

Status of quarkonium MC

3rd Bellell Italian meeting

Frascati, May 21st, 2015 Umberto Tamponi tamponi@to.infn.it

INFN – Torino University of Torino

Status in November 2014

	New Analysis ?	Theoretical work needed?	EvtGen methods to be written?	Timescale	Priority	Contact person	Status
Fix DECAY.DEC	No	Νο	No	Short	HIGH	U. Tamponi	Ongoing
Pythia tune	Yes	Νο	No	Long	HIGH	U. Tamponi	Ongoing
ππ transitions Y(5S)	Νο	Νο	Yes	Medium	HIGH	R. Mizuk	?
Soft ISR	Sugg.	Νο	Maybe	Medium	MEDIUM	?	?
ππ transitions Y(4S)	Yes	No (?)	No (?)	Medium - Long	LOW (?)	?	?
ππ transitions among Y(nS)	Sugg.	Νο	Maybe	Medium	LOW	?	?
Y(nS) → γ ηb	Yes	Yes	Yes	Long	LOW	?	?

Overview

Y(5,6S)

Study of spin singlet states via $\pi\pi/\eta$ tag. Exotic bottomonium-like states Y(5,6S) structure

Y(3,4S) Transitions among χ_b families Study of spin singlet states via η tag. Dipion transitions

What should we do for an optimal usage of EvtGen at Belle II?

- \rightarrow Errors in Decay.dec
- \rightarrow Angular distributions for hadronic/ radiative transitions
- → Soft ISR effects
- \rightarrow Y(nS) Hadronization mechanism in MC

Bottomonium EvtGen validation group: Bryan Fulsom, Todd Pedlar, U.T.

Can we use EvtGen as it comes?

Decay Upsilon

0.024800000 e+ e-	PHOTOS VLL;
0.024800000 mu+ mu-	PHOTOS VLL;
0.026000000 tau+ tau-	VLL;
0.014959973 d anti-d 0.044879919 u anti-u 0.014959973 s anti-s 0.044879919 c anti-c	PYTHIA 32; PYTHIA 32; PYTHIA 32; PYTHIA 32; PYTHIA 32;Wrong charge ratiosY(1S) $\rightarrow \gamma^* \rightarrow q\bar{q}$ Should scale with e_q^2
0.774328202 g g g	PYTHIA 4; (i.e. ratios should be 1/ 4
0.028922614 gamma g g	PYTHIA 4; instead of 1/3)
0.000063000 gamma pi+ pi- 0.000017000 gamma pi0 pi0 0.000011400 gamma K+ K- 0.000290000 gamma pi+ pi- K+ K- 0.000250000 gamma pi+ pi+ pi- pi- 0.000250000 gamma pi+ pi+ pi- pi- pi- 0.000240000 gamma pi+ pi+ pi- pi- K+ K- 0.000150000 gamma pi+ pi- p+ anti-p- 0.000040000 gamma pi+ pi+ pi- pi- p+ anti-p- 0.000020000 gamma K+ K+ K- K- 0.000037000 gamma f'_2 0.000101000 gamma f_2	$\begin{array}{llllllllllllllllllllllllllllllllllll$

Errors in DECAY.dec

Decay Upsilon(3S)

0.0181 0.021800000	e+ e- mu+ mu	1-	PHOTOS PHOTOS	VLL; VLL;	Why different?
0.022900000	tau+	tau-	VLL;		
0.044000000 0.022000000 0.024500000 0.018500000	Upsilon Upsilon Upsilon(Upsilon(pi+ pi- pi0 pi0 (2S) pi+ pi- (2S) pi0 pi0	PHSP; PHSP; PHSP; PHSP;	Definitiv	ely not Phase-space
0.059000000 0.126000000 0.131000000	gamma gamma gamma	chi_b0(2P) chi_b1(2P) chi_b2(2P)	HELAMP HELAMP HELAMP	1. 0. 1. 0. 1. 0. 1. 0. 2.4494897 0 1.7320508 0 1. 0. 1. 0. 1. 0. 1.7320508 0 2.4494897 0	; -1. 01.
0.050000000	Upsilon(2S) gamma gamma	PHSP;	Should b	be saturated by $\chi_{\rm bJ}$ (2P) cascades
0.00700 d an 0.02800 u an 0.00700 s an 0.02800 c an 0.37780 g g 0.01000 gamma 0.003000000 g	ti-d ti-u ti-s ti-c g a <u>g</u> g gamma	chi_b0	PYTHIA PYTHIA PYTHIA PYTHIA PYTHIA PYTHIA PHSP;	32; 32; 32; 32; 4; 4; 4; Definitive	ly not Phase-space
Enddecay	yallilla	eta_D	rnsr;	Missing χ	b1,2(1P) transitions

Y(3S) $\rightarrow \pi\pi$ **Y(nS)** transitions

Phys.Rev.D76:072001 (2007)

Matrix element:

$$\mathcal{M} = \mathcal{A}(\epsilon' \cdot \epsilon)(q^2 - 2M_{\pi}^2) + \mathcal{B}(\epsilon' \cdot \epsilon)E_1E_2$$

$$+ \mathcal{C}((\epsilon' \cdot q_1)(\epsilon \cdot q_2) + (\epsilon' \cdot q_2)(\epsilon \cdot q_1))$$

$$\mathbf{Dalitz \ plot \ observables:}$$
Di-pion invariant mass
Di-pion helicity angle
$$\mathbf{M}_{\pi\pi}$$

$$\mathbf{T}_{\mathbf{M}_{\pi\pi}}$$

$$\mathbf{T}_{\mathbf{M}_{\pi\pi}}$$

$$\mathbf{T}_{\mathbf{M}_{\pi\pi}}$$

$$\mathbf{T}_{\mathbf{M}_{\pi\pi}}$$

Expected to be suppressed by heavy quark spin symmetry

$Y(3S) \rightarrow \pi\pi Y(nS)$ transitions

Phys.Rev.D76:072001 (2007)

6

$Y(3S) \rightarrow \pi\pi Y(2S)$: angular distributions

$Y(3S) \rightarrow \pi\pi Y(2S)$: angular distributions

$Y(3S) \rightarrow \pi\pi Y(nS)$: debugging

Great effort by Bryan for debugging YmStoYnSpipiCleo

Original

EvtVector4R P_YmS_X = boostTo(p->getP4(), P_X);

The dipion in boosted In the **LAB frame**

Correct

EvtVector4R P_YmS_X = boostTo(p->getP4Restframe(), P_X);

The dipion in boosted in the **Y(3S) frame**

cosx_2s {m_pipi_2s>0}

costh_pi1_1s:costh_pi2_1s {m_pipi_1s>0}

Y(3S) $\rightarrow \pi\pi$ **Y(nS)**: validation

Great effort by Bryan for debugging YmStoYnSpipiCleo

Cleo Data Bellell MC

For CLEO we use the **neutral pion data** (larger statistics) with NO resolution deconvolution

Other transitions

Many (not so) rare transitions are modeled using PHSP:

 $h_{h}(nP) \rightarrow \gamma \eta_{h}(mS)$ $1^{+-} \rightarrow 1^{--} 0^{-+}$ Official model: Correct model: PHSP HELAMP 1.0 0.0 1.0 0.0 Pure S-wave $Y(nS) \rightarrow \gamma \eta_{h}(mS)$ $1^{--} \rightarrow 1^{--} 0^{-+}$ Official model: Correct model: PHSP HELAMP 1.0 0.0 -1.0 0.0 Pure P-wave $Y(nS) \rightarrow \pi^0/\eta Y(mS)$ $1^{--} \rightarrow 0^{-+} 1^{--}$ Official model: Correct model: PARTWAVE 0. 0. 1. 0. 0. 0. PHSP **Dominant P-wave** $Y(nS) \rightarrow \pi^0/\eta h_{\rm b}(mP)$ $1^{--} \rightarrow 0^{-+} 1^{+-}$ Official model: Correct model: PARTWAVE 1. 0. 0. 0. 0. 0. PHSP **Dominnt S-wave** 11

Other transitions

Many (not so) rare transitions are modeled using PHSP:

$\chi_{bl}(nP)$ annihilations

Decay chi_b0

0.949650000 rndmflav anti-rndmflav PYTHIA 12;

Partons

Enddecay

. . . .

"A random **u, d, or s** flavour; possible decay product"

Charm has been proved to be produced by bottomonium annihilations Phys.Rev. D78 (2008) 092007

"Matrix element code"

Reweighting of the matrix element in order to modulate the PHSP distribution

$\chi_{\rm bl}(nP)$ annihilations

Decay chi_b0

0.949650000 rndmflav anti-rndmflav PYTHIA 12;

.... Enddecay "A random **u, d, or s** flavour; possible decay product"

Partons

"Matrix element code"

Reweighting of the matrix element in order to modulate the PHSP distribution

Charm has been proved to be produced by bottomonium annihilations Phys.Rev. D78 (2008) 092007

$\chi_{b0}(nP)$ $J^{PC} = 0^{++}$ Dominant: $\chi_{b0}(nP) \rightarrow g g$	Official model: rndmflav anti-rndmflav PYTHIA 12	Correct model: g g PYTHIA 32
$\chi_{b2}(nP)$ $J^{PC} = 2^{++}$ Dominant: $\chi_{b2}(nP) \rightarrow g g$	Official model: g g PYTHIA 32	Correct model: g g PYTHIA 32
$\chi_{b1}(nP)$ $J^{PC} = 1^{++}$ Dominant: $\chi_{b1}(nP) \rightarrow q\overline{q}g$	Official model: g g PYTHIA 32	Correct model: ?

The $\chi_{b1}(nP)$ case

Official DECAY.DEC

Decay chi_b1

0.643080000 g g PYTHIA 32;

Enddecay

Impossible.

Violates Yang-Landau theorem

Correct Physics

0.16275 d anti-d g PYTHIA (?); 0.16275 u anti-u g PYTHIA (?); 0.16275 s anti-s g PYTHIA (?); 0.16275 c anti-c g PYTHIA (?);

Not implementable in Pythia.

Missing matrix element for qqg final state

Correct final state Recovers charm production rate

Soft gluon only Continuum-like event

Possible Workaround

0.16275 d anti-d PYTHIA 32; 0.16275 u anti-u PYTHIA 32; 0.16275 s anti-s PYTHIA 32; 0.16275 c anti-c PYTHIA 32;

Gluons are naturally irradiated during the fragmentation process

Charmonium radiative transitions

Charmonium transitions a are also mainly modeled using PHSP:

 $\psi(2S) \rightarrow \gamma \chi_{cl}(1P)$ $1^{--} \rightarrow 1^{--} 0, 1, 2^{++}$ Official model: Better model: same as $Y(2S) \rightarrow \gamma \chi_{p_1}(1P)$ PHSP J = 0: HELAMP 1. 0.+1. 0.; J = 1: HELAMP 1. 0. 1. 0. -1. 0. -1. 0.; J = 2: HELAMP 2.4494897 0. 1.7320508 0. Actually, a small M2 contribution is 1.0. known to be present in these transitions 1.0. 1.7320508 0. For a discussion of the $\chi_{c1,2}(1P)$ angular 2.4494897 0.; distribution, see, for example: M. Ambrogiani et al. Phys. Rev. D 65, 052002 (2002) $\chi_{c,J}(1P) \rightarrow \gamma J/\psi$ Correct model: Official model for J=0,2: As in bottomonium PHSP $0,1, 2^{++} \rightarrow 1^{--} 1^{--}$ Official model for J=1: To be tested? VVG (vector-to-vector-gamma)

Higher order multipoles

Actually, a small M2 contribution is known to be present in these transitions (also E3 is possible!)

For a discussion of the $\chi_{c1,2}(1P)$ angular distribution, see: Phys. Rev. D 65, 052002 (2002) Phys. Rev. D 80, 112003 (2009)

$$J=1 \begin{pmatrix} A_0 = \begin{vmatrix} 1\\ \frac{1}{\sqrt{2}}a_1 \\ -\frac{1}{\sqrt{2}}a_2 \\ A_1 = \frac{1}{\sqrt{2}}a_1 + \frac{1}{\sqrt{2}}a_2 \\ \frac{1}{\sqrt{2}}a_1 + \frac{1}{\sqrt{2}}a_2 \end{pmatrix} \Big|_{J=1} \\ J=2 \begin{pmatrix} A_0 = \sqrt{\frac{1}{10}}a_1 + \sqrt{\frac{1}{2}}a_2 + \sqrt{\frac{6}{15}}a_3 \\ A_1 = \sqrt{\frac{3}{10}}a_1 + \sqrt{\frac{1}{6}}a_2 - \sqrt{\frac{8}{15}}a_3 \\ \sqrt{\frac{6}{10}}a_1 - \sqrt{\frac{1}{3}}a_2 + \sqrt{\frac{1}{15}}a_3 \\ \sqrt{\frac{1}{15}}a_3 \end{pmatrix} \Big|_{J=2}$$

$\chi_{,}(1P) \rightarrow \gamma J/\psi$					
E1 only			E1		
	χ_{c1}	χ_{c2}	χ_{c1}	χ _{c2}	
A0	0.7071	0.3162	0.7443	0.2540	AO
A1	0.7071	0.5477	0.6679	0.4924	A1
A2	none	0.7745		0.8328	A2

ψ	$\gamma(2S) \rightarrow \gamma \chi_{a}($			
_	E1 onl	E1 + M2		
	χ_{c1}	χ _{c2}	χ_{c1}	χ _{c2}
A 0	0.7071	0.3162	0.6863	0.3336
A1	0.7071	0.5477	0.7273	0.5543
A2	none	0.7745		0.7625

Other issues with EvtGen

All the Hyperon decays are modeled using PHSP

Decay Lambda0 0.638719992 p+ pi-0.357719992 n0 pi0

Decay Xi-0.998870000 Lambda0 pi-

Decay Xi0 0.995242400 Lambda0 pi0 0.001162400 Lambda0 gamma PHSP; #[Reconstructed PDG2011] PHSP; #[Reconstructed PDG2011]

PHSP; #[Reconstructed PDG2011]

PHSP; #[Reconstructed PDG2011] PHSP;

Large P-violating effects neglected!

Baryon angular	Asymmetry parameter
distribution	Polarization vector
$\frac{dN}{d\Omega} = \frac{N}{4\pi} \left(1 + \alpha_{\gamma}^{\prime}\right)$	$(\mathbf{P}_i \cdot \hat{\mathbf{p}})$
Spin quantizat	ion axis

EvtGen model: EvtHyNonLepton

Tests so far:

- → With unpolarized Lambda reproduces the PHSP results
- → Model to produce polarized Lambda to be written

Pythia fragmentation tuning

Fragmentation is dominant in the simulation of bottomonium annihilation

 \rightarrow Pythia (6 or 8) is not really meant to deal with low energy processes

→ Major source of systematic uncertainties

- \rightarrow 3-5% for the mismodelling of the event shape
- \rightarrow 3-5% for the mismodelling of the low multiplicity events not passing the hadronic selection

→ Also interesting for physics!

Deuteron production: Phys. Rev. D 89, 111102 (2014)

Process	
$\mathcal{B}(\Upsilon(3S) \to \bar{d}X)$	$(2.33 \pm 0.15^{+0.31}_{-0.28}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(2S) \to \bar{d}X)$	$(2.64 \pm 0.11^{+0.26}_{-0.21}) \times 10^{-5}$
$\mathcal{B}(\Upsilon(1S) \to \bar{d}X)$	$(2.81 \pm 0.49^{+0.20}_{-0.24}) \times 10^{-5}$
$\sigma(e^+e^- \to \bar{d}X) \ [\sqrt{s} \approx 10.58 \text{GeV}]$	$(9.63 \pm 0.41^{+1.17}_{-1.01})$ fb
$\frac{\sigma(e^+e^- \to \bar{d}X)}{\sigma(e^+e^- \to \text{Hadrons})}$	$(3.01 \pm 0.13^{+0.37}_{-0.31}) \times 10^{-6}$

Tuning overview

How to tune the fragmentation process?

→ use Belle data

Which Datasets?

 \rightarrow Y(1S) for ggg events

 \rightarrow Y(4S)-30 MeV continuum for qq

Do we need different sets of tunes? \rightarrow Yes (No?)

Do we need two different approaches? \rightarrow NO

Goal:

Prepare a software tool tha can be used on **any dataset from Belle** to extract the optimal puthia tunig

Pythia8 tuning task force Hulya Atmacan, Torben Ferber, Ami Rostomyan, U.T.

Pythia tuning: Belle VS Bellell

Belle used Pythia 6 with custom tunings

JetSetPar PARJ(21)=0.28	Default 0.36
JetSetPar PARJ(25)=0.27	Default 1
JetSetPar PARJ(26)=0.12	Default 0.4
JetSetPar PARJ(33)=0.3	Default 0.8
JetSetPar PARJ(35)=1.0	Default = PARJ(33)
JetSetPar PARJ(41)=0.32	Default 0.3
JetSetPar PARJ(42)=0.62	Default 0.58
JetSetPar PARJ(82)=0.38	Default 0.29
JetSetPar PARJ(82)=0.76	Default 1
JetSetPar PARP(2)=4.0	Default 10

JelSelPar PARP(2)=4.0	Delault
JetSetPar MSTP(141)=1	Default 0
JetSetPar MSTP(171)=1	Default 0
JetSetPar MSTJ(104)=4	Default 5

Continuum $q\bar{q}$ was generated using the evtgen model PYCONT

Decay vpho

d u s c b t e mu tau 1.0 PYCONT 0 0 0 1 0 0 0 0 0 0 0; Enddecay

Pythia tuning: Belle VS Bellell

Belle used Pythia 6 with cu	Bellell uses Pythia 8
JetSetPar PARJ(21)=0.28 JetSetPar PARJ(25)=0.27 JetSetPar PARJ(26)=0.12 JetSetPar PARJ(33)=0.3 JetSetPar PARJ(35)=1.0 JetSetPar PARJ(41)=0.32 JetSetPar PARJ(42)=0.62 JetSetPar PARJ(42)=0.62 JetSetPar PARJ(82)=0.38 JetSetPar PARJ(82)=0.38 JetSetPar MRTP(141)=1 JetSetPar MSTP(141)=1 JetSetPar MSTP(171)=1	 → First challenge is to translate the Belle tunings from Pythia 6 to Pythia 8 Current Proposal (by Hulya Atmacan): PythiaBothParam StringFlav:etaSup=0.27 PythiaBothParam StringFlav:etaPrimeSup=0.12 PythiaBothParam StringFragmentation:stopMass=1.1 PythiaBothParam StringZ:aLund=0.32 PythiaBothParam StringZ:bLund=0.62 PythiaBothParam StringZ:usePetersonC=off PythiaBothParam StringZ:usePetersonB=off PythiaBothParam StringZ:rFactC=1.0 PythiaBothParam StringPT:sigma = 0.4 PythiaBothParam TimeShower:pTmin = 0.38
Continuum qq was generat	Continuum can be generated now using KKMC + Pythia8 → better treatment of ISR/FSR
#duscbte	\rightarrow more accurate description of the initial partonic state
1.0 PYCONT 0 0 0 1 0 0 0 0	Great effort by Ami Rostomyan and Torben Ferber
Enddecay	

Tuning and validation observables

Guidelines

- → General obervables (easy to compute)
- \rightarrow Solid physical meaning
- → Independent
- \rightarrow Sensitive to different tuning parameters
- $\rightarrow \sqrt{s-independent}$ (or almost independent)

Energy spectra

- $\rightarrow E^*/\sqrt{s}$ for photons and charged
- $\rightarrow \Sigma(E^*)/\sqrt{s}$ for photons and charged

Event shape

 \rightarrow R2 fox wolfram moment

Correlations are crucial!

 \rightarrow 2D comparisons are mandatory

Multiplicities

- \rightarrow photon multiplicity (full and reduced acceptance)
- \rightarrow charged multiplicity

Single particle spectra

 \rightarrow D⁰, η , π , K, γ

Workflow proposal

Status in May 2015

	New Analysis ?	Theoretical work needed?	EvtGen methods to be written?	Timescale	Priority	Contacts	Status
Fix DECAY.DEC	Νο	No	Νο	Short	HIGH	B. Fulsom T. Pedlar U. Tamponi	Done (?)
Pythia tune	Yes	No	No	Long	HIGH	H. Atmacan T. Ferber A. Rostomyan U. Tamponi	Ongoing
ππ transitions Y(5S)	No	No	Yes	Medium	HIGH	R. Mizuk	
Soft ISR	Sugg.	Νο	Maybe	Medium	MED	U. Tamponi	Ongoing
ππ transitions Y(4S)	Yes	No (?)	No (?)	Medium - Long	LOW	?	?
ππ transitions among Y(nS)	Sugg.	No	Maybe	Medium	HIGH	B. Fulsom T. Pedlar U. Tamponi	Done
Y(nS) → γ ηb	Yes	Yes	Yes	Long	LOW	?	?

Conclusions

Pythia8 tuning

- \rightarrow The Belle tuning was succesfully translated into Pythia8
- → Bellell generators output has been succesfully reconstructed using the Belle Detector simulation
- → Minimization strategy has to be choosen:
 - \rightarrow Brute force scan
 - \rightarrow Recoursive scan
 - → Functional parameterization (PROFESSOR: https://professor.hepforge.org/)

EvtGen validation

\rightarrow DECAY.dec for bottomonium has been updated

- \rightarrow bug in the $\pi\pi$ transition model has been discovered and fixed.
- $\rightarrow \chi_{h1}(nP)$ hadronization is still puzzle
- \rightarrow Final test is ongoing
- \rightarrow First look into charmonium: $\chi_{_{\rm CJ}}(1P)$ transitions fixed
- \rightarrow Mismodellings in the hyperon sector
 - \rightarrow How to test EvtHypNonLepton?

Backup

Dipion transitions from Y(4S)

Babar study: Phys. Rev. Lett.96 (2006) 23200

What for Bellell?

Minimal solution: write a new EvtGen model the Dalitz analysis

Best solution: Validate BaBar's analysis with Belle's dataset and write a new EvtGen model the Dalitz analysis

Stable particles' spectra

MC predicts less, more energetic tracks

29

Event shape

Data/MC comparison: charged

Data/MC comparison: neutral

28

Tuning comparison with Pythia8

Process Y(4S) $\rightarrow \pi\pi$ Y(1S) \rightarrow hadrons

~tamponi/public/Pythia8Validation/

Pythia parameters

Pythia parameters

Which parameters should we change and in which range?

Generate sample changing ONE parameter at time

- \rightarrow No reconstruction, generatore level only
- \rightarrow Check how much our distributions change

Tested parameters: stopMass aLund bLund sigma pTmin

Reduced set of 2D Kinematic variables:

- MomentumVSMult_ch
 - MomentumVSMult_g
 - PtVSz_ch
- PtVSz_g
- MomentumVSMult_K
- --- MomentumVSMult_pi
- MomentumVSMult_eta
- GammaEVSEtaMult

Example of 1D comparison

StopMass= 1.0 (MC 1) VS stopMass= 1.2 (MC 2)

Soft ISR at Y(4,5S)

Y(4,5S) have non negligible width. Soft ISR emission may occur: $e^+e^- \rightarrow \gamma_{SOFT} Y(4S) \rightarrow \gamma_{SOFT} + X$

 $([0]]^{1}]^{T}Math:Power(*[1],1)-(1)^{2}(*([2*([1]]^{1}])b)^{2}((2*)^{2})^{2}^{T}Math:Log(1*)-4^{*}TMath:Log(x))-4^{*}TMath:Log(1*a)(*-6*x))=([0]]^{2}([1],2)(*-6*x))$

TMath::BreitWigner(x,10.580,0.0205)

17

Lower Ecm but still an Y(4S) \rightarrow Asimmetric tails in the recoil mass of two body decays [Y(4S) $\rightarrow \eta$ hb(1P) as example]

Soft ISR at Y(4,5S)

Example: Y(4S) $\rightarrow \eta$ hb in η recoil mass

Vector ISR is originally mean for $e^+e^- \rightarrow \gamma \phi$

- \rightarrow No low energy validation available
- \rightarrow LO radiator formula

Validation is ongoing

Blue:

MC simulation with Y(4S) $\rightarrow \eta$ hb(1P)

Red:

Convolution with ISR emission PDF and Y(4S) lineshape

Currently done in two ways:

- \rightarrow Numerical convolution
- \rightarrow MC simulation with VectorISR

Dipion transitions from Y(5S)

Zb and Zb' should be listed in the evt.pdl file,

but can we write to separate models?

```
Decay Upsilon(5S)
1.0000 pi+ Zb Model1;
Enddecay
```

```
Decay Zb
1.0000 pi- Upsion Model2;
Enddecay
```

