

DARWIN-LXe: a future large dark matter and neutrino observatory at LNGS

Laura Baudis University of Zurich for the DARWIN-LXe consortium

LNGS 2020 Meeting Assergi, April 28, 2015

DARWIN-LXe General Goals

- Build a dark matter detector capable of exploring the experimentally accessible parameter space for WIMP dark matter
- Base this detector on a TPC filled with Xe in its liquid form, a concept successfully proven by the ZEPLIN, XENON, PandaX, and LUX programs
- Reach a low energy threshold and an absolute ultra-low background, and probe a variety of physics channels

DARWIN-LXe Science Goals: Overview

- Probe WIMP-nucleon interactions for WIMP masses above 6 GeV/c²
 - via spin-independent, spin-dependent and inelastic interactions
 - probe even lower WIMP masses by using the charge signal alone
- Look for signatures of DM scattering off electrons
- Detect solar neutrinos: pp-neutrinos via nu-e scattering, ⁸B coherent nu scattering
- Search for the neutrinoless double beta decay in ¹³⁶Xe
- Probe interaction of solar axions and axion-like particles, via the axio-electric effect
- Probe sterile neutrinos with masses in the > 10 keV range
- Probe bosonic SuperWIMPs via their absorption by Xe atoms

DARWIN-LXe TPC baseline concept

- 30-50 tons LXe in total
- ~ few $x \ 10^3$ photosensors
- >2 m drift length
- >2 m diameter TPC
- PTFE walls with Cu field shaping rings
- Background goal: dominated by neutrinos

3-inch PMT, R11410-21

Science reach: WIMP physics with xenon

Probe WIMP-Xe interactions via:

- spin-independent elastic scattering: ¹²⁴Xe, ¹²⁶Xe, ¹²⁸Xe, ¹²⁹Xe, ¹³⁰Xe, ¹³¹Xe, ¹³²Xe (26.9%), ¹³⁴Xe (10.4%), ¹³⁶Xe (8.9%)
- spin-dependent elastic scattering: ¹²⁹Xe (26.4%), ¹³¹Xe (21.2%)
- inelastic WIMP-¹²⁹Xe and WIMP-¹³¹Xe scatters $\chi + {}^{129,131} Xe \rightarrow \chi + {}^{129,131} Xe^* \rightarrow \chi + {}^{129,131} Xe + \gamma$

Physics reach: low WIMP masses

- Achieve a lower energy threshold for NRs if the energy is measured by the S2 signal (e⁻), with ~ 20-25 PE per extracted e⁻ in the gas phase
- XENON10: threshold of E_{nr} ~ 1 keV reached

XENON100: analysis ongoing

- Loss of S2/S1 discrimination: sensitivity reduction by ~ factor 100, compared to higher WIMP masses; acceptable because at low WIMP masses the solar neutrinos will dominate the NR rate
- LUX (APS2015): ionization signal absolutely measured below 1 keVnr

Backgrounds

Backgrounds: nuclear recoils

- **Radiogenic** goal: <7 x 10⁻⁴ events/(t y) •
 - active LS veto around cryostat under study
- **Cosmogenic** (MC: 7.3 x 10^{-10} n/(cm² s) for E_n > 10 MeV)
 - <0.01 events/(t y) in XENON1T/nT shield</p>
 - <<0.003 events/(t y) in 14 m diamet</p> shield
- XENON1T muon veto performance mu improved by ~ a factor of 10 (very conservative)
- Alternative: line the experimental ha veto (multi-layered proportional tube Lab)

1

DARWIN-LXe in 14 m ø water Cherenkov shield

Backgrounds: electronic recoils

- Materials (cryostat, photosensors, TPC)
- ²²²Rn in LXe
- ^{nat}Kr in LXe (^{nat}Kr contains 2 x 10^{-11 85}Kr)
- ¹³⁶Xe double beta decay
- Solar neutrinos (mostly pp, ⁷Be)

Channel	Before discr After discr (99.98%)		
pp + ⁷ Be neutrinos	95 0.488		
Materials	1.4 0.007		
⁸⁵ Kr in LXe (0.1 ppt ^{nat} Kr)	40.4	40.4 0.192	
²²² Rn in LXe (0.1 µBq/kg)	9.9	0.047	
¹³⁶ Xe	56.1	0.036	
	1 t x yr exposure, 2-30 keVee	200 t x yr exposure 4-50 keVnr, 30% acceptan	

Backgrounds: electronic recoils

- Materials (cryostat, photosensors, TPC)
- ²²²Rn in LXe
- ^{nat}Kr in LXe (^{nat}Kr contains 2 x 10^{-11 85}Kr)
- ¹³⁶Xe double beta decay
- Solar neutrinos (mostly pp, ⁷Be)

Channel	Before discr After discr (99.98%		
pp + ⁷ Be neutrinos	95 0.488		
Materials	1.4 0.007		
⁸⁵ Kr in LXe (0.1 ppt ^{nat} Kr)	40.4 0.192		
²²² Rn in LXe (0.1 µBq/kg)	9.9 0.047		
¹³⁶ Xe	56.1	0.036	
	1 t x yr exposure, 2-30 keVee	200 t x yr exposure 4-50 keVnr, 30% accepta	

WIMP physics

WIMP physics: spectroscopy

Capability to reconstruct the WIMP mass and cross section for various masses (20, 100, 500 GeV/c²) and a spin-independent cross section of 2x10⁻⁴⁷ cm² (assuming different exposures)

1 and 2 sigma credible regions after marginalizing the posterior probability distribution over:

$$v_{esc} = 544 \pm 40 \text{ km/s}$$

 $v_0 = 220 \pm 20 \text{ km/s}$
 $\rho_{\chi} = 0.3 \pm 0.1 \text{ GeV/cm}^3$

Update: Newstead et al., PHYSICAL REVIEW D 88, 076011 (2013)

WIMP physics: sensitivity

• E = [3-70] pe ~ [4-50] keV_{nr}

200 t y exposure, 99.98% discrimination, 30% NR acceptance, LY = 8 pe/keV at 122 keV

Note: "nu floor" = 3-sigma detection line at 500 CNNS events above 4 keV

WIMP physics: complementarity with the LHC

- Minimal simplified DM model with only 4 variables: mDM, Mmed, gDM, gq
- Here DM = Dirac fermion interacting with a vector or axial-vector mediator; equalstrength coupling to all active quark flavours

Technical challenges

Technical challenge: discrimination

- A level of 99.98% needs factor of 5 improvement w.r.t. XENON100
 - high light yield R&D for high (4-pi) coverage with photosensors is ongoing; options are high QE PMTs, SiPMs and/or GPMs; single-phase TPC

strong R&D program in place

high stats ER band calibrations - internal sources, for instance tritiated methane à la LUX; also ²²⁰Rn

A. Breskin, L. Arazi: bialkali GPM stable operation at gain of 1e5

Technical challenge: discrimination

K. Ni, AP2014

- Best value in LXe by ZEPLIN-III, 99.987%
- LUX: 99.9% 99% (at 50% NR acceptance)
- K. Ni: ER power > 10^5 at 50% acceptance
 - weak dependance on field strength, but field uniformity crucial

	Field (kV/cm)	Light yield (pe/keVee, for 122 keV at zero field)	Energy ROI (keVnr)	NR acceptance	ER rejection power
ZEDI IN II	1.0	1.1	1/1 58	50%	98.5%
	1.0	1.1	14-30	30 %	90.570
XENON10	0.73	5.4	4.5~26.9	45%~49%	99.9~99.3%
ZEPLIN-III	3.4	3.1-4.2	7-35	~50%	99.987%
XENON100	0.53	3.8	6.6-43.3	60%~20%	99.75%
LUX	0.18	8.8	3-27	50%	99.9~99%

Technical challenge: HV, drift field

- Electron drift length of > 2 m, high purity, and uniform field at the 1% level
- HV to bias the cathode must be -100 to -200 kV to have a drift field of 0.5 - 1 kV/cm
 - build long, >2m TPC demonstrator(s)
- Robust, and transparent grid or wire electrodes with >2 m diameter
- Challenge is to combine thin wires O(100 $\mu\text{m})$ to ensure high LCE
 - build shallow, >2m diam. TPC demonstrator(s)
- Very precise, 3D field simulations based on the BEM technique

Geometry in the BEM simulation software

Technical challenge: liquid target

- Procurement, storage, cooling, high-speed purification of 30-50 t of LXe
 - coordinate procurement among institutions, funding agencies and companies
- Storage: à la ReStoX, developed for XENON1T/nT, acts as a demonstrator
 - possible solution: a network of connected ReStoX, with a main storage directly connected to the cryostat
 - study a different mechanism for recovery, based on gravity (recuperation pipe below cryostat)

ReStoX: can store up to 7.6 t of xenon

Max heat leak: ~50 W

Technical challenge: backgrounds

ER dominance by solar neutrinos needs:

 1 µBq/kg is goal for XENON1T): control Rn levels with low-emanation materials & cryogenic distillation (use different vapour pressure), adsorption

*M. Murra, Münster, DPG 2015: Purified liquid out: ^{nat}Kr/Xe < 26e-15 = 26 ppq (90% CL); measured with MPIK RGMS system

Other physics channels

Physics reach: solar neutrinos $\nu + e^- \rightarrow \nu + e^-$

Rate of solar neutrinos > 2 keV

 $R_{pp} \simeq 1.05 \text{ events}/(\text{t d})$

 $R_{^7Be} \simeq 0.51 \text{ events}/(\text{t d})$

- pp neutrinos (2-30 keV):
 - 1714 events/(20 t x yr)
- ⁷Be neutrinos (2-30 keV):
 - 214 events/(20 t x yr)
- ²²⁰Rn: 0.1 µBq/kg; ^{nat}Kr: 0.1 ppt
- Reach ~ 1% precision after 5 years

Physics reach: solar neutrinos $\nu + e^- \rightarrow \nu + e^-$

- Reach ~ 1% precision after 5 years
- Test different oscillation scenarios, for instance non-standard neutrino interactions that can modify the Pee of electron neutrinos as a fct of energy
- Even higher stats can be reached with:
 - increased energy range (Xe depleted in ¹³⁶Xe)
 - larger fiducial mass

Physics reach: solar axions

Look for solar axions via their couplings to electrons, g_{Ae}, through the axio-electric effect

$$\sigma_{Ae} = \sigma_{pe}(E_A) \frac{g_{Ae}^2}{\beta_A} \frac{3E_A^2}{16\pi\alpha_{em}m_e^2} \left(1 - \frac{\beta_A^{2/3}}{3}\right)$$

$$\phi_A \propto g_{Ae}^2 \Longrightarrow R \propto g_{Ae}^4$$

- XEON100: based on 224.6 live days x 34 kg exposure; using the electronic-recoil spectrum, and measured light yield for low-energy ERs
- Factor of ~10 improvement with DARWIN

Physics reach: galactic axion-like particles (ALPs)

Look for ALPs via their couplings to electrons, g_{Ae} , through the axio-electric effect

Expect line feature at ALP mass

assume $rho_{dm} = 0.3 \text{ GeV/cm}^3$

 $\phi_A = c\beta_A \times \frac{\rho_{\rm dm}}{m_A}$

$$R \propto g_{Ae}^2$$

- XEON100: based on 224.6 live days x 34 kg exposure; using the electronic-recoil spectrum, and measured light yield for low-energy ERs
- Factor of ~100 improvement with DARWIN

Physics reach: double beta decay

- 136 Xe: Q-value = 2458.7 ± 0.6 keV
- Fiducial mass of 6 t of xenon
- sensitivity to the neutrinoless double beta decay of ¹³⁶Xe:
- $T_{1/2} > 5.6 \text{ x } 10^{26} \text{ yr}$ (95% CL) in 30 t yr
- T_{1/2} > 8.5 x 10²⁷ yr (95% CL) in 140 t yr, assuming negligible backgrounds from detector materials

Physics reach: bosonic SuperWIMPs

- Bosonic, light, super weakly interacting cold dark matter (mass in the 10-100 keV range)
- Scattering cross section is many orders of magnitude below the weak-scale cross section, but such particles could be absorbed in LXe and produce a detectable signal
- Signature: a line at the rest mass of the boson

axial-vector
$$R \simeq \frac{1.2 \times 10^{19}}{A} g_{aee}^2 \frac{m_a}{\text{keV}} \frac{\sigma_{\text{photo}}}{\text{b}} \text{kg}^{-1} \text{d}^{-1}$$

$$g_{aee} = \frac{2m_e}{f_a}$$

vector
$$R \simeq \frac{4 \times 10^{23}}{A} \frac{\alpha}{\alpha'} \frac{\text{keV}}{m_V} \frac{\sigma_{\text{photo}}}{\text{b}} \text{ kg}^{-1} \text{ d}^{-1}$$

M. Pospelov, A. Ritz, M. Voloshin, PRD 78, 2008

Physics reach: heavy sterile neutrinos

Exploring ν signals in dark matter detectors

Roni Harnik,^{*a*} Joachim Kopp^{*a*} and Pedro A.N. Machado^{*a,b,c*}

- DARWIN-LXe can explore physics scenarios in which neutrino interactions with electrons are enhanced due to BSM processes:
 - new interactions between neutrinos and e⁻ mediated by a very light or massless particle (these would dominate the SM rates at low energies relevant for DD)
- A: nu with magnetic moment of 0.32 x 10⁻¹⁰ μ^{B}
- B, C, D: A'-mediated nu-e⁻ scattering (sterile neutrinos heavier than ~ 10 keV)
- A' is a new light gauge boson ("dark photon") that has a small kinetic mixing with the photon

Risks, costs, requests, timeline, consortium

Technical risks

- A good mix of scaling up our present know-how (XENON10->XENON1T/nT) and higher risk activities, with well-established fallbacks
- Lower risk:
 - cooling, purification and storage of large amount of cryogenic liquids experience from GERDA and XENON1T/nT at LNGS
- Higher risk:
 - development of alternative signal readout methods (some technologies seem promising, but were not yet demonstrated to be practical in large noble-liquid detectors)
 - development of single-phase TPC
 - use of stable, high drift field (1 kV/cm)
 - development of 4-pi readout

Estimated Construction/Investment Costs

Sum

- The costs will be dominated by the costs of LXe, followed by the ones of the photosensors, cryostat, electronics, etc
- Here an example, based on extrapolating the XENON1T/nT costs

Item	Total costs [in 10 ⁶ CHF]
Photosensors, 1000 units	7.0
Xenon, 30 t	22.5
Detector (TPC, grids, HV)	1.5
Cryostat	4.5
Cryostat support	0.5
Cherenkov shield	0.5
Water tank	0.4
Xenon storage	1.6
Infrastructure	1.4
Electronics, DAQ, cables	1.8
Calibration system	0.3
Slow control	0.3
Screening (HPGe, ICP-MS)	0.4
LXe purification (Rn, Kr)	1.5
Demonstrator vertical (drift, HV)	0.5
Demonstrator horizontal (grids)	0.5

54.2

Requests for laboratory space

- Minimum water tank dimensions: 14 m diameter
- Space in Hall B (that belonged to ICARUS)
- Or space in Hall C (Borexino shield or other), or Hall A

Example: space in hall B

DARWIN-LXe

Estimated timescale

The DARWIN-LXe consortium

In total: 22 groups from 9 countries

Outlook

