L1-muon / RPC for Phase-2

D.Boscherini
on behalf of the RPC/LVL1 group

ATLAS Italia - Bologna, 15/05/2015
Current L1 Muon Barrel Trigger Scheme

High-\(p_T\)
- Low-\(pt\) \&\& \(>=1\) hit on RPC3

Low-\(p_T\)
- 3/4 hits on RPC1, RPC2
L1 Muon Barrel trigger rates in Run-1

Low-\(p_T\) (3/4 hits on RPC1, RPC2)
- e.g. MU10
 - \(\sim 70\%\) fake muons
 - used for multi-object triggers
 - \(\epsilon A = 79\%\)

High-\(p_T\) (Low-\(p_T\) && \(\geq 1\) hit on RPC3)
- e.g. MU11, MU15, MU20
 - Low fake contamination
 - used as single muon triggers
 - \(\epsilon A = 73\%\)

Rate scales linearly with luminosity in the measured range.
TDAQ upgrade

Trigger scheme change: $L_1 \rightarrow L_0/L_1$

Current scheme
L_1 max rate: 100 kHz
L_1 latency: 3 μs

Phase-2 scheme
L_0/L_1 max rate: 1000/400 kHz
L_0/L_1 latency: 10/60 μs

→ need to replace RPC trigger electronics

Muon trigger requirements

Max L_1 trigger rate of 20 kHz for 15-20 GeV single muons in phase-0/1,
~50 kHz in phase-2
L1 Barrel Muon Trigger Phase-2 Upgrade

- The current barrel trigger system is **not compatible** with the Phase-2 requests (latency and rates)

- The current on-detector electronics will be replaced with the new boxes (*Data Collector Transmitter*, about 800 in total)
 - Use of **FPGAs** instead of **ASICs** for the on-detector electronics
 - The DCT box will collect RPC front-end data, and perform some **simple logic** before sending the data off-detector

- Most of the trigger logic will be located in the **off-detector** new Sector Logic boards (64 in total):
 - provide **seed for MDT-based** trigger
 - increased algorithm **flexibility**, easier operations and maintenance, **no radiation**
 - increased **trigger coverage** could be feasible by changing the trigger algorithm (and possibly by adding **new RPCs in the inner barrel layer**)
 - increased **steepness of the trigger turn-on curve** could be feasible thanks to the improved spatial resolution
 - possibility to use **Time-over-Threshold** to increase RPC spatial resolution (under study)
 - **muon charge** info could be added to the trigger data
 - **trigger thresholds** could be fully programmable and more flexible (possibly > 6)
Phase-2 L0 Muon Barrel Trigger System

 Trigger logic moved from detector to counting room (USA-15)
Costs & Manpower

• Interest in the project expressed by the INFN groups:
 - Bologna, Napoli, Roma, Roma Tor Vergata

• Costs of new LVL1 trigger electronics:
 - 4.2 MCHF (RPCs)
 - 5.1 MCHF (RPCs + new RPCs in BI 4-6)
 - 5.9 MCHF (RPCs + new RPCs in BI)

Money for evaluation boards (FPGA based, to test possible algorithms and performances) have been asked to INFN referees
RPC rate extrapolation

RPC BM rates (Hz/cm²) at L=7×10^{34} cm⁻² s⁻¹

<table>
<thead>
<tr>
<th>Sector</th>
<th>Φ id.</th>
<th>-6.2</th>
<th>-6.1</th>
<th>-6.0</th>
<th>-5.0</th>
<th>-4.0</th>
<th>-3.0</th>
<th>-2.0</th>
<th>-1.0</th>
<th>0.0</th>
<th>1.0</th>
<th>2.0</th>
<th>3.0</th>
<th>4.0</th>
<th>5.0</th>
<th>6.0</th>
<th>Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01</td>
<td>319</td>
<td>262</td>
<td>281</td>
<td>210</td>
<td>135</td>
<td>106</td>
<td>119</td>
<td>115</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>106</td>
</tr>
<tr>
<td>0.02</td>
<td>273</td>
<td>262</td>
<td>283</td>
<td>203</td>
<td>148</td>
<td>124</td>
<td>121</td>
<td>133</td>
<td>120</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>2</td>
<td>157</td>
<td>191</td>
<td>176</td>
<td>129</td>
<td>102</td>
<td>84</td>
<td>72</td>
<td>58</td>
<td>51</td>
<td>52</td>
<td>42</td>
<td>45</td>
<td>57</td>
<td>74</td>
<td>87</td>
<td>98</td>
<td>130</td>
</tr>
<tr>
<td>0.03</td>
<td>277</td>
<td>276</td>
<td>263</td>
<td>184</td>
<td>138</td>
<td>120</td>
<td>111</td>
<td>111</td>
<td>63</td>
<td>63</td>
<td>60</td>
<td>66</td>
<td>122</td>
<td>117</td>
<td>106</td>
<td>117</td>
<td>193</td>
</tr>
<tr>
<td>0.04</td>
<td>280</td>
<td>227</td>
<td>258</td>
<td>196</td>
<td>141</td>
<td>120</td>
<td>144</td>
<td>114</td>
<td>79</td>
<td>70</td>
<td>70</td>
<td>65</td>
<td>113</td>
<td>119</td>
<td>142</td>
<td>123</td>
<td>193</td>
</tr>
<tr>
<td>4</td>
<td>105</td>
<td>155</td>
<td>148</td>
<td>141</td>
<td>94</td>
<td>78</td>
<td>61</td>
<td>71</td>
<td>38</td>
<td>49</td>
<td>43</td>
<td>38</td>
<td>68</td>
<td>63</td>
<td>86</td>
<td>101</td>
<td>149</td>
</tr>
<tr>
<td>0.05</td>
<td>159</td>
<td>161</td>
<td>245</td>
<td>129</td>
<td>98</td>
<td>96</td>
<td>131</td>
<td>118</td>
<td>64</td>
<td>56</td>
<td>56</td>
<td>64</td>
<td>116</td>
<td>165</td>
<td>96</td>
<td>128</td>
<td>173</td>
</tr>
<tr>
<td>0.05</td>
<td>211</td>
<td>185</td>
<td>221</td>
<td>147</td>
<td>102</td>
<td>98</td>
<td>127</td>
<td>133</td>
<td>72</td>
<td>57</td>
<td>58</td>
<td>66</td>
<td>103</td>
<td>127</td>
<td>101</td>
<td>131</td>
<td>187</td>
</tr>
<tr>
<td>6</td>
<td>163</td>
<td>174</td>
<td>194</td>
<td>152</td>
<td>98</td>
<td>89</td>
<td>84</td>
<td>89</td>
<td>72</td>
<td>55</td>
<td>49</td>
<td>55</td>
<td>79</td>
<td>76</td>
<td>99</td>
<td>116</td>
<td>177</td>
</tr>
<tr>
<td>0.07</td>
<td>285</td>
<td>245</td>
<td>269</td>
<td>178</td>
<td>144</td>
<td>120</td>
<td>122</td>
<td>106</td>
<td>71</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>114</td>
<td>130</td>
<td>116</td>
<td>138</td>
<td>173</td>
</tr>
<tr>
<td>0.07</td>
<td>305</td>
<td>241</td>
<td>201</td>
<td>189</td>
<td>132</td>
<td>104</td>
<td>120</td>
<td>101</td>
<td>69</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>98</td>
<td>107</td>
<td>105</td>
<td>142</td>
<td>172</td>
</tr>
<tr>
<td>8</td>
<td>136</td>
<td>183</td>
<td>182</td>
<td>150</td>
<td>96</td>
<td>79</td>
<td>75</td>
<td>65</td>
<td>46</td>
<td>53</td>
<td>51</td>
<td>50</td>
<td>63</td>
<td>69</td>
<td>79</td>
<td>101</td>
<td>157</td>
</tr>
<tr>
<td>0.09</td>
<td>298</td>
<td>230</td>
<td>281</td>
<td>192</td>
<td>145</td>
<td>109</td>
<td>139</td>
<td>111</td>
<td>43</td>
<td>60</td>
<td>60</td>
<td>99</td>
<td>125</td>
<td>116</td>
<td>126</td>
<td>184</td>
<td>264</td>
</tr>
<tr>
<td>0.09</td>
<td>324</td>
<td>240</td>
<td>268</td>
<td>191</td>
<td>133</td>
<td>89</td>
<td>100</td>
<td>96</td>
<td>54</td>
<td>63</td>
<td>63</td>
<td>92</td>
<td>104</td>
<td>89</td>
<td>128</td>
<td>175</td>
<td>266</td>
</tr>
<tr>
<td>10</td>
<td>163</td>
<td>187</td>
<td>193</td>
<td>137</td>
<td>92</td>
<td>80</td>
<td>63</td>
<td>66</td>
<td>43</td>
<td>40</td>
<td>46</td>
<td>60</td>
<td>64</td>
<td>75</td>
<td>96</td>
<td>138</td>
<td>181</td>
</tr>
<tr>
<td>1.01</td>
<td>288</td>
<td>228</td>
<td>222</td>
<td>147</td>
<td>90</td>
<td>78</td>
<td>76</td>
<td>81</td>
<td>37</td>
<td>40</td>
<td>78</td>
<td>88</td>
<td>86</td>
<td>88</td>
<td>138</td>
<td>212</td>
<td>200</td>
</tr>
<tr>
<td>1.02</td>
<td>183</td>
<td>180</td>
<td>147</td>
<td>98</td>
<td>72</td>
<td>62</td>
<td>52</td>
<td>53</td>
<td>31</td>
<td>29</td>
<td>47</td>
<td>58</td>
<td>54</td>
<td>66</td>
<td>91</td>
<td>141</td>
<td>149</td>
</tr>
<tr>
<td>12</td>
<td>74</td>
<td>75</td>
<td>62</td>
<td>48</td>
<td>34</td>
<td>34</td>
<td>48</td>
<td>70</td>
<td>81</td>
<td>74</td>
<td>60</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.01</td>
<td>272</td>
<td>260</td>
<td>236</td>
<td>131</td>
<td>95</td>
<td>89</td>
<td>78</td>
<td>40</td>
<td>38</td>
<td>44</td>
<td>47</td>
<td>81</td>
<td>89</td>
<td>92</td>
<td>115</td>
<td>232</td>
<td>245</td>
</tr>
<tr>
<td>13.02</td>
<td>279</td>
<td>246</td>
<td>245</td>
<td>97</td>
<td>90</td>
<td>98</td>
<td>80</td>
<td>45</td>
<td>45</td>
<td>47</td>
<td>53</td>
<td>87</td>
<td>96</td>
<td>90</td>
<td>102</td>
<td>235</td>
<td>212</td>
</tr>
<tr>
<td>14</td>
<td>133</td>
<td>64</td>
<td>60</td>
<td>48</td>
<td>38</td>
<td>38</td>
<td>46</td>
<td>59</td>
<td>64</td>
<td>127</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15.01</td>
<td>183</td>
<td>206</td>
<td>139</td>
<td>106</td>
<td>71</td>
<td>66</td>
<td>62</td>
<td>46</td>
<td>36</td>
<td>33</td>
<td>47</td>
<td>55</td>
<td>80</td>
<td>81</td>
<td>97</td>
<td>146</td>
<td>162</td>
</tr>
<tr>
<td>15.02</td>
<td>171</td>
<td>148</td>
<td>230</td>
<td>153</td>
<td>108</td>
<td>92</td>
<td>96</td>
<td>70</td>
<td>41</td>
<td>40</td>
<td>70</td>
<td>99</td>
<td>104</td>
<td>100</td>
<td>147</td>
<td>231</td>
<td>148</td>
</tr>
<tr>
<td>16</td>
<td>161</td>
<td>200</td>
<td>202</td>
<td>162</td>
<td>101</td>
<td>83</td>
<td>51</td>
<td>70</td>
<td>52</td>
<td>55</td>
<td>47</td>
<td>46</td>
<td>72</td>
<td>51</td>
<td>81</td>
<td>96</td>
<td>165</td>
</tr>
</tbody>
</table>

Average: 214 208 218 156 111 94 90 82 52 49 48 52 80 90 96 111 160 224 206 206 128

Rate limit of 100 Hz/cm² assumed in ageing tests

Safe value exceeded in many chambers.
Safe operation of current RPCs

- Safe rate limit 100 Hz/cm² with nominal HV, exceeded in many chambers

- Plan to reduce HV to keep gap currents within the safety level

- Hit efficiency reduction with increasing eta, down to 65-75% in BML5-6 stations
Acceptance of present L1 barrel trigger

- High-Pt requirement: 3 out of 3 stations, hole in one station => no trigger

- Holes in “small sectors” BM due to toroid coils and supports

- Run-1 eff x Acceptance ~73%
Benefits from new RPCs on BI stations

Using 3/4 station majority instead of 3/3:
- recover RPC inefficiency (lower HV operation)
- recover holes on BM stations => acceptance ~88%
- using also (locally) BI-BO coincidences => acceptance ~95%
New RPCs in BI stations

Main requirements:
1. Expected max rate in new inner layer $\sim 600 \text{ Hz/cm}^2$: need to improve the long term RPC rate capability to sustain the HL-LHC

2. Limited space available for the installation in the inner layer: $\sim 5\text{ cm}$

Reduced gas gain:
- increased Signal/Noise in front-end electronics
- thinner gap $2 \rightarrow 1\text{ mm}$
- thinner electrodes (improved ratio prompt/total charge) $1.8 \rightarrow 1.2\text{ mm}$

Improved spatial and time resolution:
- timing is improved by reducing the gap thickness
- improve spatial resolution through charge centroid by exploiting electronics sensitivity

Reduced detector thickness
- higher-quality mechanical structures is required
- thinner electrodes and gas gaps
ATLAS RPC phase-2 proposal

Completion of the detector for the barrel muon trigger via the installation of new trigger stations in the inner layer of the spectrometer (currently equipped only with MDTs)

- Increase the number of measurement stations from 2 → 3
- Increase the number of independent layers from 6 → 9

Cost (very preliminary): 3 MCHF(detector+FE elx) + 1.7 MCHF trigger elx
RPC + MDT trigger at L0

First studies with MDT L0 trigger, to be further investigated
Not included in the draft document for LHCC

RPC + MDT “tube count” trigger
- “loose” RPC trigger (2/3 stations) and MDT tube segments in BM, BO
- ”tube segments” made in a road defined by the RPCs

Num of hits in “tube segments” data overlays with $\mu=140$

See https://indico.cern.ch/event/355902/contribution/0/material/slides/0.pdf
Studies of RPC trigger performance

Evaluate efficiency and rates for:

- RPCs
- RPCs + new-RPCs on BI 4-6
- RPCs + new-RPCs on BI
- RPCs + MDT L0 (2 st.)
- RPCs + new-RPCs on BI + MDT L0 (3 st.)
- RPCs + new-RPCs on BI 4-6 + MDT L0 (3 st.)
Two scenarios considered (G. Aielli):

- constant RPC hit efficiencies at 80% everywhere
- variable RPC hit efficiency to keep rate current below equivalent of 100 kHz/cm2

<table>
<thead>
<tr>
<th>Station ID eta</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
</tr>
<tr>
<td>BOL</td>
<td>90</td>
</tr>
<tr>
<td>BOS</td>
<td>89</td>
</tr>
<tr>
<td>BML</td>
<td>88</td>
</tr>
<tr>
<td>BMS</td>
<td>90</td>
</tr>
</tbody>
</table>

Note: present average efficiency ~95% (peak at 98%)

Two MC single muon samples:
- constant RPC efficiency
- variable RPC efficiency (chamber-by-chamber)
Efficiency based on dedicated single-muon samples

Similar results obtained with the two RPC hit simulations

<table>
<thead>
<tr>
<th>Trigger</th>
<th>RPC hit eff. 56-90%</th>
<th>RPC hit eff. 80%</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPCs</td>
<td>0.65</td>
<td>0.63</td>
</tr>
<tr>
<td>+Bl RPCs (stations 4-6)</td>
<td>0.82</td>
<td>0.77</td>
</tr>
<tr>
<td>+Bl RPCs (fullII)</td>
<td>0.94</td>
<td>0.94</td>
</tr>
<tr>
<td>RPCs + MDT BM-BO</td>
<td>0.81</td>
<td>0.81</td>
</tr>
<tr>
<td>+Bl RPCs (stations 4-6)</td>
<td>0.89</td>
<td>0.88</td>
</tr>
<tr>
<td>+Bl RPCs (full)</td>
<td>0.95</td>
<td>0.94</td>
</tr>
</tbody>
</table>

Table 2. Efficiency of the L0 trigger in the range $|\eta| < 1.05$, calculated with respect to offline reconstructed muons, for different trigger options and for different assumptions of the hit efficiency of the old RPCs.
1) RPCs 3/3 stations \([majority: 3/4 (rpc1+rpc2) * 1/2 (rpc3)]\)

2) (RPCs 2/3 stations \([majority 3/6 layers]\) + MDT “tube segments” on BM [maj. 5/6] + BO [maj. 5/6]) OR (1)

3) (BI RPCs + RPCs 3/4 stations \([majority: 2/3 BI, 3/6 old RPCs]\)) OR (RPC BI * RPC BO) OR (1)

Trigger efficiency vs eta

Covered by BI 1,2,3

RPCs: 80% hit efficiency
Rate estimation

Rate estimated with data overlays at ntuple level (*work in progress*):

Mix zero-bias events from filled and empty bunches to emulate HL-LHC conditions
Start from run at 25 ns (no correction for energy and different layouts)

Results for $\mu=140$ (*to be recalculated for $\mu=200$ as from ATLAS requirements*)

<table>
<thead>
<tr>
<th>Barrel Trigger configuration</th>
<th>Rate (kHz)</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>RPCs</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>RPCs + MDT(BM+BO)</td>
<td>52</td>
<td>without road optimization</td>
</tr>
<tr>
<td>RPCs + BI RPCs (3/4 layers)</td>
<td><32</td>
<td>without road optimization</td>
</tr>
</tbody>
</table>

No BI RPC in data \rightarrow BI rate difficult to estimate

Simple emulation with MDTs largely overestimates the rate
(no phi, long time window)
Studies of BI project feasibility

Actions to be performed:
- Replacement of BI layer MDT front end electronics
- RPC installation in BI layer of chambers

Two options considered (preliminary):
1. Moving BI chambers to surface
2. Without BI chambers removal to surface
Estimates for BI project

Already advanced for MDTs ...

Option 1:

Detailed estimation of number of days for removal and re-installation of BIL, BIS chambers, replacement of electronics and tests in BB5 for sides A and C

Option 2:

Electronics accessible by sliding BIL chambers by ~60 cm
Need judgement from MDT electronics experts about replacement operation
Additional RPC in the BI region

Following variants can be proposed for the investigation:

For BIS:
- To insert RPC on the inner side between BIS and calorimeter surface
- To replace BIS chambers by sMDT with RPC attached to it taking together the same envelope as the existing MDT

For BIL:
- To install RPC on the MDT inner side
- To install RPC on the MDT outer side

No time nor manpower estimation yet
Work is in progress
Scoping document scenarios

Draft version to be presented at LHCC in June 2-4

Three options: 200 (Low), 235 (Medium), 275 (High) MCHF defined by ATLAS management/USC/project leaders

<table>
<thead>
<tr>
<th></th>
<th>LoI</th>
<th>Low</th>
<th>Medium</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>TGC electronics</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>RPC electronics</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>MDT electronics</td>
<td>BM,BO,EM</td>
<td>BM,BO,EM, (EIL4)</td>
<td>BM,BO,EM, (EIL4)</td>
<td>all</td>
</tr>
<tr>
<td>MDT L0 trigger</td>
<td>2-station</td>
<td>2-station</td>
<td>2-station</td>
<td>3-station</td>
</tr>
<tr>
<td>sTGC BW inner ring</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>sRPC on BI</td>
<td>no</td>
<td>no</td>
<td>BI4 to BI6</td>
<td>yes</td>
</tr>
<tr>
<td>sMDT on BI</td>
<td>no</td>
<td>no</td>
<td>BI4 to BI6</td>
<td>yes</td>
</tr>
<tr>
<td>High-Eta tagger</td>
<td>no</td>
<td>no</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>Power system</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Muon working group for the scoping document

Muon costing group:
- Oliver Kortner (MDT electronics and trigger, sMDT chambers)
- Tatsuo Kawamoto (High-eta options)
- Agostino Lanza (Power System)
- Giulio Aielli (RPC chambers)
- Riccardo Vari (RPC trigger & chair)
- Osamu Sasaki (TGC trigger)

Cost estimates status:
- MDT: complete estimate for the three scenarios
- RPC: complete estimate for the three scenarios
- TGC: a few numbers missing
- High-eta tagger: estimate to be completed
- Power System: some initial discussions with CAEN planned for coming months, but do not expect a solid estimate on the time scale of the scoping document
- Cost detail in last Muon Week - Upgrade Cost session: https://indico.cern.ch/event/376177

Next steps:
- complete all the cost estimates, clearly separate TDAQ/Muon contributions
- compare assumptions between different areas and make them consistent, then systematic comparisons and scrutiny
Trigger electronics has to be replaced

Barrel trigger options are the main addition to LoI:
- “efficiency loss scenario” for RPCs defined
- RPC efficiency consistently re-evaluated
- rate estimates in progress

Project feasibility studies ongoing (accessibility/installation issues)

Costing group finalizing the cost estimates