NEWS: Nuclear Emulsions for Wimp Search

NATALIA DI MARCO LABORATORI NAZIONALI DEL GRAN SASSO- INFN

ON BEHALF OF THE NEWS COLLABORATION

OutLine

- Directional Dark Matter Searches
- The NEWS idea:
 - a novel approach to **directional** detection of DM
- Experimental Concept
- Expected Background
- Experimental Set-up
- Schedule of the project and Physics Reach

with nuclei $\propto A^2$

Directional DM searches

Depending on the unknown WIMP-nucleon cross section, directional detection may be used to : exclude Dark Matter, discover galactic Dark Matter with a high significance or constrain WIMP and halo properties.

Figure 1. (Left) : WIMP flux for an isothermal spherical halo. (Right) WIMP-induced recoil distribution. Recoils maps are produced for a ¹⁹F target, a 100 GeV.c⁻² WIMP and considering recoil energies in the range 5 keV $\leq E_R \leq$ 50 keV. Figures extracted from [12].

F. Mayet, J.Phys.Conf.Ser. 469 (2013) 012013

Directional DM searches

Current approach:

low pressure gaseous detector

- Targets: CF4, CF4+CS2, CF4 + CHF3
- Recoil track length O(mm)
- Small achievable detector mass due to the low gas density ⇒Sensitivity limited to spin-dependent interaction

The NEWS idea

Use solid target:

- Large detector mass
- Smaller recoil track lenght O(100 nm)

 \rightarrow very high resolution tracking detector

Nuclear Emulsion based detector acting both as target and tracking device

Italv

- Napoli University "Federico II"
- LNGS INFN
- **Bari University**
- Roma University "La Sapienza"

Russia

- **JINR Dubna**
- **Moscow State University** •
- **Lebedev Physical Institute**

- Nagoya University Chiba University

Turkey

METU, Ankara

Nuclear Emulsion

AgBr crystal size 0.2-0.3 µm

After the passage of charged particles through the emulsion, a **latent image** is produced.

The emulsion chemical development makes Ag grains visible with an **optical microscope**

A long history, from the discovery of the **Pion (1947)** to the **discovery of** $\nu_{\mu} \rightarrow \nu_{\tau}$ **oscillation** in appearance mode (**OPERA, 2015**) (see Komatsu-san's and Di Crescenzo's talks)

Nuclear Emulsion as Target for WIMPs

8

Constituent	Mass Fraction
AgBr-I	0.78
Gelatin	0.17
PVA	0.05

(a) Constituents of nuclear emulsion

Element	Mass Fraction	Atomic Fraction
Ag	0.44	0.12
Br	0.32	0.12
Ι	0.019	0.003
С	0.101	0.172
Ο	0.074	0.129
Ν	0.027	0.057
Η	0.016	0.396
S	0.003	0.003

(b) Elemental composition

A WIMP with a mass in the GeV-TeV range has a mean momentum of few tens of MeV and the energy transferred to the scattered nucleus of the target is O (100 KeV)

OPERA emulsion films: Silver grain size ~200 nm → too large to record nanometric nuclear recoils

Snapshot of the Invisible - June 2015

N. Marco

Read-out of submicrometric tracks

Current optical read-out systems:

- European Scanning System (ESS, Europe)
- Super-Ultra Track Selector (S-UTS, Japan)

Performances: 1 μ m, 1mrad, O(100 cm²/h)

Not enough...

Two step read-out:

- 1. Signal preselection: fast scanning with (relatively) poor spatial resolution (200 nm).
- 2. Signal confirmation with slow, high resolution (50 nm) scanning systems (X-ray microscope, optical microscope with polarized light)

Experimental concept

Wimp's

wind

1. Target:

1 kg: 100, 50 μm thick, NIT films 25 x 25 x 0.5 cm³ + OPERA-like films

2. Equatorial telescope:

absorbs the earth rotation thus keepingfixed the target orientation towards theCygnus constellation

2. Background badget evaluation signal rate 1 /kg/day << expected background

Equatorial Telescope

• Mechanics:

2 motorized axes (Polar and Declination) equipped with precise encoders for position monitoring. (Final precision 1°)

- Surface Calibration
 - **1.** Follow the position of a star in the Cygnus constallation; measure position parameters in order to apply corrections to mechanics and electronic system.
 - 2. Use throughout the whole day to study systematic effects.
- Underground installation Align the mount using existing high precision reference points.

• Materials

screening of all the materials used in the telescope is foreseen in order to evaluate their intrinsic radioactivity.

Cvgnus

N. Marco

Expected Background

18

- Environmental radioactivity
- Radon and its progeny
- Cosmic rays
- Neutrons from natural fission, (a,n) reactions and from cosmic ray muon spallation and capture
- Radioimpurities in detector or shielding components

γ background

 γ radiation emitted durinng the decay of natural radioativity
(²³⁸U, ²³²Th and its unstable daughters)

 $l = \lambda(E_{\gamma}) \ln f$, f > 1

At 100 keV (2.615 MeV), attenuation by a factor $f = 10^5$ requires:

- 67(269) cm of H2O
- 2.8(34) cm of Cu
- 0.18(23) cm of Pb.

Discrimination in the read-out phase

α particles

Parent Daughter

Decay

Energy

Half Life

Sources: 238U, 232Th chains and 222Rn

E [MeV]

12

10

α particles

RADON: The noble gas 222 Rn ($T_{1/2}$ =3.8 d), a pure α -emitter. It is released by surface soil and is found in the atmosphere everywhere

The detector has to be kept sealed from air and flushed with HP $\rm N_2$

23

Neutrons contribute to the background of low-energy experiments in different ways: directly **through nuclear** recoil in the detector medium, and indirectly, through the **production of radio nuclides** inside the detector and its components (inelastic scattering of fast neutrons or radiative capture of slow neutrons can result in the emission of γ radiation).

Neutron sources:

- Energetic tertiary neutrons are produced by cosmic-ray muons in nuclear spallation reactions with the detector and laboratory walls;
- In high Z materials, often used in radiation shields, nuclear capture of negative muons results in emission of neutrons;
- Natural radioactivity has a neutron component through spontaneous fission and (α, n) -reactions.

Environmental neutron flux

 $\Phi_n = 10^{-6} \text{ cm}^{-2} \text{ s}^{-1} \text{MeV}^{-1}$

NIT 1 kg: 25 x 25 x 0.5 cm³

~ 41000 n/MeV/y

Light materials are effective moderators for fast neutrons: 50 cm of polietilene (**PE, C2H4**) \rightarrow reduction in the neutron flux of a factor O(10⁴)

The opportunity to add a thin (1÷2 cm) layer of **Cadmium** to capture thermalised neutrons is under study.

25

The intrinsic emulsion radioactivity is responsible of an irreducible neutron yield through (α, n) and 238 U spontaneous fission reaction

Intrinsic radioactive contaminant contribution have been estimated @LNGS using:

- 1. Inductively Coupled Plasma Mass Spectrometry (ICP-MS) (Chemistry Service)
- γ-spectrometry with Ge detector @ STELLA Facility (SubTErranean Low Level Assay)

Nuclide	Contamination $[10^{-9} \text{ g g}^{-1}]$	Activity [mBq kg ⁻¹]		
AgBr-I				
232 Th	1.0	4.1		
$^{238}\mathrm{U}$	1.5	18.5		
Gelatin				
²³² Th	2.7	11.0		
$^{238}\mathrm{U}$	3.9	48.1		
PVA				
²³² Th	< 0.5	< 2.0		
238 U < 0.7		< 8.6		

Table 4: Results obtained by ICP-MS in terms of contamination and activity for the different constituents of the nuclear emulsion. The estimated uncertainty is 30%. The upper limits on PVA are evaluated at 95% CL.

1) ICP-MS: 238U: 23±7 mBq/kg 232Th: 5.1±1.5 mBq/kg

Process	SOURCES simulation	Semi-analytical calculation		
	$[kg^{-1} y^{-1}]$	$[kg^{-1} y^{-1}]$		
(α, n) from ²³² Th chain	0.12	0.10 ± 0.03		
(α, n) from ²³⁸ U chain	0.27	0.26 ± 0.08		
Spontaneous fission	0.79	0.8 ± 0.3		
Total flux	1.18	1.2 ± 0.4		

F. Pupilli et al. , *Intrinsic neutron background of nuclear emulsions for directional Dark Matter searches*, to be submitted to Astrophysical Journal

E (MeV)

GEANT4 simulation:

20.4% of neutrons interact producing nuclear (56%), proton (44%) and α (0.2%) recoils

Figure 2: Track length (left) and energy spectrum (right) for proton recoils produced by elastic (blue curve) and inelastic (red curve) processes.

Figure 3: Track length (left) and energy spectrum (right) for heavy (blue curve) and light (red curve) nuclei.

29

Threshold [nm]	Fraction
50	0.100
100	0.075
150	0.060
200	0.052

Table 6: Fraction of detectable neutron-induced recoils as a function of the read-out threshold.

- 5%÷10% of the intrinsic neutron flux contributes to the background
- A further reduction of 70% can be achieved exploiting the directionality information (-1 < Φ < 1)

 \rightarrow 0.02 ÷ 0.03 n/year/Kg

Underground Emulsion Facilities

32

OPERA emulsion facility in LNGS Hall B

Schedule

		NEWS project				
		1 st year	2 nd year	3 rd year	4 th year	5 th year
uality check	10 gr sample test and analysis I					
	Procurement of raw materials					
	Radioactivity measurement					
0	10 gr sample test and analysis II					
	Clean room construction					
-	Machine design					
ction	Machine construction					
produ	Installation underground					
<u> </u>	Commissioning					
<u> </u>	Gel production					
	Pouring					
pe pe	Construction					
lesco	Surface calibration					
te Ec	Underground telemetry					
tem	R&D					
opt	Systems upgrade					
or tion	Shield construction					
Detect	Target					
	Detector commissioning					
ing	Run			1		
tak	Analysis					

Physics Reach

Conclusions

35

- A novel approach for directional Dark Matter searches is proposed in NEWS
- Novel nuclear emulsion technique with nanometric spatial resolution
- The use of a solid target would allow to explore the low cross section sector in the phase space indicated by recent direct search experiments but using a complementary an powerful approach
- Read-out system based both on optical (200 nm resolution) and X-ray microscopy (30 nm resolution)

Preliminary schedule \rightarrow Pilot Experiment in 2018 with 1 Kg target mass.