TOP Progress Report

M.Benettoni, A.Gaz, S.Lacaprara, M.Posocco, L.Ramina, M.Rebeschini, P.Sartori, R.Stroili, E.Torassa (Univ. and INFN Padova)

> O.Brunasso, M.Mignone, R.Mussa, U.Tamponi (Univ. and INFN Torino)

Belle-2 Italia 3rd Meeting

LNF, 21-22/5/ 2015

Radiation damage tests at INFN Legnaro (PD)

Irradiation of 9 GRIN lenses at variable distance from the target Beam: 4 MeV protons on Berillium Irradiation time : 7hours Integrated charge: 6 milliCurie Neutron Fluence (distance dependent): 10⁹ to 10¹² n/cm² Negligible loss in transmission expected for the whole duration of experiment (equivalent to a flux of 0.25 10⁹ n/year*N_y) LNF, Belle-2 Italia May 2015 R.Mussa, TOP Time Calibration

Attenuation in graded index fibers (PD+TO)

New multimode fibers from Padova tested with CCD setup in Torino

Graded Index; Cladding = 240 μ m; Core = 65 μ m; length=2,8 m Single Fiber Efficiency = 1.6% (lower than in MM bundle #1) Never tested with 405 nm light by producing company Light time spread < 1 ps/m

Attenuation measurements done with CCD setup in Torino

Characterization of GRIN lens cylinders (PD): aperture

N.A. measured on the first 42 pieces varying CCD – cylinder distance in four 2 mm steps The 2D images were fitted with Gauss(X)*Gauss(Y) PDF

1D apertures in X,Y

Ellipticity (ApX/ApY)

Characterization of MM fibers: 2nd bundle

Summary of laser results

The 3 inner fibers (also shorter), in ch 10-12 are expected to have higher light output. Excluding 10-12 a 2x change between minimum and maximum is observed .

LNF, Belle-2 Italia May 2015

Test setup for Tsukuba Hall installation

The final light distribution system has to be tested in Tsukuba hall after its placement on the detector.

- Check of the fiber light distribution
- Measurement of the time spread on each SM fiber
- Measurements of the relative delay on each fiber

Tasks:

Full characterization of the readout ALD-MCPPMT
Characterization of the DAQ system (CAEN V1742, 1 GHz BW and 5 GS/s)

ALD-MCPPMT characterization (TO)

Two ALD-MCPPMTs in Italy: KT447 and KT462

- Test is done using a 2.5 GHz, 40 GS/s scope
- 3D motorized slide is used for scanning through all the channels

ALD-MCPPMT characterization (TO)

Single photon regime KT447, Channel 3, Max HV

Avg pedestal amplitude:1.1 mVPedestal gaussian fluctuation:0.2 mVSignal events: 4851 ± 134 Pedestal events: 27307 ± 201 Avg signal amplitude: $(10 \pm 9) \text{ mV}$

Single photon time resolution: 28.5 ps

Main peak position: (99.472 ± 0.001) ns

- correlated to the fibre length
- stat. error only

ibration

ALD-MCPPMT comparison

Channel 9 and 13 are missing due to problems on the readout board connectors

MM fiber bundle routing

The MM fiber bundles from each pair of modules will exit the detector in the points indicated by the blue circles.

SM-MM fiber connection

Connector boxes (8): - 3 SM fibers in (1 spare) - 2 MM bundles out

LNF, Belle-2 Italia May 2015

Fiber bundle routing

TOP modules production

		Mechanical Assembly		Electronics Integration	
		Start	Finish	Complete	
	Module 01	Oct 2014	Nov 2014	Feb 2015	
	Module 02	Mar 2015	April 2015		
	Module 03	April	April		
	Module 04	May	Мау		
	Module 05	June	June		
	Module 06	June	July]
	Module 07	July	Aug		
	Module 08	Aug	Sept		
	Module 09	Sept	Oct		
	Module 10	Oct	Oct		
	Module 11	Nov	Nov		
	Module 12	Nov	Dec		
	Module 13	Jan 2016	Jan 2016		
	Module 14	Jan	Feb		
	Module 15	March	March		
	Module 16	March	April		
	Module 17	April	May		
	Module 18	May	Мау		

Module assembly: QBB-04 is being completed, after FPCP QBB-05 gluing will start.

Readout problems on the Belle-2 link between FE and HLSB boards (same for CDC,ECL,TOP) prevents start of all final module tests.

³⁄₄ of Cylinders + GRIN lenses assembled 5 MM bundles available (3 mounted) Not ordered yet: 2/3 MM, ½ SM fibers.

TOP+CDC Test Stand

TOP module at r=165cm: ~ 45cm away from the CDC

CDC readout configured to read cosmic rays :

Figure 2: Two-dimensional CAD drawings of the CDC on top of the support stand in the Tsukuba Hall alcove (provided by Kohriki-san).

Figure 3: A GEANT4 simulation of a high energy cosmic ray muon passing through the CDC and then a TOP module located on the side of the CDC. Two scintillators and a lead absorber are located in the center of the CDC.

LNF, Belle-2 Italia May 2015

TOP+CDC Test Stand

TOP module at r=165cm: ~ 45cm away from the CDC

Requirements: no large scatter between the two segments in the CDC ($\Delta \phi < 5 \text{ mrad}$, $\Delta \theta < 10 \text{ mrad}$) and a dE/dx in relativistic rise region (dE/dx>90).

Smooth momentum cut on the muon spectrum to get 1-2 mrad angular resolution and ~1 mm impact position resolution.

Figure 5: Expected φ and ϑ resolutions vs momentum in the CDC

Expect 500 k cosmic muons in one month with these cuts..

Sommario

Ad oggi, 4 QBB sono pronte.

Componenti TimeCal system in casa: PiLas, MM fibers+ parts per 4+1 moduli, cilindretti per 12 moduli, SM fibers+spares per 8 moduli

Caratterizzazione dei due ALD-MCPPMT completata a TO, ora si tratta di mettere insieme il setup per testare le fibre durante installazione.

Tests di irraggiamento a LNL : componenti OK

Un problema sulla catena di readout sta bloccando l'inzio dei tests dei moduli completi a Fuji Hall.

A Tsukuba Hall, il test congiunto CDC-TOF dovrebbe partire a settembre

Belle-2 note in preparation sul time calibration system.

LNF, Belle-2 Italia May 2015

Light distribution

Light injection in QBB

LNF, Belle-2 Italia May 2015

Single mode (SM) fiber bundle prototype

32 OZ-Optics fibers, 1.5 m long, in one bundle (Oscar Brunasso, Torino INFN workshop)

Bundle's head hosting 32 fiber cores Core radius = 2 μ m

Bundle radius = $450 \ \mu m$

Piping Efficiency: ε_{p} (geo) = 6.3 x 10⁻⁴

For homogeneous illumination, use only central part of the light cone: $\epsilon_{p}(\text{geo} + 1\sigma) = -4 \times 10^{-4}$

R.Mussa, TOP Time Calibration resolution is 100 kHz \rightarrow 10 Hz/fiber

LNF, Belle-2 Italia May 2015

Laser – SM fiber distance optimization/2

In collaboration with Alessandro Re (INFN Torino)

Time resolution measurements

LASER: Advanced Laser Diode Systems PiLas 405 nm t_{res} < 40 ps</p>

• AMPLI: Padova TI development board based on TI THS4303 gain 5

Torino prototype board of the iTOP ampli with two output channels

- ADC: CAEN digitizer V1742 (5 GS/s)
- SCOPE: LeCroy WaveRunner 625zi (20GS/s)
- Time reconstructed by signal shape with offline constant fraction discriminator

More time resolution studies

Torino, UT studied time resolution vs HV,<n_{pe}>, PMT gain, ampli.

The nominal PMT operation point is at 3480 V. We have NOT operated it above 3300 V so far.

The gain is determined using dark count events and fitting the signal peak

^ event-by-event measurement

More time resolution studies

Padova: RS studied time resolution vs signal amplitude (arb.units, left) and Laser tune (below) with Step Index and Graded Index MM fibers

Indiana 2ch test board was used

MCPPMT operated at nominal voltage

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

45

50

60

55

65

70

75

80

85

90

Numerical aperture measurements

R.Mussa, TOP Time Calibration

SM fiber Piping efficiency measurement (Torino)

Bundle-Laser alignment support

16-fibre support

16-channel readout with CAEN V1742 switched capacitor digitizer almost ready

^ long delay due to discharges in the PMT support board: 15/16 channels OK, we had to disconnect the channel whose signal pin is closest to 3.4kV pin

LNF, Belle-2 Italia May 2015

Light injection in the QBB

LNF, Belle-2 Italia May 2015

Multimode fiber bundle for Module #1

Multimode fiber bundle with 9 fibers 2 meters long ended with SMA ferrule

Cladding = 240 μ m Core = 105 μ m Customized fiber bundle Opto Service - Roma

Theoretical insertion efficiency = $9^{*}(105 / 500)^{2} = 40\%$

LNF, Belle-2 Italia May 2015

Laser – SM fiber distance optimization

LNF, Belle-2 Italia May 2015

In collaboration with Alessandro Re (INFN Torino)

R.Mussa, TOP Time Calibration

 Θ Is the full angle at the cone vertex

Characterization of MM fibers (PD): 2nd bundle

The second MM bundle was fully characterized in PD+LNL, using: - PiLas

- monochromator

Characterization of GRIN lens cylinders (PD): profile

Each profile is a slice of 10 pixels in y : clear spikes are observed in most profiles . (only 9/42 lenses

The laser beam profile without lens was measured in Torino and was much smoother.

Dust on lens surface?

LNF, Belle-2 Italia May 2015

Fiber bundle routing

To avoid the routing in zone 8, we should run fibers on the back of the cryostat, but we need 4 nodes to take the fibers to the TOP

Characterization of GRIN lens cylinders (PD): profile

LNF, Belle-2 Italia May 2015

Module 1 Integration

- screw hole diameter : 2.9 to 3.1 mm

