IFR mechanics
prototype and detector design

V. Carassiti, G. Cibinetto, F. Evangelisti, C. Fanin
Outline

• Prototype design
 – requirements
 – first sketches

• Detector design
 – baseline and open issues
 – detector drawings
Prototype requirements

• The prototype must have the same longitudinal segmentation of the real detector: i.e. the same amount of interaction length.
• We started with the TDR layout.
• We may want to test different configuration (add more iron): possibility to extend with more module/layer.
• The active area of each layer will be 40x40cm².
• The prototype needs to be orientated in 2 directions: vertical (for cosmics test) and horizontal (for beam test)
• It needs to be also moved transversally as respect to the beam line.
Prototype sketches (I)
Prototype sketches (II)

SCINTILLATORS
IRON
FIBERS
FRAME

superB workshop 16/02/2009 V. Carassiti - INFN FE
Detector design: the iron

- Much will depend on the possibility to reuse the BaBar flux return
- If we recycle the BaBar iron
 - A layer of scintillators can weight ~400kg (~10 times the weight of the old detector): need to understand the iron bending and redo structural calculations.
 - Some mechanical constraint and open issues: number of interaction length, possibility to add iron at the end...
- If not
 - design a brand new structure (everything to do)
 - less constraint
Detector design
scintillators weight & sagitta of the iron

<table>
<thead>
<tr>
<th>LAYER N.</th>
<th>IRON WEIGHT (Kg)</th>
<th>SCINTILLATOR WEIGHT (Kg)</th>
<th>TOTAL WEIGHT (Kg)</th>
<th>Total W / Iron W</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8880</td>
<td>400</td>
<td>9280</td>
<td>1.05</td>
</tr>
<tr>
<td>2</td>
<td>8470</td>
<td>380</td>
<td>8850</td>
<td>1.04</td>
</tr>
<tr>
<td>3</td>
<td>19600</td>
<td>355</td>
<td>19955</td>
<td>1.02</td>
</tr>
<tr>
<td>4</td>
<td>17200</td>
<td>310</td>
<td>17510</td>
<td>1.02</td>
</tr>
<tr>
<td>5</td>
<td>8500</td>
<td>280</td>
<td>8780</td>
<td>1.03</td>
</tr>
<tr>
<td>6</td>
<td>1185</td>
<td>265</td>
<td>1450</td>
<td>1.22</td>
</tr>
<tr>
<td>7</td>
<td>1155</td>
<td>255</td>
<td>1410</td>
<td>1.22</td>
</tr>
<tr>
<td>8</td>
<td>1130</td>
<td>250</td>
<td>1380</td>
<td>1.22</td>
</tr>
</tbody>
</table>
Detector design: the scintillators

• Some critical decision need to be taken:
 – Single or double view reading?
 – Where to put the photon detector? Inside or outside the gaps?

• Check/negotiate spaces and conduits with other detector and infrastructure
Detector design: general needs

• How to manage scintillators and fibers: modularity, routing of the fibers, toolings for the installation
• Detector assembly: scintillators and fibers on board the sextant before or after the installation?
• If iron not reused (building a new sextant): prebending the iron plates avoiding the sagitta do to the weight?
• The detector geometry will be optimized based on the simulation and beam test: the following are some very preliminary drawings
Detector drawings (I)

SCINTILLATORS

IRON

FRAME
Detector drawings (II)

SCINTILLATOR

FIBERS
Detector drawings (III)
Conclusions

• A super-B prototype is under study and construction

• The goal: find out the solution giving the best performances of the super-B detector