LAR CALORIMETER PHASE II UPGRADE

F. Tartarelli

Atlas Italia, Bologna

LAr Phase II upgrades

 \Box Electronics

- \Box Upgrade of LAr FE electronics \checkmark
- \Box Upgrade of Lar BE electronics \checkmark
- □ Hadronic End-cap cold electronics
 - No need to replace the cold electronics inside the EC cryostats ×
 - \square Will replace the HEC Low-Voltage PS \checkmark
- □ Detector upgrades
 - □ Forward calorimetry: various options still open ?

Detector upgrades

\Box Problems with FCAL at high luminosity:

- □ LAr may boil and produce bubbles (still under investigation)
- \square lon build up in LAr gap distorts the signal pulses
- \Box HV drop in protection resistors (1-2 M\Omega) due to current increase

\Box Various option:

- \Box No change.
 - \Box If boiling can be excluded.
 - FCAL heating simulation on-going; Mockup measurements available;
 - \Box Situation not yet clear;
 - $\hfill\square$ need also to assess with simulations the loss of performance
- □ Mini FCAL

sFCAL

□ Replace FCAL with a new sFCAL with following characteristics:

- $\hfill \label{eq:main}$ Smaller gaps: 260 $\mu m \rightarrow$ ~100 μm
- □ Addition of LN2 cooling loops
- □ Replacements of motherboards to change HV resistors and remove all 4 \rightarrow 1 channel sums (to increase the read-out granularity in first section FCAL1)
- \Box Will cover with up to $|\eta|=4.9$ as today
- □ Best solution in terms of performance:
 - $\hfill\square$ Good match with tracking at large eta
- \Box Problems:
 - □ Need to empty, warm-up, open, the EC cryostat: detailed risk analysis in progress (risks for the detectors inside and the cryostat itself)
 - □ High radiation environment
 - □ Need to find space for new cabling and services
- \Box Expensive:
 - $\hfill\square$ This option is only in the high costing scenario

Current FCAL

100 GeV electron simulation

miniFCAL

- miniFCAL is a smaller FCAL located in a vacuum space in front of FCAL1 to reduce the flux on it:
 - preferred option if sFCal is not selected (risks, cost) and if energy density in FCal need to be reduced
- \Box Baseline technology: Cu/LAr with 100 μm gaps
 - \Box Alternative: (Diamond/Cu) or W/Si (*)
- \Box No need to fully open the cryostat, only the warm cover:

□ Will have its own cryostat and supplies

- Main challenge is services (LAr, LN2 cooling loops, cabling). In current proposal these are delivered via an 80mm diameter conduit; this introduces a material asymmetry (in φ) in front of the device.
- Cu/Lar option for miniFCAL is relatively inexpensive
 In low/normal cost scenario

(*) see later

Si/W 4D Precision Timing Detector

- □ Besides the upgrade options already in the Phase II LOI (sFCAL, miniFCAL), more recently there has been a new proposal
- \Box Precision Si/W timing detector in front of LAr endcap cryostat covering region 2.4 < η < 4

 \Box in the region currently occupied by the MBTS

High granularity + measurement of arrival time of charged particle tracks to assign them to different vertices

 \Box need ~10 ps timing resolution

- Might include an additional Si/W miniFCAL layer that would be located close to the front of the endcap cryostat, rather than directly in front of the FCal1
 - \Box Same technology
 - \Box Coverage extends to $|\eta|=4.9$
 - □ Possible disadvantage is the lever-arm between miniFCAL and the FCAL

Sensor technology

\Box Sensor technology still to be defined:

- □ Estimation of neutron background is crucial
- Candidates: LGAD (Low-Gain Avalanche Detector), HV-CMOS,...

\Box Only in the high cost category

Table 3: Possible detector technologies to be deployed for a timing detector (to be checked)									
	Area	Resolution		Noise	Efficiency	Max. Dose			
	[mm ²]	Time [ps]	Space [µm]	[e ⁻ rms]		[Mrad]			
Hybrid pixel	20×20	100	10	100	1	100			
Monolithic pixel	0.05×0.05	100	10	(?)	1	1000			
(HVCMOS)									
LGAD	1×1	10	10-50	-	1	100			
Poly-diamond strips	5×5	100	10	2500	1	100			
Ion MCP	200×200	30	10-100	100	1	100			
Fiber bundle	1000×5	50				10-100			
Photocathode MCP	50×50	10	100			0.3			

w/o poly-boron shielding

w poly-boron shielding

Electronics upgrade

- LAr Front-End and Back-End electronics will need to be replaced:
 - □ New ATLAS trigger scheme in Phase II
 - \Box Radiation tolerance
 - \Box Ageing of components
- □ Goals for Phase-II readout upgrade:
 - \Box fully digital 40 MHz readout \rightarrow finest granularity trigger input at Level-1
 - \Box low-power, radiation tolerant front-end electronics \rightarrow simplify cooling and powering
 - re-optimize pulse-shapes, front-end gains and digitization for improved linearity and resolution

LAr electronic upgrade

Electronics Upgrade

- □ New Front-End Boards
- □ ASIC development of pre-amplifier, shaping, digitisation and serializer
 - □ Devices may be integrated into a single chip if same technology is chosen → reduced power consumption, simplified cooling system (air sufficient?)
- Optical link development in collaboration with CERNwide IpGBT and VL+ projects
 - □ projected usable bandwidth of 8.96 Gb/s per fiber
 - Work on serializer and VCSEL driver in 65 nm technology and on coupling of VCSEL arrays to fiber ribbons
- Improved calibration system with single ASIC for pulser,
 DAC and digital logic

Power distribution

 We would like to design the power distribution scheme for the 1534 new Front-End Boards (FEB2) that will replace the existing FEBs

 \Box This work includes:

- 1. Design of the new Low-Voltage Power Supply mainframes
- 2. Design of the power distribution part of the new FEBs
 Continuation/Extension of the work we are doing for the new Trigger Boards of Phase I:
 □ For Phase I we are doing only 2., as the LVPS will remain the same ones we are using in RUN2

New LVPS

\Box New LVPS:

- □ Generate and distribute to the FEB2s one single voltage 12V or 24V (starting from 280V as of today)
- □ Maybe an additional negative voltage will be needed
- $\hfill\square$ This compares to the 7 low voltages as of today
- \Box and produce on board the needed low voltages using POLs.
- $\hfill\square$ Two options will be investigated
- □ Custom development:
 - □ eg, improve the design of the units produced by CAEN under old CSN5 APOLLO project (Si MOSFETs \rightarrow GaN MOSFETs)
 - □ Still waiting for a prototype we ordered from CAEN
- □ Commercial solution:
 - Evaluate solutions already available on the market
 - "bare" units that will anyway need to be integrated with cooling, control,...
 - □ Some candidates identified

Power distribution on board

 $\hfill\square$ As for Phase I, there are various aspects

- $\hfill\square$ Design of the section of the board devoted to powering
- □ Choice and characterization of the components: POLs and LDO
- radiation tolerant point-of-load DC-DC converters with small form factor, high power and possibility to operate in magnetic field are needed

Continuous 4A load capability (dependent on output power level, limited to 10W)

LAr trigger

- □ The upgrade of the front-end electronics opens the door to the possibility of implementing more complex selection algorithms, similar to those now implemented in the offline or high-level trigger, already at lower trigger levels, possibly Level 1.
- \Box We would like to pursue these goals:
 - □ studying new trigger algorithms
 - □ contributing to the design of the new trigger architecture
- □ Already performed some LAr trigger studies using a FPGA demonstrator board but to do more accurate studies we would like to assemble a more complex set-up
 - buy an ATCA crate and build a dedicated board to host sample FPGA (on a AMC mezzanine for more flexibility.)
 - We plan to acquire few FPGA and select the one more suitable for our implementation (based on number of gates, I/O and clock speed).
 - □ Need to build a board (ROD injector) that will simulate the input data flow.
- \Box We want to:
 - □ study how to handle the expected data flow from the calorimeter
 - □ how to arrange and partition the data
 - □ Write algorithms to select EM clusters (or other objects) , using information from shower shapes, ...
 - Perform detailed simulations to study the impact on selected physics channels

Schedule

Phase-II IDR and TDR can be aligned for LAr electronics and detector upgrade:

□ LAr Phase-II IDR 2016

□ LAr Phase-II TDR 2017

Detector and electronics constructions planned to start in 2018/2019

IDR/TDR for MiniFCal options and Si/W 4D detector can be further delayed, if needed, since construction time is expected to be shorter than for sFCal

Cost

- In all cost scenarios:
 New electronics: 34 MCHF
- □ High cost scenario: in addition
 - Hi-granularity FCAL: 11 MCHF
 - Si/W timing detector: 4 MCHF
 - □ (+miniFCAL Si/W: 3MCHF)
- Medium/Low cost scenario:
 miniFCAL Cu/Lar: 700 kCHF

(Approx numbers, no tooling,...)

Atlas Italia

Reminder – Phase II Cost Estimates LOI

Phase-II Scoping

Aim to have first discussion with numbers at USC on 11/12/14

vised Base Cost	Comments	Current Options	Current Options Estima
		AFP Phase-II	
		Other	
2.5			

23

1		LAr PHASE II upgrade (LS3)			12/12/2015								
2			it will	it might									
3			happen	happen	2015	2016	2017	2018	2019	2020	2021	2022	total
4						[MCHF]	[MCHF]		[MCHF]		[MCHF]	[MCHF]	
6		LAr electronics											
7	1	HV supplies for FCAL	0.080				0.004		0.004	0.048	0.024		0.080
8		Low Voltage power supplies											
э	2	LVPS	3.184				0.159		0.159	1.910	0.955		3.184
10	3	DC-DC Point of Load Regulators	2.122				0.106		0.106	1.273	0.637		2.122
11	4	LVPS for HEC front-end	0.478				0.024		0.024	0.287	0.143		0.478
12	5	Cabling, monitoring, testing	0.424				0.021		0.021	0.254	0.127		0.424
13		Calibration system											
14	6	EM and FCAL	1.698				0.085		0.085	1.019	0.509		1.698
15	7	HEC	0.212				0.011		0.011	0.127	0.064		0.212
16		FE ASIC and components											
17	8	R&D and prototypes	0.467		0.047	0.420							0.467
18	9	ASIC Production	4.130					0.083	2.808	1.239			4.130
19	10	Other components	0.424					0.008	0.288	0.127			0.424
20	11	Tests	0.085					0.002	0.058	0.026			0.085
21		FE boards											
22	12	Prototypes and tests	0.438		0.219	0.219							0.438
23	13	Materials	3.608				0.180		0.180	2.165	1.082		3.608
24	14	Assembly	1.910				0.096		0.096	1.146	0.573		1.910
25		Back end electronics											
26	15	Links from FEB-2 to ROD-2	2.335				0.117		0.117	1.401	0.701		2.335
27	16	Prototypes	2.122				0.212	1.910					2.122
28	17	Crates, PS and CPU	0.409						0.041	0.245	0.123		0.409
29	18	TTC/Controllers	0.123						0.012	0.074	0.037		0.123
30	19	Transition Modules	0.344						0.034	0.206	0.103		0.344
		Pre-Processor boards (ROD-2)											
31	20	production and testing	4.401						0.440	2.641	1.320		4.401
32	21	DCS and Monitoring	0.212						0.021	0.127	0.064		0.212
33	22	Irradiations	0.265		0.027	0.239							0.265
34	23	System Tests and testbeams	2.547		0.255	2.2 9 2							2.547
35	24	Logistic (Infrastructure, shipment)	0.106						0.011	0.064	0.032		0.106
36		HEC PAS		2.3									
37		sFCAL		8.5									
38		Cryostat opening/closing		3.8									
39													
40		TOTAL	32.124	14.600	0.547	3.170	1.015	2.003	4.517	14.379	6.494	0.000	32.124

Atlas Italia

24