

- **Location:** LNGS Hall B.
- **Detector:** 1m- drift dual-phase TPC with 3.3 t LXe viewed by 250 PMTs
- Shield: water Cherenkov muon veto. Back goal:: 3 x 10⁻² events/(t-d-keV)
- **Status:** In commissioning. Detector installation by Summer 15. Science data start by late 2015.
- **Projected Sensitivity:** 10⁻⁴⁷ cm² for 50 GeV WIMP with 2 ton x yr data

The XENON Collaboration

currently 124 scientists from 20 institutions

The XENON Collaboration

currently 124 scientists from 20 institutions

The XENON Collaboration

currently 124 scientists from 20 institutions

Schedule

		2010	2011	2012	2013		2014	2015		5		2016
XENON1T MASTER SCHEDULE 4/13/2	015			XEN	INIT YI XENONIT YI2		XENONIT Yr3		XENO	NIT Yr4		
Research and Development for XENON1T												
Technical Design Report to LNGS submitted		10	0/21 									
Monte Carlo Simulation	Bologna/Zurich										12	/31
Demonstrator	Columbia								6/14	5		
Infrastructures(Building/Electrical/Water plant)	LNGS								6/3	30		
Water Tank	WIS					3/	5					
Cryostat Support	Nikhef						5/30					
Purification System	Munster/RPI						7/2					
Cryogenics System	Columbia						7/9					
Gas Analytics and Purity	MPIK						7/31					
Cryostat System	Columbia						8/6					
ReStoX System	Columbia/Subatech/Mainz						8/13					
Distillation column	Munster							3/1	1			
DAQ	Bern/ Nikhef								6/3	30		
PMTs	MPIK/Zurich/UCLA								6/.	30		
TPC	Columbia/Bern/Zurich/Rice/ UCLA									7/30		
Material Screening	MPIK/Zurich									7/30		
Calibration Systems	Purdue, Zurich									8/31		
Muon Veto	Bologna/Mainz/Torino/LNGS									9/30		
Slow Control	Coimbra/WIS/Columbia									9/30		
Commissioning of all systems	All									10/3	1	
Science Data Recording	All											

XENON1T Cryogenic System

- Design goals
- Stable temperature control
- Reliable continuous long term operation (3+ years)
- Resilience to unexpected failures
- High speed circulation with low heat load
- Main Components
- Two PTR cooling towers
- One backup LN2 cooling tower
- Efficient heat exchangers

PTR Cooling Tower

- PTR designed to deliver a cooling power of at least 200W at 170K.
- Total heat load (including Cryostat) with no gas circulation estimated to be below 50W.
- Detector gets cooled down through continuous liquefaction and evaporation.
- Temperature control loop with a precision <0.005°C.
- Two identical PTR cooling towers and associated equipment provide necessary redundancy.

PTR Cooling Tower

- PTR designed to deliver a cooling power of at least 200W at 170K.
- Total heat load (including Cryostat) with no gas circulation estimated to be below 50W.
- Detector gets cooled down through continuous liquefaction and evaporation.
- Temperature control loop with a precision <0.005°C.
- Two identical PTR cooling towers and associated equipment provide necessary redundancy.

PTR Cooling Tower

- PTR designed to deliver a cooling power of at least 200W at 170K.
- Total heat load (including Cryostat) with no gas circulation estimated to be below 50W.
- Detector gets cooled down through continuous liquefaction and evaporation.
- Temperature control loop with a precision <0.005°C.
- Two identical PTR cooling towers and associated equipment provide necessary redundancy.

PTR Cooling Power Test

- Measured achievable cooling power over range of operating temperatures
- Heat load measurement in June 2015 after transferring ~300 kg of Xe from ReStoX into cryostat

XENON1T Purification System

XENON1T/nT ReStoX System (Recovery & Storage of Xe)

- Double-walled, high pressure (70 atm), vacuum-insulated, LN2 cooled sphere of 2.1 diameter
- To store 7.6 tons of Xe either in gas or liquid/ solid phase under high purity conditions
- To recover in a safe and controlled way LXe from detector. In case of emergency all LXe is recovered in a few hours

• 3rd – 12th December 2014

Evolution of the six temperatures on the sphere

XENON1T/nT: Kr Distillation Column

- 1ppt Kr/Xe contributes ~ 4 x 10⁻⁵ cts/keV/kg/d hence XENON1T sensitivity demands ~ 0.2 ppt
- Custom-designed 5m distillation column with 3kg/hr @ 10⁵ separation
- 3m version successfully used to reduce Kr in Xe below 1 ppt as measured by RGMS
- 3m column used on XENON100 to test Radon purification in LXe through cryogenic distillation
 the proof of principle is quite successful
 - two systems developed to measure ^{nat}Kr/^{nat}Xe and infer ⁸⁵Kr/nat from known ⁸⁵Kr/^{nat}Kr: RGMS at MPIK (S. Lindemann and H. Simgen Eur. Phys. J. C (2014) 74:2746) and an Atom Trap at Columbia (Aprile et al. : Rev. Sci. Instrum. 84 (2013))

XENON1T/nT: Kr Distillation Column

ReStoX filled with Xe

XENON1T/nT Cryostat & Cryopipe

Double-walled vacuum insulated cryostat made from selected low radioactivity Stainless Steel

Outer vessel: 2.4 m high, 1.6 m diameter. Built to house a new inner vessel of 1.4 m diameter for XENONnT TPC.

Connected to Cryogenic System via a 7.6 m long double-walled vacuum insulated pipe

PMT Signals/HV cables for~400 PMTs in one of the inner pipes

635

XENON1T TPC

a larger and improved version of the XENON100 detector

More extensive materials selection to control background, particularly from Rn

248 x R11410-21 (3 inch PMTs) with average QE (178nm) of 34%

Design completed. Assembly procedure in place. Construction of components ongoing (grids/ PMT supports/HV FT/E-shaping)

Schedule: start assembly in Lab2 Clean Room in July 2015

R11410-21 PMTs for XENON1T

- Hamamatsu has delivered 255 PMTs (248 needed for TPC)
- 227 tubes have been screened with HPGe (paper submitted to EPJ-C)
- All tested in cold N vapour (MPIK) and in LXe (UZurich)
- Average QE at 178 nm: 34%
- Low-radioactivity, voltage-divider tested and in production

<1mBq/PMT U/Th/Co

voltage-divider

tests in cold N gas

tests in LXe

R11410-21 PMTs for XENON1T

Hamamatsu values:

- High QE: 34.5% at 175 nm average for 250 PMTs
- Gain average @1500 V:
 5.0 × 10⁶ (for 250 PMTs)

Radioactivity				
< 10 mBq/PMT				
\sim 0.5 mBq/PMT				
\sim 0.6 mBq/PMT				
\sim 0.3 mBq/PMT				
\sim 0.8 mBq/PMT				
\sim 12 mBq/PMT				

XENON collaboration, arxiv:1503.07698

Electrodes for XENON1T

Anode ring: L-Shaped to min. mass OD = 1004.0 mm ID = 966.0 mm H = 18.0 mm W= 19.0 mm Mass = 4.5 kg of Low Rad SS Flatness better than 150 µm Anode mesh: Hexagonal shaped cell for the best Stretching uniformity

OD = 1002.0 mm ID = 968.0 mm Thickness – 187 μ m; Optical transparency - 92% Mass = 125 g

Cathode electrode: OD = 985.0 mm ID = 963.0 mm; 200 µm diameter wires; 7 mm spacing Mass = 5 kg of Low Rad Stainless Steel

XENON1T Backgrounds

1 ton fiducial volume, S1 in [3, 70] pe, ER discrimination 99.75%, NR acceptance 40%.

Dark Matter Project

Source	Background (ev. / ton /y)
ER (materials + intrinsic + solar v)	0.32
NR from radiogenic neutrons	0.22
NR from neutrino coherent scattering	0.55
Total	1.1

XENON1T sensitivity

х

Е

N

Dark Matter Project

ΟΝ

XENON1T Sensitivity vs Exposure

