novosibirsk, Russia Centre de Sciences Nuclèaires et de Sciences de la Matière (CSNSM), CNRS/IN2P3, Orsay, France INFN - Sezione di Padova, Padova, Italy Institut de Chimie de la Matière Condensè de Bordeaux (ICMCB), CNRS, 87, Pessac, France Dipartimento di Fisica, Università di Roma "La Sapienza" and INFN - Sezione di Roma, Roma, Italy IFN-CNR, Via Cineto Romano, I-00156 Roma, Italy Service de Physique des Particules, DSM/IRFU, CEA-Saclay, France Physics Department, California Polytechnic State University, San Luis Obispo, CA, USA Shanghai Institute of Applied Physics (SINAP), China Institut de Physique Nuclèaire de Lyon, Universitè Claude Bernard, Lyon 1, Villeurbanne, France Wright Laboratory, Department of Physics, Yale University, New Haven, CT, USA Laboratorio de Fisica Nuclear y Astropartculas, Universidad de Zaragoza, Zaragoza, Spain

TeO₂ Bolometers: a story of successes

Bolometers as (almost) ideal DBD-detectors

$$S_{0\nu} = ln(2)N_A \frac{\eta \cdot \epsilon}{W} \sqrt{\frac{M \cdot T}{\Delta E \cdot B}}$$

"large" Background :M·T·B·∆E>>1

$$S_{0\nu} = ln(2)N_A \frac{\eta \cdot \epsilon}{W} M \cdot T$$

"0 Background" :
$$M \cdot T \cdot B \cdot \Delta E \leq 1$$

SCalability CUORE-0 operated 52 crystals, CUORE will operate 988 crystals

Efficiency > 80 % calorimeter approach

Versatility Te (CUORE isotope) - high i.a. but Q below the 2.6 MeV Cd, Se and Mo = "new" isotopes low i.a. but Q>2.6 MeV

α -background: the bottleneck for DBD with bolometers

α-induced background reduced by a factor 6 with respect to CUORICINO, but still dominant for CUORE)

Fully sensitive up to the surface, no α vs β/γ discrimination in the TeO₂ heat channel

Dominant Background : energy-degraded αs from surfaces

CUPID is a proposed bolometric 0v-DBD experiment which aims at a sensitivity to the effective Majorana neutrino mass of the order of 10 meV. This level of sensitivity corresponds to the a lifetime of few $\sim 10^{27}$ years, depending on the isotope. This primary objective poses a set of technical challenges:

the sensitive detector mass must be in the range of several hundred kg to a ton of the isotope
the background must be close to zero at the ton x year exposure scale.

CUPID

CUORE Upgrade with **P**article **ID**entification represents a new world-wide interest group (133 Signers) aiming at constructing a future ton-scale bolometric neutrinoless double beta decay experiment, based on the experience, expertise and lessons learned in CUORE. The CUPID goal is the use of the <u>unique</u> CUORE infrastructure @ LNGS, once CUORE completes operation

This requires major upgrades focused on the detector technology :

- > New detector technologies (α -background or surface event ID)
- > Isotopic enrichment
- > New purification and crystallization procedures

As well as stricter material selection, and possibly new shielding concepts with respect to the state of the art deployed in CUORE.

select technology & produce Conceptual Design Report for discovery 0vββ in IH
 define common framework to exploit synergies, science goals & near-term R&D

R&D towards CUPID: arXiv:1504.03612

CUPID : arXiv:1504.03599

CVPID Program

The target background rate for CUPID can't be verified on small scale detectors.

- We have to prove that this target is achievable -> Phased approach
- step 1 proof of concept: alpha rejection is achievable at the desired level (small bolometric arrays used to study and compare different technologies)
- ✓ step 2 scalability: proven with an intermediate scale array ("demonstrator")

by-product: results of demonstrators will be better than existing bolometric limits

- Next Year
 - ✓ Operations of ton-scale bolometric experiment with CUORE
 - ✓ First demonstrator of the attainability of large scale enriched arrays (LUCIFER/LUCINEU) with crystals different from TeO₂

• CUPID Goal : select the best technology within 2017-2018

Background reduction

In order to achieve the scientific goals a significant improvement of the current CUORE background figure is mandatory.

The expected dominant component of the background in CUORE is due to **energy-degraded alpha particles** emitted from the surfaces of the materials surrounding the detector or of the detector itself. Active background suppression promises the required levels, either with TeO₂ as sensitive material, or with other isotopes.

It is important to stress that improvement in the detector technology, even if mandatory, may not be not sufficient. Background coming from residual environmental radioactivity and that induced by sporadic muon interactions in the current CUORE configuration could produce backgrounds.

Background budget

Bkgd model: uncertainties from limited CUORE-0 statistics, large γ bkgd from CUORICINO cryostat, upper limits on actual contaminations

- Environmental μ 's, neutrons, γ 's
- Far sources: γ 's from contaminations in cryogenic set-up

- Near sources: close to detector or crystals
 - Cu bulk:
 - Crystal bulk:
 - Surface: energy degraded α interactions, dominant background accordingly to CUORE model

Background budget

- Bkgd model: uncertainties from limited CUORE-0 statistics, large γ bkgd from CUORICINO cryostat, upper limits on actual contaminations
 - Fundamental input from CUORE
- Environmental μ 's, neutrons, γ 's \rightarrow active muon veto and thicker shields
- Far sources: γ 's from contaminations in cryogenic set-up

<1 cpy/ton 90%CL for Te, <0.1 cpy/ton 90%CL for Mo,Se

- Near sources: close to detector or crystals
 - Cu bulk: <2 cpy/ton 90%CL for Te, <1 cpy/ton 90%CL for Mo,Se
 - Crystal bulk: one order of magnitude less compared to Cu
 - Surface: energy degraded α interactions, dominant background accordingly to CUORE model: <2 cpy/ton 90% CL if we assume 99.9% α rejection

D.R. Artusa et al., Eur. Phys. J. C 74 (2014) 3096

Pros

Cons

- $\checkmark Q_{\beta\beta}$ below 2516 keV
- $\checkmark \alpha$ and srface Id needs extremely performing technologies
- ✓ Crystals yield is presently low (30%)

✓Not commercial crystals

- ✓ larger enrichment price
- ✓ not yet proved crystal growth reproducibility

The advantage of the large group of interest grown around CUPID is that it was possible to gather together groups with different expertise, from crystal grow to sensor development. This will allow us to pursue a large number of R&D in parallel....

Q-value and Background: Isotope Choice

238 U	and	²³² Th	trace	contal	minations
--------------	-----	-------------------	-------	--------	-----------

	isotope	$G^{0\nu}$	$Q_{\beta\beta}$	nat. abund.	$T_{1/2}^{2\nu}$			
		$[10^{-14}y^{-1}]$	$[\mathrm{keV}]$	[%]	$[10^{20} \text{ y}]$			
	⁴⁸ Ca	6.3	4273.7	0.187	0.44			
	$^{76}\mathrm{Ge}$	0.63	2039.1	7.8	15			
	$^{82}\mathrm{Se}$	2.7	2995.5	9.2	0.92			
	$^{100}\mathrm{Mo}$	4.4	3035.0	9.6	0.07			
1	$^{116}\mathrm{Cd}$	4.6	2809	7.6	0.29			
	¹³⁰ Te	4.1	2528	34.2	9.1			
	¹³⁶ Xe	4.3	2461.9	8.9	21			
	¹⁵⁰ Nd	19.2	3367.3	5.6	0,08			
	\setminus				_ /			
		Bolo	meters	already				
		succ	successfully tested					

Gerda Experiment – Background spectrum

Isotopes with $Q_{\beta\beta} > 2615 \text{ keV}$ would be preferred because they lie above the most intense natural γ radioactivity edge

Enrichment

CUPID will require isotopic enrichment *for any isotope* under consideration. All of the isotopes under investigation in the following, ¹³⁰Te, ¹⁰⁰Mo, ⁸²Se and ¹¹⁶Cd can be enriched by centrifugation. This implies that they are all viable for a next-generation experiment in terms of cost and production rate. However, technical reasons determine differences in the enrichment cost which may impact the final choice. Very approximately *at the* **few kg scale**, the enrichment cost are the following:

¹³⁰ Te	¹⁰⁰ Mo	⁸² Se	¹¹⁶ Cd
17 k\$/kg	90 k\$/kg	80 k\$/kg	200 k\$/kg

These costs derives from small productions (few kg, 15 kg for ⁸²Se, 10 kg of ¹³⁰Te). It has to be pointed out, however, that the use of isotopically enriched material changes remarkably the purification / crystallization issues, for two main reasons:

- first, the enriched material could have residual chemical impurities which may demand additional purification stages to get high-quality crystals;
- the enriched material is costly, and therefore the growth procedure needs to be adapted in order to reduce as much as possible the irrecoverable losses of the initial charge.

Enrichment – achievable nuclei

CUORE-like experimental setup ===> Volume=988 bolometers x 125 cm³ each

Enrichment mandatory: assume 90 %

	Detector Mass [kg]	Total Isotope Mass (kg)	Enrichment cost (\$/g)	Ν _{ββ} [10 ²⁷]	N _{ββ cost} [M\$]
Zn ⁸² Se	664	369	~70	2.4	26
Zn ¹⁰⁰ MoO ₄	545	237	~90	1.3	21
¹¹⁶ CdWO ₄	986	314	~200	1.5	63
¹³⁰ TeO ₂	755	606	~17	2.5	10

- New purification methods :
 - ✓ residual chemical impurity after gas→elementary powder conversion
- New powder synthesis and crystallisation method to limit losses of initial charges

✓ amount of enriched material needed scales as (Isotope Mass)/effpur+synt+growth

Scintillating bolometers

The development of this technique started in 2005 (SP *et al.*, Phys.Atom.Nucl.69 (2006) 2109) after the first results of CUORICINO that show the hard core of α -induced background

Bolometric Light Detectors – simple readout

In case of *scintillating crystals even in case of very "bad" scintillators (Light Yield* \approx 0.05 %), the scintillation light at $Q_{\beta\beta}$ results of the order O(1 keV). This amount of energy release can be "easily" readout by standard thermistor-based bolometers.

Ø=44.5 mm, h=0.175 mm

The light detector is a Ge thin crystal (LUCIFER)

These devices are calibrated through an Ionizing ⁵⁵Fe source placed close to them; ⁵⁵Fe shows two X-lines at 5.9 and 6.5 keV

The ⁵⁵Fe energy spectra evaluated on three different LUCIFER Ge-crystals. σ represents the evaluated energy resolution on the peaks, while σ_{base} represents the baseline resolution.

Zn⁸²Se : Lucifer (first CVPID demonstrator)

Low-background Underground Cryogenics Installation For Elusive Rates

Goal: to reach a decay of few 10²⁵ y and demonstrator for a background free experiment

Lucifer will be composed by an array of 32 enriched (95%) $Zn^{82}Se$ crystals. Total ⁸²Se nuclei will be $\approx 4.3)10^{25}$

The expected background in the ROI (2995 keV) is of the order of 1÷2 10⁻³ c/keV/kg/y

- The energy resolution of the single detector is expected to be ~10+20 keV FWHM
- JW Beeman et al., Advan. in High Energy Phys 2013, 237973

ZnSe crystals a discrimination

The α -induced background is recognized through two independent measurements: 1) the decay time of the scintillating signal 2) the different scintillation yield between α and γ/β particles (the "usual" light Vs Heat scatter plot)

ZnSe crystals shows an "inverse" QF, i.e. α -particles scintillate more than β/γ 's (C. Arnaboldi *et al.*, Astrop. Phys. **34**(2011)

⁸²Se : Enrichment

The use of isotopically enriched material changes remarkably the purification / crystallization issues for all kind of crystal being studied in CUPID.

A) Enriched material could have residual chemical impurities which may demand additional purification stages

B) The enriched material is costly, and therefore the overall growth procedure needs to have a high yield

The procurement of a considerable amount of ultra-pure ⁸²Se by a **European company** (URENCO) represented a major achievement in this field.

LUCIFER faced both the abovementioned problems, in particular (A)

	Se(nat)	Se(Enr.)	Se(enr-Dist.)
	[mBq/kg]	[mBq/kg]	[mBq/kg]
²³⁸ U / ²²⁶ Ra	<1.7	< 0.41	< 0.11
238 U / 234 Th	<17	<27	< 6.2
232 Th / 228 Th	1.7±0.3	1.4 ± 0.2	< 0.11
232 Th / 228 Ra	<0.7	< 0.37	< 0.061
⁴⁰ K	4 ± 2	3 ± 1	< 0.99
⁶⁰ Co	< 0.3	< 0.17	< 0.065
²³⁵ U	<0.7	< 0.30	< 0.074
¹³⁷ Cs	< 0.14	< 0.076	< 0.012

The enriched ⁸²Se did show a lot of contaminants that were not compatible with a "good" bolometer: Iron, Chromium and other metal contaminants. Moreover a huge ($\approx 0.1\%$) contamination of chemical reagents used for the conversion from Hexafluoride to Isotope will be present in the final metal (Na and S in case of Se)

→ Two years of R&D in order to provide a reliable -high yield- purification

 $Mo-Based compounds-ZnMoO_4$

Successful R&D pursued within LUCIFER before choosing ZnSe.

Energy resolution compatible with CUORE detectors

¹⁰⁰Mo-Based compounds-LUMINEU

Luminescent Underground Molybdenum Investigation for NEU trino mass and nature

LUMINEU is an *ANR* funded pilot experiment to demonstrate the feasibility of **Zn¹⁰⁰MoO₄** scintillating bolometers using 1 kg of ¹⁰⁰Mo. Crystals grown in NIIC(Russia) using Low Thermal Gradient CZochralski technique (LTGCz)

Two ~340g Zn^(nat)MoO₄ tested underground Two ~60g Zn⁽¹⁰⁰⁾MoO₄ (99% enriched) tested above ground

- Mo purified by double sublimation & recrystallization from solution (arXiv:1312.3515)
- ✓ Excellent radiopurity, U, Th < 4μ Bq/kg
- ✓ Crystal growth yield 85 %
- ✓ Irrecoverable losses < 4 %</p>

J.W. Beeman *et al.,* Phys Lett **B** 710 (2012) A. S. Barabash *et al.,* Eur. Phys. J. **C** 74 (2014) 3133

¹⁰⁰Mo-Based compounds-LUCINEU

MOU signed by ITEP, IN2P3, INFN makes ~9 kg of ¹⁰⁰Mo (95-99%) belonging to ITEP available (formerly measured in NEMO)

LUCIFER + LUMINEU → LUCINEU

LUCIFER and LUMINEU use the same technology, same light detectors. The experimental volume of the CUORE-0 cryostat permits to mount other detectors, below the LUCIFER tower LUCINEU: Lol in preparation

- ✓ Run Background free demonstrator with ~8 kg of ¹⁰⁰Mo
- ✓ 1st 20 crystals at LNGS, 2nd 20 crystals in Modane
- ✓ thermistors/light detectors/Cu-supports available within LUCIFER
- ✓ same electronic read-out/DAQ/data-analysis tools

1.45 kg 99% Zn¹⁰⁰MoO₄ (Lumineu)

LUCINEU could be the second CUPID Demonstrator starting data taking in 2016

 α -discrimination in TeO₂ Bolometers

There are two strategies:

- identify events taking place close the surfaces (α and β , being β identification more complicated)
- identifying α -interaction through the Cherenkov light emission (not emitted by α)

The Cherenkov light detection

The threshold for Cherenkov emission in TeO₂ is around 50 keV for electrons, and around 400 MeV for α 's

The issue is to be able to detect a light signal, together with the Heat from TeO_2 , of the order of O(100 eV). This implies a light detector with a RMS baseline of the order of 20 eV.

Tabarelli de Fatis, Eur. Phys. J.C 65 (2010) 359.	First Idea of detecting Cherenkov light
J.W. Beeman et al., Astrop. Phys. 35 (2012) 558	-562 First detection of Cherenkov light with LUCIFER light detectors
F. Bellini <i>et al</i> ., JINST 9 (2014) P10014	Cherenkov light yield simulation and optimization In TeO ₂ at room temperature
N. Casali <i>et al</i> ., Eur. Phys. J. C (2015), 75:12	Cherenkov light emission in CUORE-like crystals Bolometers with LUCIFER light detectors
M. Willers <i>et al</i> ., JINST 10 (2015) P03003	First event-by-event discrimination on small TeO ₂ Bolometer with TES and LUKE-amplification
K. Schäffner et al., Astrop. Phys. 69 (2015) 30-36	First event-by-event discrimination in large (285 g) crystal bolometer with <i>CRESST</i> TES
F. Bellini <i>et al</i> ., in preparation First even crystal wi	nt-by-event discrimination in CUORE-like (790 g) ith improved NTD based LD @ LUCIFER @Lumineu

The Cherenkov light detection NTD-detectors -1

The first Cherenkov light detection were made within LUCIFER R&D using thermistor-based light detectors. After several tests we obtained that the light escapng from a CUORE-Like crystal lies between **90 and 110 eV**. Due to this small amount it is clear that standard thermistors light detector are not able to perform an event-by-eventdiscrimination

116 g TeO₂ crystal: 195 eV @2615 keV

The Cherenkov light detection TES-Light detector

K. Schäffner et al., Astrop. Phys. 69 (2015) 30

Results obtained with collaboration of Max-Plank Munich and LUCIFER, using a 4 cm dia, 4 cm height 285 g TeO₂ crystals

• Transition Edge Sensors (TES) (CRESST)

- > ΔE < 20 eV</p>
- Complicated readout:
 - SQUID amplifiers.
 - scaling needs R&D

The Cherenkov light detection NTD-detectors -2

With optimised thermal coupling **@IAS-Orsay**

ΔE~18 eV with standard read-out reproducibility must be investigated

With Neganov-Luke enhancement @CSNSM-Orsay

ΔE~20 eV with standard read-out reproducibility must be investigated

Status on Light detectors

The amount of Cherenkov light signal escaping a large TeO₂ crystals requires LDs with $\Delta E_{RMS} \leq 20 \text{ eV}$ in order to achieve 99.5 % α -rejection

R&D on Light detectors

R&D on Light detectors

Surface- Effects- ABSURD

- A Background Surface Rejection Detector
- TeO₂ + NTD light detector encapsulated in a scintillating foil
 - degraded αs release energy both in TeO₂ and scintillating foil: heat/light coincidence tag
 - ¹⁴⁷Sm α source (Q=2.3MeV) on crystal surface heat detector

doi:10.1016/j.nima.2013.05.114

¹³⁰Te Enrichment

In the CUORICINO experiment enriched ¹³⁰Te and ¹²⁸Te crystals were used in order to measure the 2-neutrino decay mode of ¹³⁰Te. Unfortunately these crystals did show a very bad energy resolution O(20 keV) and internal contaminations a factor 10 larger than the natural ones.

10 kg of 92% enriched ¹³⁰Te were recently purchased (NSF Grant). Two 40% enriched 750 g ¹³⁰TeO₂ crystals were grown and bolometrically tested. First results are encouraging but they show internal contamination larger than the one observed in CUORE

✓ Chemical impurities (Fe, Ni, Cu) deteriorate the energy resolution

\checkmark	Enriched	material	shows	trace	of	radioactive	contaminants
--------------	----------	----------	-------	-------	----	-------------	--------------

	Energy Range [keV]	Anti-coincident Event Rate [keV ⁻¹ kg ⁻¹ y ⁻¹]				
		Typical CUORE Crystal	08X002 🚄	08X003 🖌		
Continuum	2700 - 3200	0.23 ± 0.03	0.96 ± 0.30	1.15 ± 0.33		
Pt-190	3200 - 3400	0.39 ± 0.07	3.11 ± 0.86	1.91 ± 0.67		
Continuum	3400 - 3900	0.11 ± 0.02	1.34 ± 0.36	1.34 ± 0.36		
U/Th Peaks	4000 - 5000	0.14 ± 0.02	2.63 ± 0.35	3.20 ± 0.39		
Po-210 Peak	5000 - 6000		47.56 ± 1.50	75.73 ± 1.90		
U/Th Peaks	6000 - 8000	0.06 ± 0.01	0.21 ± 0.07	0.22 ± 0.07		

B. Wang APS/DNP/JPS meeting Waikaloa, HI, US, Oct 2014

Different R&D started in order to purify the enriched material

R&D @SICCAS in order to increase crystal growth yield

40% Enriched TeO₂

Zone refinement (@USC)

Wet chemistry @SICCAS

Vacuum distillation (@Lucifer)

CUPID & Environmental Radioactivity

The active background rejection techniques, on which detector developments are focused, aim at reducing to negligible levels the effect of surface contaminations of detector materials. This background source is identified as the dominant contributor to CUORE-0 counting rates and as the most likely limiting factor for CUORE sensitivity. However, the reduction of surface contamination effects can't by itself ensure the achievement of a background level two orders of magnitude lower than CUORE.

For this reason there is the need to increase the sensitivity of radioactive screening methods

- Pre-concentration of radio-contaminants through chemical treatment of materials. This technique already developed by other collaboration allows increasing the sensitivities of NAA ICPMS as well as of HPGE measurements.
- Development of a bolometric detector for the measurement of surface/bulk contamination of small samples and foils.

Moreover, according to the simulations based on CUORE and the measured muon flux at LNGS, the event rate induced by the cosmic ray muons or μ -showers in the ROI is expected to be on the order of 0.5 counts/(ton y). For a 5-10 year exposure, a reduction in this rate of about a factor of 10 or more would be required for a zero-background experiment.

R&D on active muon veto

CUPID Sensitivity

	Detector Mass [kg]	Isotope Fiducial Mass [kg]	T ^{1/2} (90%) [10 ²⁷ y] (@10 years)	Μ_{ββ} (90%) [meV] (@10 years)
Zn ⁸² Se	664	335	4.2	6-19
Zn ¹⁰⁰ MoO ₄	545	212	2.2	6-17
¹¹⁶ CdWO ₄	986	283	3.0	8-15
¹³⁰ TeO ₂	755	543	5.1	6-15

Energy resolution < 5 keV

Event selection efficiency in fiducial volume 75-90%

Background within FWHM of endpoint <0.02 counts/(ton· year)

Conclusions

CUPID technology should be as compatible as possible with the existing CUORE infrastructure, in terms of cryogenics, readout, and DAQ features

The primary goal of CUPID is sensitivity of 10–15 meV to the effective neutrino mass. This requires a detector with an active isotope mass of order ton and a background level of ≤ 0.1 counts/(ton·y)

The chosen technology should prove convincingly that this target can be achieved, by means of dedicated experimental tests and verifiable simulations.

A tonne-scale bolometric detector will imply O (1000) single detectors. An appealing feature of the bolometric technology is its scalability:

A chosen technology must demonstrate reproducibility in terms of technical performance (energy resolution, pulse shape, noise features). The detector behavior should therefore be tested with an array of at least 8 modules and, if possible, larger, operated underground

The cost and schedule of the enrichment process and of the crystal production must be compatible with a timely realization of the experiment

The first two **CUPID** demonstrator (**LUCIFER** and **LUCINEU**) could probably start together, in CUORE-0 cryostat in 2016.

Bąckup

R&D Table

TABLE I: Status of the R&D's on the various Particle Identification (PID) options explored in CUPID (see text for acronyms)

Isotope	Compound	Crystals	Enriched crystals		PID technique	PID status
		125 cm ³ radio-pure		Surface effects	Al films	Bulk/surface rejection demonstrated with a 2 cm^3 crystal and a fast sensor
¹³⁰ Te	T-O	natural crystals available from	54 cm ³ (125 cm ³) enriched crystals with a $i = 75\%$ (40%)		Scintillating foil with conventional NTD light detector	Bulk/surface rejection partially achieved with a 125 cm ³ crystal
	$1eO_2$	Even larger natural	available and tested. R&D in progress.		Optimized NTD light detector	α/β rejection demonstrated with a 125 cm ³ crystal.
		successfully grown.		Cherenkov light detection	NL-effect light detector	α/β rejection demonstrated with a 125 cm ³ crystal.
					TES light detector	α/β rejection demonstrated with a 48 cm ³ crystal.
					MKID	Prototype light detectors demonstrated. R&D in progress.
					MMC	Technology used in AMoRE. No test done on TeO ₂ .
$^{100}\mathrm{Mo}$	${ m ZnMoO_4}$	78 cm ³ radio-pure natural crystals available.	14 cm ³ enriched crystals with a.i.=99% available and tested. 325 cm ³ crystalline boule with a.i.=99% grown. R&D in progress.	Scintillation light detection	Conventional NTD light detector	lpha/eta rejection demonstrated with 78 cm ³ natural crystals and 14 cm ³ enriched crystals.
	${ m Li}_2{ m MoO}_4$	78 cm ³ natural crystals available.	No test yet.			α/β rejection demonstrated with a 50 cm ³ natural crystal.
$^{82}\mathrm{Se}$	ZnSe	73 cm ³ radio-pure natural crystals available, but reproducibility problems.	No test yet.			lpha/eta rejection demonstrated with a 73 cm ³ crystal but reproducibility problems.
$^{116}\mathrm{Cd}$	$CdWO_4$	$\begin{array}{l} \text{Large (> 100 \ cm^3)} \\ \text{natural crystals} \\ \text{available.} \end{array}$	75 cm ³ enriched crystals available.			α/β rejection demonstrated with a 63 cm ³ natural crystal.

Near-Far Background sources

Element	material	contamination	Te	Se/Cd/Mo		
		[Bd/kg]	[cnts/ton/y]			
	Far	Sources				
²³⁸ U external shield	lead	$< 1 \times 10^{-5}$	$< 7 \times 10^{-3}$	$< 4 \times 10^{-3}$		
²³² Th external shield	lead	$< 7 \times 10^{-5}$	< 1	$< 1 \times 10^{-2}$		
²³⁸ U 300 K top plate	stainless steel	$< 2 \times 10^{-4}$	$< 5 imes 10^{-4}$	$< 3 \times 10^{-4}$		
²³² Th 300 K top plate	stainless steel	$< 1 \times 10^{-4}$	$< 3 imes 10^{-2}$	$< 3 \times 10^{-4}$		
²³⁸ U cryostat elements	copper	$< 7 \times 10^{-5}$	$< 4 \times 10^{-1}$	$< 3 \times 10^{-1}$		
²³² Th cryostat elements	copper	$< 2 \times 10^{-6}$	$< 3 \times 10^{-1}$	$< 1 \times 10^{-2}$		
²³⁸ U internal shield	copper	$< 7 \times 10^{-5}$	< 1	$< 6 \times 10^{-1}$		
²³² Th internal shield	copper	$< 2 \times 10^{-6}$	$< 8 \times 10^{-1}$	$< 8 \times 10^{-3}$		
²³⁸ U 30 cm disk	lead	$< 1 \times 10^{-5}$	$< 1 \times 10^{-3}$	$< 7 \times 10^{-4}$		
²³² Th 30 cm disk	lead	$< 7 \times 10^{-5}$	$< 2 imes 10^{-1}$	$< 2 \times 10^{-3}$		
Near Sources						
²³⁸ U detector holders	copper	$< 7 \times 10^{-5}$	< 2	< 1		
²³² Th detector holders	copper	$< 2 \times 10^{-6}$	$< 1 \times 10^{-1}$	$< 2 \times 10^{-1}$		

Cupid sensitivity goals

TABLE I: CUPID sensitivity g	oals	
Parameter	Projected	d value and/or range
Readiness for construction	2018 (tec	chnical limit)
Construction time	5 years	
Total fiducial mass (kg)	TeO_2	750
	${\rm ZnMoO_4}$	540
	ZnSe	670
	CdWO_4	980
Isotope fiducial mass (kg)	¹³⁰ Te	543
	100 Mo	212
	82 Se	335
	¹¹⁶ Cd	283
Energy resolution at endpoint (FWHM)	$< 5 {\rm ~keV}$	
Event selection efficiency in fiducial volume	75 - 90%	
Background within FWHM of endpoint	< 0.02 co	$ounts/(ton \cdot year)$
90% C.L. $0\nu\beta\beta$ lifetime limit for 10 year run (10^{27} years)	¹³⁰ Te	5.1
	100 Mo	2.2
	82 Se	4.2
	¹¹⁶ Cd	3.0
90% C.L. $m_{\beta\beta}$ limit for 10 year run (90% C.L.) (meV)	¹³⁰ Te	6-15
	100 Mo	6-17
	82 Se	6 - 19
	¹¹⁶ Cd	8-15
$0\nu\beta\beta$ lifetime discovery sensitivity (3 σ) in 10 years	¹³⁰ Te	4.9
	100 Mo	2.1
	82 Se	4.0
	¹¹⁶ Cd	2.9
$m_{\beta\beta}$ discovery sensitivity (3 σ) in 10 years	¹³⁰ Te	6-15
	100 Mo	7-17
	82 Se	6-19
	$^{116}\mathrm{Cd}$	8-15

 $Cupid-Q_{BB}$ - counts in ROI

Table 1: Properties of the most commonly studied $0\nu\beta\beta$ candidates: Q-value, isotopic abundance, and $T_{1/2}^{2\nu}$ half-life (average values from [41]). $R_{0\nu}^{|m_{ee}|=10\text{meV}}$ is the range of $0\nu\beta\beta$ count rates expected in an energy window of a FHWM around the Q-value, for a Majorana mass of 10 meV, corresponding to the largest and smallest NME values among those of Fig. 2. The ratio of signal counts in an energy window of a FHWM around the Q-value for a Gaussian distributed-signal is $f(\Delta E = FWHM) = 0.76$. In the last column we report the $2\nu\beta\beta$ event rate around the Q-value, calculated by integrating the last 10 keV below the end point of the $2\nu\beta\beta$ spectrum. All rates are expressed in counts per year per ton of $0\nu\beta\beta$ emitting isotope.

Isotope	Q	а	$T_{1/2}^{2v}$	$\mathrm{R}_{0v}^{ m_{ee} =10\mathrm{meV}}$	$R_{2\nu}^{10keV}$
	[keV]	[%]	10 ¹⁹ [y]	[cnts/y/ton _{iso}]	[cnts/y/ton _{iso}]
⁴⁸ Ca	4274	0.2	$4.4^{+0.5}_{-0.4}$	0.06 - 0.9	5×10^{-6}
⁷⁶ Ge	2039	7.6	160_{-10}^{+13}	0.05 - 0.5	4×10^{-6}
⁸² Se	2996	8.7	9.2 ± 0.7	0.17 - 1.5	8×10^{-6}
⁹⁶ Zr	3348	2.8	2.3 ± 0.2	0.16 - 2.0	2×10^{-5}
¹⁰⁰ Mo	3034	9.6	$0.71 {\pm} 0.04$	0.35 - 2.9	8×10^{-5}
¹¹⁶ Cd	2814	7.5	$2.85 {\pm} 0.15$	0.27 - 0.9	2×10^{-5}
¹³⁰ Te	2528	34.2	69 ± 13	0.15 - 1.0	2×10^{-6}
¹³⁶ Xe	2458	8.9	220 ± 6	0.1 - 0.6	6×10^{-7}
¹⁵⁰ Nd	3368	5.6	0.82 ± 0.9	0.36 - 1.7	3×10^{-5}

 $Cupid-N_{\beta\beta}$ - Sensitivity

Table 4: IHE characteristics for the different $\beta\beta$ candidates. For each isotope we quote the type of scintillating crystal, the total mass of a 988 5×5×5 cm³ crystal array, the number of $\beta\beta$ candidates, the number of decays in 5 years (N_{0v\beta\beta}) for the most and the least favourable values of F_N among those discussed in Section 2.2 for $|m_{ee}| = 50$ meV and $|m_{ee}| = 10$ meV. We assume a 90% isotopic enrichment in the $\beta\beta$ emitting isotope. In the last column we list the 5 year sensitivity at 90% CL under the zero background hypothesis (see Eq. (7)).

Isotope	Crystal	Mass [kg]	N _{ββ}	$N_{0\nu\beta\beta}^{50meV}$ [cnts]	$N_{0\nu\beta\beta}^{10meV}$ [cnts]	5 y sensitivity [y]
⁸² Se ¹¹⁶ Cd ¹⁰⁰ Mo ¹³⁰ Te	ZnSe CdWO ₄ ZnMoO ₄ TeO ₂	664 985 540 751	$\begin{array}{c} 2.4 \times 10^{27} \\ 1.5 \times 10^{27} \\ 1.3 \times 10^{27} \\ 2.4 \times 10^{27} \end{array}$	10 - 85 13 - 44 12 - 99 13 - 89	0.4 - 3.4 0.5 - 1.8 0.5 - 4 0.5 - 3.6	$\begin{array}{c} 2.1 \times 10^{27} \\ 1.5 \times 10^{27} \\ 1.1 \times 10^{27} \\ 2.5 \times 10^{27} \end{array}$

Cupid-2v-pileup

Table 8: $2\nu\beta\beta$ pile-up induced background in a 5 keV ROI for experiments based on the four $\beta\beta$ candidates discussed in this work. The pile-up rate is evaluated for a 90% enrichment, a $5 \times 5 \times 5$ cm³ crystal and for a minimum pulse separation time $\Delta T = 1$ ms.

Isotope	Crystal	Ν _{ββ} [n/crystal]	$T_{1/2}^{2v}$ [y]	Bkg in ROI [5 keV] [cnts/ton/y]
⁸² Se	ZnSe	2.5×10^{24}	9.2×10^{19}	2.7×10^{-2}
¹¹⁶ Cd	CdWO ₄	1.5×10^{24}	2.8×10^{19}	0.07
¹⁰⁰ Mo	ZnMoO ₄	1.3×10^{24}	0.7×10^{19}	1.5
¹³⁰ Te	TeO ₂	2.5×10^{24}	68×10^{19}	0.5 × 10^{-3}

NSAC guidelines

The Subcommittee recommends the following guidelines be used in the development and consideration of future proposals for the next generation experiments:

- <u>Discovery potential</u>: Favor approaches that have a credible path toward reaching 3σ sensitivity to the effective Majorana neutrino mass parameter m_{ββ}=15 meV within 10 years of counting, assuming the lower matrix element values among viable nuclear structure model calculations.
- Staging: Given the risks and level of resources required, support for one or more intermediate stages along the maximum discovery potential path may be the optimal approach.
- 3.) <u>Standard of proof</u>: Each next-generation experiment worldwide must be capable of providing, on its own, compelling evidence of the validity of a possible non-null signal.
- 4.) <u>Continuing R&D</u>: The demands on background reduction are so stringent that modest scope demonstration projects for promising new approaches to background suppression or sensitivity enhancement should be pursued with high priority, in parallel with or in combination with ongoing NLDBD searches.
- 5.) <u>International Collaboration</u>: Given the desirability of establishing a signal in multiple isotopes and the likely cost of these experiments, it is important to coordinate with other countries and funding agencies to develop an international approach.
- 6.) <u>Timeliness</u>: It is desirable to push for results from at least the first stage of a nextgeneration effort on time scales competitive with other international double beta decay efforts and with independent experiments aiming to pin down the neutrino mass hierarchy.

NSAC desired features

- Very low, and preferably flat, background within the spectral region of interest, relative to the signal size anticipated at the half-life sensitivity goal;
- Good energy resolution with excellent energy calibration, to enhance a potential signal above backgrounds and to minimize the 2vββ tail underneath the 0vββ peak;
- Ability to scale the experimental approach to larger masses at realizable cost, as needed to maximize the discovery potential within the inverted hierarchy region;
- Tracking capability to enhance identification of 0vββ decay event topology;
- A favorable 0vββ Q-value to enhance the phase space factor and provide a region of interest above many of the gamma ray lines from U- and Th-chain contaminants;
- Ability to remove or replace the enriched isotope without affecting detector performance, in order to verify the reality of a possible non-null signal.

However, it is unlikely that any one approach will achieve all of these desirable features. It is best to support the approach that provides the combination of these features most likely to reach the desired sensitivity at a cost that can be funded on a competitive time schedule.

http://science.energy.gov/~/media/np/nsac/pdf/docs/2014/NLDBD_Report_2014_Final.pdf