

3rd Meeting Belle II Italia LNF - May 21st, 2015

** Beauty and charm of flavour physics (and strangeness too)
** Physics at Belle II: selected topics
** Belle II & the others: overlap & complementarity

Flavour physics confronts NP searches

The problem of today particle physics: where is the NP scale Λ_{NP} ? 1, 10, 10¹³, 10¹⁶ TeV?

The quantum stabilization of the weak scale suggests < 1 TeV (naturalness argument)

$$m_{H}^{2} \rightarrow m_{H}^{2} + \delta m_{H}^{2}$$
$$\delta m_{H}^{2} = \frac{3 G_{F}}{\sqrt{2} \pi^{2}} m_{t}^{2} \Lambda_{NP}^{2} \sim (0.3 \Lambda_{NP})^{2}$$

Marco Ciuchini

Going BSM with flavour physics: why?

Indirect searches look for new physics through virtual effects of new particles in loops

- * SM FCNCs and CPV occur at the loop level
- * SM FV and CPV are governed by the weak interactions and suppressed by small mixing angles
- * SM quark CPV comes from a single source (neglecting θ_{QCD})
- New Physics does not necessarily share the SM pattern of FV and CPV: very large NP effects are possible

Past (SM) successes anticipating heavy flavours: 1970: charm from $K^0 \rightarrow \mu^+\mu^-$ (GIM) 1973: 3rd generation from ϵ_{κ} (Kobayashi & Maskawa) mid 80s+: heavy top from semileptonic decays & $\Delta m_{\rm B}$

Going BSM with flavour physics: why now?

- next-generation flavour experiments will be able to improve the experimental precision/ sensitivity by almost one order of magnitude
- * enough NP-insensitive observables to pin down the SM contribution with the required accuracy
- * several NP-sensitive observables not limited by systematics or theoretical uncertainties

Overall, the NP sensitivity extends to (i) the TeV region for SM-like flavour violation and to (ii) 10-100 TeV or even more in less constrained cases For example: lower bound on the NP scale from $\Delta F=2$ transitions (TeV @95%) Λ (TeV) K D B_d B_s FC~1 5x10⁵ 3.5x10⁴ 3.3x10³ 880 FC~SM 113 8.5 21 27

LHC already scratched the surface of the TeV region

3rd Meeting Belle II Italia – LNF – May 21st, 2015

Marco Ciuchini

A	LAS SUST Sea	arches	- 9	5%		wer Linnis	AILA	
510	Model	e, μ, τ, γ	Jets	$E_{_{ m T}}^{ m miss}$	∫ <i>L dt</i> [fb ⁻	Mass limit		Reference
_	MSUGRA/CMSSM	0	2-6 iets	Voc	20.3	τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ	m(õ)	1405 7875
		0	2-6 jets	Voc	20.3	850 GeV	-0 GoV $m(1^{\text{st}} \operatorname{gon} \tilde{a}) - m(2^{\text{nd}} \operatorname{gon} \tilde{a})$	1405.7875
ŝ	$qq, q \rightarrow q\chi_1$	1 2	0-1 iet	Voc	20.0		$=0 \text{ GeV}, \text{ m}(1 \text{ gen}, \mathbf{q}) = \text{m}(2 \text{ gen}, \mathbf{q})$	1411 1559
hei	$qq\gamma, q \rightarrow q\chi_1$ (compressed)	0	2-6 jets	Voc	20.3	1.23 TeV $m(\tilde{q})^{-1}$	$\Pi(x_1) = \Pi(c)$	1405 7875
ICI	$gg, g \rightarrow qq\chi_1$ $\tilde{z}\tilde{z}, \tilde{z} \rightarrow aa\tilde{v}^{\pm} \rightarrow aaW^{\pm}\tilde{v}^0$	1 <i>e u</i>	3-6 jets	Voc	20.3	1.35 TeV $m(x_1) = 1.2 \text{ TeV}$	=0 GeV	1501 03555
ea	$gg, g \rightarrow qq\chi_1 \rightarrow qqW^-\chi_1$	2011	0-3 jets	-	20	1.2 TeV $m(x_1) < 1.2 \text{ TeV}$	$<300 \text{ GeV}, \text{ III}(\lambda^{-})=0.5(\text{III}(\lambda^{-})+\text{III}(g))$	1501.03555
S	$gg, g \rightarrow qq(\ell\ell/\ell\nu/\nu\nu)\lambda_1$	$1.2 = 0.1 \ell$	0-2 jets	Voc	20 3		=0 GeV	1407.0603
sive	GGM (bino NI SP)	1-27+0-17	-	Voc	20.3	1.0 TeV m/0	50 Coll	ATLAS CONE 2014 00
Ius	GGM (wing NLSP)	1 0 1 + 2		Vee	20.5	610 CoV	>50 GeV	ATLAS-CONF-2014-00
nc	GGM (biggsing-bing NI SP)	γ	1 4	Vee	4.0		>50 GeV	1011 1167
_	GGM (higgsino NLSP)	2 0 11 (7)		Yes	4.0 5.0		>220 GeV	1211.1107
	Gravitino LSP	2 e, μ (Z) 0	mono-jet	Yes	20.3	^{1/2} scale 865 GeV m(\tilde{G})>	$>1.8 \times 10^{-4}$ eV, m(\tilde{g})=m(\tilde{q})=1.5 TeV	1502.01518
	$\tilde{q} \rightarrow b \bar{b} \tilde{\chi}_{1}^{0}$	0	3 <i>b</i>	Yes	20.1	1.25 TeV $m(\tilde{\chi}_1^0)$	<400 GeV	1407.0600
ed	$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_{1}^{0}$	0	7-10 jets	Yes	20.3	1.1 TeV $m(\tilde{\chi}_1^0)$	<350 GeV	1308.1841
3 ⁶	$\tilde{g} \rightarrow t \bar{t} \tilde{\chi}_1^0$	0-1 <i>e</i> ,μ	3 b	Yes	20.1	1.34 TeV $m(\tilde{\chi}_1^0)$	<400 GeV	1407.0600
200	$\tilde{g} \rightarrow b t \tilde{\chi}_1^+$	0-1 <i>e</i> ,μ	3 <i>b</i>	Yes	20.1	1.3 TeV m(X ⁰)<	<300 GeV	1407.0600
5	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$	0	2 <i>b</i>	Yes	20.1	100-620 GeV $m(\tilde{\chi}_1^0)$	<90 GeV	1308.2631
E I	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow t \tilde{\chi}_1^{\pm}$	2 e, μ (SS)	0-3 b	Yes	20.3	1 275-440 GeV $m(\tilde{\chi}_{1}^{\pm})=$	$y=2 m(\tilde{\chi}_1^0)$	1404.2500
nci Uci	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow b \tilde{\chi}_1^{\pm}$	1-2 <i>e</i> , µ	1-2 b	Yes	4.7	110-167 GeV 230-460 GeV m($\tilde{\chi}_1^{\pm}$)	$p = 2m(\tilde{\chi}_1^0), m(\tilde{\chi}_1^0) = 55 \text{GeV}$	1209.2102, 1407.0583
Sd	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b \tilde{\chi}_1^0$ or $t \tilde{\chi}_1^0$	2 e, µ	0-2 jets	Yes	20.3	90-191 GeV 215-530 GeV $m(\tilde{\chi}_1^0)$	=1 GeV	1403.4853, 1412.4742
л.	$\tilde{t}_1\tilde{t}_1, \tilde{t}_1 \rightarrow t\tilde{\chi}_1^0$	0-1 <i>e</i> ,μ	1-2 b	Yes	20	210-640 GeV $m(\tilde{\chi}_1^0)$	=1 GeV	1407.0583,1406.1122
<u>ct</u> ge	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$	0 m	nono-jet/c-	tag Yes	20.3	m(<i>i</i> ₁)-n m(<i>i</i> ₁)-n	$\operatorname{m}(\tilde{\chi}_1^0) < 85 \mathrm{GeV}$	1407.0608
lire	$\tilde{t}_1\tilde{t}_1$ (natural GMSB)	2 e, µ (Z)	1 <i>b</i>	Yes	20.3	150-580 GeV m($\tilde{\chi}_1^0$)	>150 GeV	1403.5222
n a	$\tilde{t}_2 \tilde{t}_2, \tilde{t}_2 \rightarrow \tilde{t}_1 + Z$	$\exists e, \mu (Z)$	1 <i>b</i>	Yes	20.3	290-600 GeV m(\tilde{x}_1^0)	<200 GeV	1403.5222
	$\tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow \ell \tilde{\chi}_1^0$	2 e, µ	0	Yes	20.3	90-325 GeV m($\tilde{\chi}_1^0)$ =	=0 GeV	1403.5294
	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\ell} \nu(\ell \tilde{\nu})$	2 e, µ	0	Yes	20.3	$m(\tilde{\chi}_1^0) = m(\tilde{\chi}_1^0)$	=0 GeV, m($\tilde{\ell}, \tilde{\nu}$)=0.5(m($\tilde{\chi}_1^{\pm}$)+m($\tilde{\chi}_1^{0}$))	1403.5294
ct <	$\tilde{\chi}_1^+ \tilde{\chi}_1^-, \tilde{\chi}_1^+ \rightarrow \tilde{\tau} \nu(\tau \tilde{\nu})$	2 τ	-	Yes	20.3	$m(\tilde{\chi}_1^0) = m(\tilde{\chi}_1^0)$	=0 GeV, m($\tilde{\tau}, \tilde{\nu}$)=0.5(m($\tilde{\chi}_1^{\pm}$)+m($\tilde{\chi}_1^{0}$))	1407.0350
E V	$\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{2}^{0} \rightarrow \tilde{\ell}_{L} \nu \tilde{\ell}_{L} \ell(\tilde{\nu}\nu), \ell \tilde{\nu} \tilde{\ell}_{L} \ell(\tilde{\nu}\nu)$	3 e, µ	0	Yes	20.3	$m(\tilde{\chi}_{1}^{\pm})=m(\tilde{\chi}_{2}^{0}), m$	$n(\tilde{\chi}_1^0)=0, m(\tilde{\ell}, \tilde{\nu})=0.5(m(\tilde{\chi}_1^{\pm})+m(\tilde{\chi}_1^0))$	1402.7029
0	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} Z \tilde{\chi}_{1}^{0}$	2-3 e, µ	0-2 jets	Yes	20.3	$m(\tilde{\chi}_{1}^{\pm}) = \frac{1}{2} $	$(=m(\tilde{\chi}_2^0), m(\tilde{\chi}_1^0)=0, \text{ sleptons decoupled})$	1403.5294, 1402.7029
	$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{2}^{0} \rightarrow W \tilde{\chi}_{1}^{0} h \tilde{\chi}_{1}^{0}, h \rightarrow b \bar{b} / W W / \tau \tau / \gamma$	$\gamma e, \mu, \gamma$	0-2 <i>b</i>	Yes	20.3	$m(\tilde{\chi}_{1}^{\pm}) = \frac{1}{250 \text{ GeV}}$ $m(\tilde{\chi}_{1}^{\pm}) = 0$	$(=m(\tilde{\chi}_{2}^{0}), m(\tilde{\chi}_{1}^{0})=0, \text{ sleptons decoupled})$	1501.07110
	$\tilde{\chi}_2^0 \tilde{\chi}_3^0, \tilde{\chi}_{2,3}^0 \to \tilde{\ell}_{\mathbf{R}} \ell$	4 <i>e</i> ,μ	0	Yes	20.3	$m(\tilde{\chi}_2^0) = m(\tilde{\chi}_3^0), m(\tilde{\chi}_2^0) = m(\tilde{\chi}_3^0), m(\tilde{\chi}_2^0) = m(\tilde{\chi}_3^0), m(\tilde{\chi}_3^0) = m(\tilde{\chi}_3^0)$	$\mathfrak{l}(\tilde{\chi}_1^0) = 0, \ m(\tilde{\ell}, \tilde{\nu}) = 0.5(m(\tilde{\chi}_2^0) + m(\tilde{\chi}_1^0))$	1405.5086
-	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$ prod., long-lived $\tilde{\chi}_1^\pm$	Disapp. trk	1 jet	Yes	20.3	* 270 GeV m(\tilde{x}_1^+)-	-m $(ilde{\chi}_1^0)$ =160 MeV, $ au(ilde{\chi}_1^{\pm})$ =0.2 ns	1310.3675
es	Stable, stopped g R-hadron	0	1-5 jets	Yes	27.9	832 GeV $m(\tilde{\chi}_1^0)$	=100 GeV, 10 μs<τ(ĝ)<1000 s	1310.6584
tic/	Stable \tilde{g} R-hadron	trk	-	-	19.1	1.27 TeV		1411.6795
ang	GMSB, stable $\tilde{\tau}, \tilde{\chi}_1^0 \rightarrow \tilde{\tau}(\tilde{e}, \tilde{\mu}) + \tau(e, \mu)$	μ) 1-2 μ	-	-	19.1	537 GeV 10 <tar< td=""><td>.nβ<50</td><td>1411.6795</td></tar<>	.nβ<50	1411.6795
D L	GMSB, $\tilde{\chi}_1^0 \rightarrow \gamma \tilde{G}$, long-lived $\tilde{\chi}_1^0$	2γ	-	Yes	20.3	$\frac{435 \text{ GeV}}{2 < \tau(\tilde{\chi}_1^{\prime})}$	⁰ ₁)<3 ns, SPS8 model	1409.5542
	$\tilde{q}\tilde{q}, \tilde{\chi}_1^0 \rightarrow qq\mu$ (RPV)	1 μ , displ. vtx	(-	-	20.3	1.0 TeV 1.5 < <i>c</i> ²	$z\tau < 156 \text{ mm}, \text{BR}(\mu) = 1, \text{ m}(\tilde{\chi}_1^0) = 108 \text{ GeV}$	ATLAS-CONF-2013-09
	$LFV \ pp \to \tilde{\nu}_{\tau} + X, \tilde{\nu}_{\tau} \to e + \mu$	2 e, µ	-	-	4.6	r 1.61 TeV λ' ₃₁₁ =0	$\lambda_{132}=0.05$	1212.1272
	$LFV \ pp \rightarrow \bar{v}_{\tau} + X, \bar{v}_{\tau} \rightarrow e(\mu) + \tau$	$1 e, \mu + \tau$	-	-	4.6	$\lambda'_{311}=0$	$J.10, \lambda_{1(2)33}=0.05$	1212.1272
>	Bilinear RPV CMSSM	2 e, µ (SS)	0-3 <i>b</i>	Yes	20.3	, ġ 1.35 TeV m(q̃)=n	$m(\bar{g}), c\tau_{LSP} < 1 mm$	1404.2500
RP	$\chi_1 \chi_1^-, \tilde{\chi}_1^+ \rightarrow W \tilde{\chi}_1^0, \tilde{\chi}_1^0 \rightarrow e e \tilde{\nu}_{\mu}, e \mu \tilde{\nu}_e$	4 e,μ	-	Yes	20.3	750 GeV $m(\tilde{\chi}_1^0)$	$>0.2\times m(\tilde{\chi}_1^{\pm}), \lambda_{121}\neq 0$	1405.5086
	$\tilde{\chi}_1^{\dagger} \tilde{\chi}_1^{\dagger}, \tilde{\chi}_1^{\dagger} \rightarrow W \tilde{\chi}_1^{\circ}, \tilde{\chi}_1^{\circ} \rightarrow \tau \tau \tilde{\nu}_e, e \tau \tilde{\nu}_{\tau}$	$3 e, \mu + \tau$	-	Yes	20.3	$\frac{1}{1} \qquad \qquad 450 \text{ GeV} \qquad \qquad$	$>0.2\times m(\tilde{\chi}_1^{\pm}), \lambda_{133}\neq 0$	1405.5086
	$g \rightarrow qqq$	0	6-7 jets	-	20.3	916 GeV BR(<i>t</i>)=	=BR(b)=BR(c)=0%	ATLAS-CONF-2013-09
	$g \rightarrow t_1 t, t_1 \rightarrow bs$	2 e, µ (SS)	0-3 <i>b</i>	Yes	20.3	850 GeV		1404.250
Other	Scalar charm, $\tilde{c} \rightarrow c \tilde{\chi}_1^0$	0	2 <i>c</i>	Yes	20.3	490 GeV m($\tilde{\chi}_{1}^{0}$)<	<200 GeV	1501.01325
	$\sqrt{s} = 7 \text{ TeV}$	$\sqrt{s} = 8$ TeV artial data	$\sqrt{s} = $ full	8 TeV data	10	-1 · · · · · · · · · · · · · · · · · · ·	Mass scale [TeV]	

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1 σ theoretical signal cross section uncertainty.

Marco Ciuchini

How much "natural" is Nature?

illustration by G. Villadoro

Predicted range for the Higgs mass

What does Higgs have to say?

- * unfortunately we do not drop the cliff, staying on the edge does not help!
- * Interesting (althoug modeldependent) information

Marco Ciuchini

Players on the flavour playground

What Belle II can<u>not</u> do

Golden modes of other flavor experiments

Observable	Current value	Experiment	Precision
$BR(B_s \to \mu\mu) \ (\times 10^{-9})$	$< \mathbf{X}^{a}$	LHCb	± 1
	$2.8^{+0.7}$ -0.6	LHCb upgrade	± 0.3
$2\beta_s \text{ from } B_s^0 \to J/\psi\phi \text{ (rad)}$	$0 \times 3 \pm 0 \times 9^{b}$	LHCb	0.019
	0.010±0.039	LHCb upgrade	0.006 ?!
$S \text{ in } B_s \to \phi \gamma$		LHCb	0.07
		LHCb upgrade	0.02
$K^+ \to \pi^+ \nu \overline{\nu} \; (\% \; \text{BR measurement})$	7 events	NA62	100 events $(10%)$
$K_L^0 o \pi^0 u \overline{ u}$		KOTO	3 events (observe)
$BR(\mu \to e\gamma) \ (\times 10^{-13})$	< 205.7	MEG	< X 0.5
$R_{\mu e}$	$< 7 \times 10^{-13}$	COMET/Mu2E	$< 6 \times 10^{-17}$

based on arXiv:1109.5028

Belle II golden channels

Observable/mode	Current	LHCb	/SuperB//	Belle II	LHCb upgrade	theory
	now	(2017)	///2022///	(2021)	(10 years of	now
	(2011)	$5{\rm fb}^{-1}$	17757577111	$50\mathrm{ab}^{-1}$	cunning) 50fb^{-1}	
			/XXXXXXX///			
$\tau \to \mu \gamma \; (\times 10^{-9})$	< 44			< 5.0		
$\tau \to e\gamma \; (\times 10^{-9})$	< 33			< 3.7 (est.)		
$\tau \to \ell \ell \ell \; (\times 10^{-10})$	< 150 - 270	<244 a	4/2/3/+/8/2	< 10	< 24 b	
		B	, Decass			
$BR(B \to \tau \nu) \; (\times 10^{-4})$	1.64 ± 0.34		////	0.04		1.1 ± 0.2
$BR(B \to \mu\nu) \ (\times 10^{-6})$	< 1.0		///\$#\$2////	0.03		0.47 ± 0.08
$BR(B \to K^{*+} \nu \overline{\nu}) \ (\times 10^{-6})$	< 80			2.0		6.8 ± 1.1
$BR(B \to K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160			1.6		3.6 ± 0.5
$BR(B \to X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26		///X/X////	0.13	0.23	3.15 ± 0.23
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060		//8.92///	0.02		$\sim 10^{-9}$
$B \to K^* \mu^+ \mu^-$ (events)	250^{c}	8000	/XX-X5X	7-10k	100,000	-
$BR(B \to K^* \mu^+ \mu^-) \ (\times 10^{-6})$	1.15 ± 0.16		0.06	0.07		1.19 ± 0.39
$B \to K^* e^+ e^-$ (events)	165	400	//XX-X5X	7-10k	5,000	-
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17		10.05	0.07		1.19 ± 0.39
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0.27 ± 0.14^{e}	f	0.040	0.03		-0.089 ± 0.020
$B \to X_s \ell^+ \ell^-$ (events)	280		8,600	7,000		-
$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^{h}		///XXXX	0.10		1.59 ± 0.11
$S \text{ in } B \to K^0_{\scriptscriptstyle S} \pi^0 \gamma$	-0.15 ± 0.20		//8.93///	0.03		-0.1 to 0.1
$S \text{ in } B \to \eta' K^0$	0.59 ± 0.07		///X/X////	0.02		± 0.015
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	//9.92///	0.03	0.03	± 0.02
		E	\$/\$0667555//			
$BR(B_s^0 \to \gamma\gamma) \ (\times 10^{-6})$	< 8.7			0.2 - 0.3		0.4 - 1.0
A_{SL}^{s} (×10 ⁻³)	$\left -7.87 \pm 1.96 \right ^{i}$	j		5. (est.)		0.02 ± 0.01
		1	V XVerxxs///			
x	$(0.63 \pm 0.20\%)$	0.06%	//8/82%///	0.04%	0.02%	$\sim 10^{-2 \ k}$
y	$(0.75 \pm 0.12)\%$	0.03%	//X/XXX/k///	0.03%	0.01%	$\sim~10^{-2}$ (see above).
y_{CP}	$(1.11 \pm 0.22)\%$	0.05%	/XXXXX///	0.05%	0.01%	$\sim~10^{-2}$ (see above).
q/p	$(0.91 \pm 0.17)\%$	10%		3.0%	3%	$\sim~10^{-3}$ (see above).
$rg\{q/p\} \ (^{\circ})$	-10.2 ± 9.2	5.6		1.4	2.0	$\sim~10^{-3}$ (see above).
		Other p	COCOSSOS DO	ays		
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \mathrm{GeV}/c^2$			0.0002//	l		clean

Marco Ciuchini

based on arXiv:1109.5028

Belle II golden channels

τ flavor violation

		au	- Decays			
$\tau \to \mu \gamma \; (\times 10^{-9})$	< 44		< 2.4	< 5.0		
$\tau \to e\gamma \; (\times 10^{-9})$	< 33		< 3.0	< 3.7 (est.)		
$\tau \to \ell \ell \ell \; (\times 10^{-10})$	< 150 - 270	<244 a	<2.3-8.2	< 10	< 24 ^b	

Observable/mode	Current	LHCb	Super B	Belle II	LHCb upgrade	theory
	now	(2017)	X2832XX///	(2021)	(10 years of	now
		$5{\rm fb}^{-1}$	777/2011	$50 \mathrm{ab}^{-1}$	running) 50fb^{-1}	
$\tau \to \mu \gamma \; (\times 10^{-9})$	< 44			< 5.0		
$\tau \to e \gamma ~(\times 10^{-9})$	< 33			< 3.7 (est.)		
$\tau \to \ell \ell \ell \ (\times 10^{-10})$	< 150 - 270	<244 a	12/3/	< 10	$< 24^{\ b}$	

$BR(B \to X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^h		0.08	0.10		1.59 ± 0.11			
$S \text{ in } B \to K^0_{\scriptscriptstyle S} \pi^0 \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1			
$S \text{ in } B \to \eta' K^0$	0.59 ± 0.07		0.01	0.02		± 0.015			
$S \text{ in } B \to \phi K^0$	0.56 ± 0.17	0.15	0.02	0.03	0.03	± 0.02			
		E	B_s^0 Decays						
$BR(B_s^0 \to \gamma \gamma) \ (\times 10^{-6})$	< 8.7		0.3	0.2 - 0.3		0.4 - 1.0			
A_{SL}^{s} (×10 ⁻³)	-7.87 ± 1.96^{-i}	j	4.	5. $(est.)$		0.02 ± 0.01			
		1	D Decays						
x	$(0.63 \pm 0.20\%$	0.06%	0.02%	0.04%	0.02%	$\sim 10^{-2 \ k}$			
y	$(0.75 \pm 0.12)\%$	0.03%	0.01%	0.03%	0.01%	$\sim 10^{-2}$ (see above).			
y_{CP}	$(1.11 \pm 0.22)\%$	0.05%	0.03%	0.05%	0.01%	$\sim 10^{-2}$ (see above).			
q/p	$(0.91 \pm 0.17)\%$	10%	2.7%	3.0%	3%	$\sim 10^{-3}$ (see above).			
$\arg\{q/p\}$ (°)	-10.2 ± 9.2	5.6	1.4	1.4	2.0	$\sim~10^{-3}$ (see above).			
Other processes Decays									
$\sin^2 \theta_W$ at $\sqrt{s} = 10.58 \text{GeV}/c^2$			0.0002	l		clean			

Marco Ciuchini

Marco Ciuchini

Belle II golden channels FCNC & CPV in Bd/u decays

Observable/mode	Current	LHCb	Super B	Belle II	LHCb upgrade	theory
	now	(2017)	X2892XX	(2021)	(10 years of	now
		$5{\rm fb}^{-1}$	173 2011	$50\mathrm{ab}^{-1}$	running) 50fb^{-1}	
		B_{i}				
$BR(B \to \tau \nu) \ (\times 10^{-4})$	1.64 ± 0.34		10.005	0.04		1.1 ± 0.2
${\rm BR}(B\to\mu\nu)~(\times10^{-6})$	< 1.0		10.82	0.03		0.47 ± 0.08
$BR(B \to K^{*+} \nu \overline{\nu}) \ (\times 10^{-6})$	< 80			2.0		6.8 ± 1.1
$BR(B \to K^+ \nu \overline{\nu}) \ (\times 10^{-6})$	< 160		1111	1.6		3.6 ± 0.5
$BR(B \to X_s \gamma) \ (\times 10^{-4})$	3.55 ± 0.26		NAX.	0.13	0.23	3.15 ± 0.23
$A_{CP}(B \to X_{(s+d)}\gamma)$	0.060 ± 0.060		10.892	0.02		$\sim 10^{-6}$
$B \to K^* \mu^+ \mu^-$ (events)	2X0 ^c 900	8000	10-158	7-10k	100,000	-
${\rm BR}(B\to K^*\mu^+\mu^-)~(\times 10^{-6})$	$1 \times 15 \pm 0 \times 6$		10,006	0.07		1.19 ± 0.39
$B \rightarrow K^* e^+ e^-$ (events)	165	400	10-15k	7-10k	5,000	-
$BR(B \to K^* e^+ e^-) \ (\times 10^{-6})$	1.09 ± 0.17		10.005	0.07		1.19 ± 0.39
$A_{FB}(B \to K^* \ell^+ \ell^-)$	0 $7 \pm 0.$ 4^{e}	f	10,040	0.03		-0.089 ± 0.020
$B \to X_s \ell^+ \ell^-$ (events)	280		8,600	7,000		-
$BR(B \rightarrow X_s \ell^+ \ell^-) \ (\times 10^{-6})^g$	3.66 ± 0.77^{h}		10.08	0.10		1.59 ± 0.11
$S \text{ in } B \rightarrow K^0_s \pi^0 \gamma$	-0.15 ± 0.20		10.83	0.03		-0.1 to 0.1
S in $B \rightarrow \eta' K^0$	0.59 ± 0.07		N 88 8	0.02		± 0.015
$S \text{ in } B \rightarrow \phi K^0$	0.56 ± 0.17	0.15	111191992	0.03	0.03	± 0.02
		Oth	- D			
$\sin^2 \theta_W$ at $\sqrt{s} = 10$	$.58 \mathrm{GeV}/c^2$	Other	0.0002	l	clean	

Marco Ciuchini

Marco Ciuchini

Page 16

^{3&}lt;sup>rd</sup> Meeting Belle II Italia – LNF – May 21st, 2015

understand what's going on in $B \rightarrow D^{(*)}\tau v$

BaBar Collaboration, arXiv:1303.0571

Simplest realizations of 2HDM cannot explain the excess in the two channels simoultaneously

only see e

see e.g. Biancofiore et al., arXiv:1302.1042

B physics: $\mathbf{B} \rightarrow \mathbf{K}^* \ell^+ \ell^-$

LHCb claims P_5' to be 3.7σ off for $4.3 < q^2 < 8.7 \text{ GeV}^2$ 0.5 Factorized formulae cannot r_{n} fully reproduce the data: -0.5 a fit shows that P_5' can be addressed but deviations $\geq 2\sigma$ are present in the other ō angular coefficients

 $\mathbf{F}_{\mathbf{L}}$

0.2

-0.6

0.7

(-2.4)

(-1.6)

(-1.5)

 S_3

-0.9

-0.9

0.8

1.8)

1.4

1.6

 S_4

0.6

-0.6

-1.1

-1.0

(-2.3)

-1.2

 S_5

-1.2

-0.8

-0.1

0.3

0.2

 $\mathbf{A_{FB}}$

1.6

0.1

-0.6

-1.3

-1.4

-1.2

Marco Ciuchini

Bin q² $[GeV^2/c^4]$

[0.1, 0.98]

[1.1, 2.5]

[2.5, 4]

[4, 6]

[6, 8]

[1.1, 6]

BSM sensitivity could be hindered by $q^2 [GeV^2/c^4]$ hadronic uncertainties. Inclusive $B \rightarrow X_s \mu^+\mu^$ may help shedding light on this issue

									F				
Bin q ² [GeV^2/c^4]	$\mathbf{A_{FB}}$	$\mathbf{F}_{\mathbf{L}}$	S_3	$\mathbf{S_4}$	\mathbf{S}_{5}	S_7	S_8	\mathbf{S}_{9}	-0.4				
[0.1, 0.98]	(1.7)	0.1	-0.2	0.6	-0.8	0.2	0.9	-1.1	0.5	. I 💼			
[1.1, 2.5]	-0.2	-0.4	-0.9	-0.6	0.1	(-2.0)	-0.9	-1.3	-0.5				
[2.5, 4]	-0.8	1.4	0.6	-1.1	0.3	0.4	0.1	-0.8	-0.6	. 🔨 🔨	1		
[4, 6]	-0.8	-0.5	1.3	-1.2	-0.3	-0.2	1.5	-0.4	Ē		.		
[6, 8]	0.1	0.1	0.5	(-2.3)	-1.3	-0.4	-1.3	0.4	-0.7		der e	,	r_1^V
[1.1, 6]	-1.0	0.1	1.0	-1.3	0.1	-0.9	0.2	-0.6	F		بسيليس	بىنپلېتىپل	
										0.5 0.6 0.7 0.8 0.9	J 1.0 '	1.1 1.2 7	1.3

Marco Ciuchini

Belle II can also contribute competitive exclusive and inclusive measurements of $b \rightarrow s e^+e^-$ to help clarifying the issue of lepton universality recently challenged by LHCb

Marco Ciuchini

	B	elle	IJ	: go	lder	ı cl	ha	nne	els		
		- (CPV	in in	201		ing	upprade ers of 50 fb ⁻¹			
	$ \frac{\tau \to \mu \gamma \ (\times 10^{-9})}{\tau \to e \gamma \ (\times 10^{-9})} \\ \frac{\tau \to \ell \ell \ell \ (\times 10^{-10})}{\tau \to \ell \ell \ell \ (\times 10^{-10})} $	< 44 < 33 < 150 - 2 1.64 ± 0.2	$270 < 244^{a}$ B	$\tau \text{ Decays}$ < 2.4 < 3.0 $< 2.3 - 8.2$ $u_{u,d} \text{ Decays}$ 0.05	< 5.0 < 3.7 (est.) < 10	<:	24 ^b	1.1+0.5			
)	1.04 ± 0.		0.00	0.01			1.1 ± 0.1		
Observable/mo	Curre	ent v	LHCb (2017) 5fb^{-1}	Super <i>B</i> (2021) 75 ab ⁻¹	Bell (20) 50 al	Belle II LH (2021) (50 sb^{-1} run		LHCb upgrade (10 years of running) 50 fb ⁻¹		theory now	
				1	Decays						
x		$(0.41\pm0.$.15)%	0.06%	0.02%	0.04	1%	0.	.02%		$\sim 10^{-2} k$
y Na P		$(0.63 \pm 0.08)\%$		0.03%		0.03	5% 50%	0.	.01% .01%	~ 1	0^{-2} (see above).
y_{CP}		-		8.5%		3.0	3.0%		3%	~ 1 ~ 1	0^{-3} (see above).
$\arg\{q/p\}$ (°)		$-9\pm$	9	4.4		1.4	4		2.0	~ 1	0^{-3} (see above).
					B_{-}^{0} Decays			1			
	$\begin{array}{c} & \text{BR}(B_s^0 \to \gamma \gamma) \; (\times 10^{-6}) \\ & A_{SL}^s \; (\times 10^{-3}) \end{array}$			96 ⁱ ^j	0.3 4.	0.2 - 0.3 5. (est.)		$\begin{array}{c c} 0.4 - 1 \\ 0.02 \pm 0 \end{array}$))1	
		(0.63 ± 0.2)	20% 0.06%	0.02%	0.04%	0.0)2%	$\sim 10^{-2}$	k		
	y Ngp				0.01%	0.03%	0.0)1%	$\sim 10^{-2}$ (see a	above).	
	q/p				0.03% 2.7%	0.05% 3.0%	0.0)1% %	$\sim 10^{-2}$ (see a $\sim 10^{-3}$ (see a	above). above).	
		-10.2 ± 9	0.2 5.6	1.4	1.4	2	.0	$\sim~10^{-3}~({ m see}~{ m a}$	above).		
	$\sin^2 \theta_{\rm exact} = 10$	58 C N/ 2		Other p	processes Deca	ys ı			-l		
	$\sin \theta_W$ at $\sqrt{s} = 10$.58 Gev/ <i>c</i>	ard a r	/: D 11	0.0002				clean		D 00
Marco Ciuchini			3 th Mee	ting Belle	II Italia –	LNF - N	viay 21	1°°, 2013)		Page 22

Precision CKM measurement

Observable/mode	Current	LHCb	//SuperB///	Belle II	LHCb upgrade	theory
	now	(2017)	(2021)	(2021)	(10 years of running)	now
		$5{\rm fb}^{-1}$	75 835	$50\mathrm{ab}^{-1}$	$50{\rm fb}^{-1}$	
α from $u\overline{u}d$	6.1°	$5^{\circ a}$	X	1°	b	$1 - 2^{\circ}$
β from $c\overline{c}s$ (S)	$0.9^{\circ} (0.024)$	$0.5^{\circ} (0.008)$	0.1° (0.002)	$0.3^{\circ} (0.007)$	$0.2^{\circ} \ (0.003)$	clean
S from $B_d \to J/\psi \pi^0$	0.21		0.014	$0.021 \ (est.)$		clean
S from $B_s \to J/\psi K_s^0$?			?	clean
γ from $B \to DK$	11°	$\sim 4^{\circ}$	Ŷ	1.5°	0.9°	clean
$ V_{cb} $ (inclusive) %	1.7		0.5%	$0.6 \;(\text{est.})$		dominant
$ V_{cb} $ (exclusive) %	2.2		1.0%	$1.2 \; (est.)$		$\operatorname{dominant}$
$ V_{ub} $ (inclusive) %	4.4		2.0%	3.0		$\operatorname{dominant}$
$ V_{ub} $ (exclusive) %	7.0		3.8 778/////	5.0		dominant

based on arXiv:1109.5028

V_{ub} @ LHCb

Great result from the β decay of the $\Lambda_{_{\rm R}}$ baryon

- lattice results for baryon MEs less mature
- long-standing disagreement with inclusive results still pending

CKM matrix at 1%

Marco Ciuchini

3rd Meeting Belle II Italia – LNF – May 21st, 2015

Page 25

Conclusions

- * there is a rich physics program waiting for Belle II to start taking data
- * the interest of this program stays high whatever the result of direct searches will be
- * as time goes by and data sample increases, LHCb starts entering domains which belonged traditionally to e⁺e⁻ machines; yet several key measurements (inclusive modes, neutrals, open kinematics) remain Belle II domain only * The impressive work at LHCb is producing new puzzles/tensions for Belle II to elucidate

no theory improvements needed	β(J/ψ K), γ(DK), α(ππ)*, lepton FV and UV, S(ρ ⁰ γ) CPV in B->Xγ, D and τ decays zero of FB asymmetry B->X _s ⁺ ⁻	NP insensitive or null tests of the SM or SM already known with the required accuracy
improved lattice QCD	meson mixing, B->D(*)I ν, B->π(ρ)Ιν B->K* γ, B-> ργ, B->I ν, B _s ->μμ	target error: ~1-2% Feasible (see below)
improved OPE+HQE	Β->Χ_{u,c}Ιν, Β->Χ γ	target error: ~1-2% Possibly feasible with SuperB data getting rid of the shape function. Detailed studies required
improved QCDF/SCET or flavour symmetries	S's from TD A _{CP} in b -> s transitions	target error: ~2-3% large and hard to improve uncertainties on small corrections. FS+data can bound the th. error

τFV in the Littlest Higgs model with T-parity

3rd Meeting Belle II Italia – LNF – May 21st, 2015

Charm mixing

Marco Ciuchini

MSSM: flavour violation in the squark sector

and similarly for $M^2_{\tilde{u}}$

$Im(\delta^{d}_{23})_{LR} vs Re(\delta^{d}_{23})_{LR}$ reconstruction of $(\delta^{d}_{23})_{LR}=0.028 e^{i\pi/4} \text{ for}$ $\Lambda = m_{\tilde{q}} = m_{\tilde{q}} = 1 \text{ TeV}$

Determination of (δ^d₂₃)_{LR} using SuperB data

i) sensitive to $m_{\tilde{q}} < 20 \text{ TeV}$ ii) sensitive to $|(\delta^{d}_{23})_{LR}| > 10^{-2}$ for $m_{\tilde{q}} < 1 \text{ TeV}$

Marco Ciuchini

An explicit example: hierarchical soft terms

Nardecchia, Giudice, Romanino, arXiv:0812.3610 Cohen, Kaplan, Nelson, hep-ph/9607394 Dine, Kagan, Samuel, PLB243 (1990)

but for 1st and 2nd generation squarks and sleptons

- no "unnatural" correction to the Higgs mass
- alleviate the flavour problem
- indicate "natural" values for the δ 's:

$$\hat{\delta}_{db}^{LL} \approx V_{td}^* \sim 0.01$$
 $\hat{\delta}_{sb}^{LL} \approx V_{ts}^* \sim 0.05$

Sparticles at the EW scale

$$\hat{\delta}_{i3}^{LR} \equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL} \qquad i,j=1,2$$

$$\hat{\delta}_{ij}^{LL} \equiv \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{LL*} \quad \hat{\delta}_{ij}^{LR} \equiv \frac{\mathcal{M}_{L3,R3}^2}{\tilde{m}^2} \hat{\delta}_{i3}^{LL} \hat{\delta}_{j3}^{RR*}$$

these figures are in the ballpark of SuperB sensitivities

OVERALL SUSY ASSESSMENT

Studying correlations in flavour observables,

together with high-p_t info, we can learn about:

- * the SUSY-breaking mechanism
- * the flavour breaking mechanism
- * the underlying presence of a GUT structure

* the origin of lepton flavour violation

)bservable/mode	charged Higgs	M FV NP	non-MFV NP	NP in	Right-handed	LHT				SU	SY	
	high $\tan \beta$	low $\tan\beta$	2-3 sector	Z penguins	currents		\mathbf{AC}	RVV2	AKM	$\delta L L$	FBMSSM	GUT-CMM
$\rightarrow \mu\gamma$							* * *	* * *	*	* * *	* * *	* * *
$\rightarrow \ell \ell \ell$						* * *						?
$\beta \rightarrow \tau \nu, \mu \nu$	$\star \star \star (\rm CKM)$											
$3 \rightarrow K^{(*)+} \nu \overline{\nu}$			*	* * *			*	*	*	*	*	?
δ in $B \rightarrow K_S^0 \pi^0 \gamma$			**		* * *							
in other penguin modes			$\star \star \star (\rm CKM)$		* * *		* * *	**	*	* * *	* * *	?
$A_{CP}(B \rightarrow X_{s\gamma})$			* * *		**		*	*	*	* * *	* * *	?
$\exists R(\mathbf{B} \rightarrow X_s \gamma)$		*	**		*							**
$BR(B \rightarrow X_s \ell \ell)$			**	*	*							?
$\beta \rightarrow K^{(*)}\ell\ell$ (FB Asym)							*	*	*	* * *	***	?
8 81			***			***						***
Charm mixing							* * *	*	*	*	*	
CPV in Charm	**									* * *		

more information in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312

Marco Ciuchini

3rd Meeting Belle II Italia – LNF – May 21st, 2015

Page 35

R-S models

- flavour in extra-dim. is severely constrained by $\epsilon_{\rm K}$
- large B/Bs effect are still possible

there are R-S models where effects in B(s) are confined to the mixing amplitudes

M. Blanke et al., 0906.5454

