$$
\begin{aligned}
& \text { Physics at } \\
& \text { Belle II }
\end{aligned}
$$

Marco Ciuchini

$3^{\text {rd }}$ Meeting Belle II Italia LNF - May $21^{\text {st }}, 2015$
** Beauty and charm of flavour physics
(and strangeness too)
** Physics at Belle II: selected topics
** Belle II \& the others: overlap \& complementarity

Flavour physics confronts NP searches

The problem of today particle physics: where is the NP scale $\Lambda_{N P}$? $1,10,10^{13}, 10^{16} \mathrm{TeV}$?
 Standard Model

The quantum stabilization of the weak scale suggests $\leq 1 \mathrm{TeV}$ (naturalness argument)

$$
\begin{gathered}
m_{H}^{2} \rightarrow m_{H}^{2}+\delta m_{H}^{2} \\
\delta m_{H}^{2}=\frac{3 G_{F}}{\sqrt{2} \pi^{2}} m_{t}^{2} \Lambda_{\mathrm{NP}}^{2} \sim\left(0.3 \Lambda_{\mathrm{NP}}\right)^{2}
\end{gathered}
$$

Going BSM with flavour physics: why?

Indirect searches look for new physics through virtual effects of new particles in loops * SM FCNCs and CPV occur at the loop level * SM FV and CPV are governed by the weak interactions and suppressed by small mixing angles

* SM quark CPV comes from a single source (neglecting $\theta_{Q C D}$)

New Physics does not necessarily share the SM pattern of FV and CPV: very large NP effects are possible
Past (SM) successes anticipating heavy flavours:
1970: charm from $K^{0} \rightarrow \mu^{+} \mu^{-}$(GIM)
1973: $3^{\text {rd }}$ generation from ϵ_{K} (Kobayashi \& Maskawa) mid 80s+: heavy top from semileptonic decays \& Δm_{B}

Going BSM with flavour physics: why now?

* next-generation flavour experiments will be able to improve the experimental precision/ sensitivity by almost one order of magnitude
* enough NP-insensitive observables to pin down the SM contribution with the required accuracy
* several NP-sensitive observables not limited by systematics or theoretical uncertainties

Overall, the NP sensitivity extends to (i) the TeV region for SM-like flavour violation and to (ii) 10100 TeV or even more in less constrained cases

For example: lower bound on the NP

 scale from $\Delta F=2$ transitions (TeV @95\%)

LHC already scratched the surface of the TeV region

ATLAS SUSY Searches* - 95\% CL Lower Limits

ATLAS Preliminary
Status: Feb 2015

*Only a selection of the available mass limits on new states or phenomena is shown. All limits quoted are observed minus 1σ theoretical signal cross section uncertainty.

How much "natural" is Nature?

illustration by G. Villadoro

Buttazzo et al, 1307.3536

Predicted range for the Higgs mass

What does Higgs have to say?

* unfortunately we do not drop the cliff, staying on the edge does not help!
* Interesting (althoug modeldependent) information

Players on the flavour playground

BESIII

NA62 A

"OT:"

What Belle II cannot do

Golden modes of other flavor experiments

Observable	Current value	Experiment	Precision
$\operatorname{BR}\left(B_{s} \rightarrow \mu \mu\right)\left(\times 10^{-9}\right)$	$<\mathbb{X}^{a}$	LHCb	± 1
	$2.8^{+0.7}{ }_{-0.6}$	LHCb upgrade	± 0.3
$2 \beta_{s}$ from $B_{s}^{0} \rightarrow J / \psi \phi(\mathrm{rad})$	$0 \times 3 \pm 0 . \times 9^{b}$	LHCb	0.019
	0.010 ± 0.039	LHCb upgrade	$0.006 ?!$
S in $B_{s} \rightarrow \phi \gamma$		LHCb	0.07
		LHCb upgrade	0.02
$K^{+} \rightarrow \pi^{+} \nu \bar{\nu}(\%$ BR measurement $)$	7 events	NA62	100 events (10%)
$K_{L}^{0} \rightarrow \pi^{0} \nu \bar{\nu}$		KOTO	3 events (observe)
$B R(\mu \rightarrow e \gamma)\left(\times 10^{-13}\right)$	$<2 \not X_{0} 5.7$	MEG	$<\mathbb{X} 0.5$
$R_{\mu e}$	$<7 \times 10^{-13}$	COMET $/ \mathrm{Mu} 2 \mathrm{E}$	$<6 \times 10^{-17}$

Belle II golden channels

$3^{\text {rd }}$ Meeting Belle II Italia - LNF - May 21 ${ }^{\text {st }}, 2015$

Belle II golden channels τ flavor violation

$\operatorname{BR}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(\times 10^{-6}\right)^{g}$	3.66 ± 0.77^{h}		0.08	0.10		1.59 ± 0.11
S in $B \rightarrow K_{S}^{0} \pi^{0} \gamma$	-0.15 ± 0.20		0.03	0.03		-0.1 to 0.1
S in $B \rightarrow \eta^{\prime} K^{0}$	0.59 ± 0.07		0.01	0.02		± 0.015
$\underline{S \text { in } B \rightarrow \phi K^{0}}$	0.56 ± 0.17	0.15	0.02	0.03	0.03	± 0.02
B_{s}^{0} Decays						
$\overline{\mathrm{BR}}\left(B_{s}^{0} \rightarrow \gamma \gamma\right)\left(\times 10^{-6}\right)$	< 8.7		0.3	0.2-0.3		0.4-1.0
$A_{S L}^{s}\left(\times 10^{-3}\right)$	$-7.87 \pm 1.96{ }^{i}$	${ }^{j}$	4.	5. (est.)		0.02 ± 0.01
D Decays						
x	(0.63 $\pm 0.20 \%$	0.06\%	0.02\%	0.04\%	0.02\%	$\sim 10^{-2 k}$
y	$(0.75 \pm 0.12) \%$	0.03\%	0.01\%	0.03\%	0.01\%	$\sim 10^{-2}$ (see above).
$y_{C P}$	$(1.11 \pm 0.22) \%$	0.05\%	0.03\%	0.05\%	0.01\%	$\sim 10^{-2}$ (see above).
$\|q / p\|$	(0.91 $\pm 0.17) \%$	10\%	2.7\%	3.0\%	3%	$\sim 10^{-3}$ (see above).
$\arg \{q / p\}\left({ }^{\circ}\right)$	-10.2 ± 9.2	5.6	1.4	1.4	2.0	$\sim 10^{-3}$ (see above).

Other processes Decays						
$\sin ^{2} \theta_{W}$ at $\sqrt{s}=10.58 \mathrm{GeV} / c^{2}$		0.0002	${ }^{l}$	clean		

τ flavour violation

Est. sensitivities: $4 \times 10^{-9}(\mu \gamma), 1 \times 10^{-9}(3 \mu)$

Null test of the SM

Strong model-dependent competitors: ATLAS/CMS ${ }_{\mu \mu} I^{\prime}$ MEG: $\operatorname{BR}(\mu \rightarrow$ e $\gamma)<5.7 \times 10^{-13} @ 90 \% C L \rightarrow 5 \times 10^{-14}$ (upgrade)

Belle II golden channels FCNC \& CPV in Bd / u decays

Observable/mode	Current now	$\begin{gathered} \hline \mathrm{LHCb} \\ (2017) \\ 5 \mathrm{fb}^{-1} \\ \hline \end{gathered}$	(2mw	Belle II $\begin{gathered} (2021) \\ 50 \mathrm{ab}^{-1} \end{gathered}$	LHCb upgrade (10 years of cunning) $50 \mathrm{fb}^{-1}$	theory now
		B.	10ecara			
$\overline{\mathrm{BR}}(B \rightarrow \tau \nu)\left(\times 10^{-4}\right)$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2
$\operatorname{BR}(B \rightarrow \mu \nu)\left(\times 10^{-6}\right)$	<1.0		0.0 .2	0.03		0.47 ± 0.08
$\operatorname{BR}\left(B \rightarrow K^{*+} \nu \bar{\nu}\right)\left(\times 10^{-6}\right)$	<80		1.1	2.0		6.8 ± 1.1
$\operatorname{BR}\left(B \rightarrow K^{+} \nu \bar{\nu}\right)\left(\times 10^{-6}\right)$	<160		0. T	1.6		3.6 ± 0.5
$\operatorname{BR}\left(B \rightarrow X_{s} \gamma\right)\left(\times 10^{-4}\right)$	3.55 ± 0.26		0.11	0.13	0.23	3.15 ± 0.23
$A_{C P}\left(B \rightarrow X_{(s+d)} \gamma\right)$	0.060 ± 0.060		0.6	0.02		$\sim 10^{-6}$
$B \rightarrow K^{*} \mu^{+} \mu^{-}$(events)	$2 \mathrm{XO}^{c} 900$	8000	16-15,	7-10k	100,000	-
$\operatorname{BR}\left(B \rightarrow K^{*} \mu^{+} \mu^{-}\right)\left(\times 10^{-6}\right)$	$1 \mathrm{X} 5 \pm 0 \times 6$		0.06	0.07		1.19 ± 0.39
$B \rightarrow K^{*} e^{+} e^{-}$(events)	165	400	10-15\%	7-10k	5,000	-
$\operatorname{BR}\left(B \rightarrow K^{*} e^{+} e^{-}\right)\left(\times 10^{-6}\right)$	1.09 ± 0.17		10.05	0.07		1.19 ± 0.39
$A_{F B}\left(B \rightarrow K^{*} \ell^{+} \ell^{-}\right)$	$0 \times 7 \pm 0 . X 4^{e}$	f	0.0.40	0.03		-0.089 ± 0.020
$B \rightarrow X_{s} \ell^{+} \ell^{-}$(events)	280		8,600\%	7,000		-
$\operatorname{BR}\left(B \rightarrow X_{s} \ell^{+} \ell^{-}\right)\left(\times 10^{-6}\right)^{g}$	3.66 ± 0.77^{h}		10.6\%	0.10		1.59 ± 0.11
S in $B \rightarrow K_{s}^{0} \pi^{0} \gamma$	-0.15 ± 0.20		10.0.	0.03		-0.1 to 0.1
S in $B \rightarrow \eta^{\prime} K^{0}$	0.59 ± 0.07		10.01	0.02		± 0.015
S in $B \rightarrow \phi K^{0}$	0.56 ± 0.17	0.15	0.02	0.03	0.03	± 0.02

Other processes Decays

| $\sin ^{2} \theta_{W}$ at $\sqrt{s}=10.58 \mathrm{GeV} / c^{2}$ | | 0.0002 | ${ }^{l}$ | clean |
| :--- | :--- | :--- | :--- | :--- | :---: |

B physics: Rare decays

An example: $\mathrm{B}^{ \pm} \rightarrow \ell^{ \pm} v$

- decay rate modified by charged Higgs boson exchange

understand what's going on in $B \rightarrow D^{(*)} \tau v$

Simplest realizations of 2HDM cannot explain the excess in the two channels simoultaneously

* needs to break the relation $y_{i} \propto m_{i}$

Celis et al., arXiv:1210.8443

* can be explained by new interactions involving is only
see e.g. Biancofiore et al., arXiv:1302.1042

B physics: $B \rightarrow K^{*} \ell^{+} \ell^{-}$

 LHCb claims $P_{5}{ }^{\prime}$ to be 3.7σ off for $4.3<q^{2}<8.7 \mathrm{GeV}^{2}$ Factorized formulae cannot fully reproduce the data: a fit shows that P_{5} can be addressed but deviations $\geq 2 \sigma$ are present in the other angular coefficients

+ constraints on the FFs

$\operatorname{Bin~}^{\mathbf{2}}\left[\mathrm{GeV}^{\mathbf{2}} / \mathrm{c}^{4}\right]$	$\mathbf{A}_{\mathbf{F B}}$	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{5}}$	$\mathbf{S}_{\mathbf{7}}$	$\mathbf{S}_{\mathbf{8}}$	$\mathbf{S}_{\mathbf{9}}$
$[0.1,0.98]$	1.6	0.2	-0.9	0.6	-1.2	0.3	1.0	-1.4
$[1.1,2.5]$	0.1	-0.6	-0.9	-0.6	-0.8	-2.2	-0.8	-1.3
$[2.5,4]$	-0.6	0.7	0.8	-1.1	-0.1	0.6	0.2	-0.8
$[4,6]$	-1.3	-2.4	1.8	-1.0	0.3	-0.2	1.8	-0.4
$[6,8]$	-1.4	-1.6	1.4	-2.3	0.2	-0.7	-1.2	-0.4
$[1.1,6]$	-1.2	-1.5	1.6	-1.2	-0.1	-1.5	0.6	-0.6

Non-factorizable terms

 may be important:
$\left.h_{\lambda}=h_{\lambda}^{(0)}+h_{\lambda}^{(1)} q^{2}+h_{\lambda}^{(2)} q^{4}\right)$

BSM sensitivity could be hindered by $q^{2}\left[\mathrm{GeV}^{2} / \mathrm{c}^{4}\right]$ hadronic uncertainties. Inclusive $B \rightarrow X_{S} \mu^{+} \mu^{-}$ may help shedding light on this issue

$\mathbf{B i n ~}^{\mathbf{2}}\left[\mathrm{GeV}^{2} / \mathrm{c}^{4}\right]$	$\mathbf{A}_{\mathbf{F B}}$	$\mathbf{F}_{\mathbf{L}}$	$\mathbf{S}_{\mathbf{3}}$	$\mathbf{S}_{\mathbf{4}}$	$\mathbf{S}_{\mathbf{5}}$	$\mathbf{S}_{\mathbf{7}}$	$\mathbf{S}_{\mathbf{8}}$	$\mathbf{S}_{\mathbf{9}}$
$[0.1,0.98]$	1.7	0.1	-0.2	0.6	-0.8	0.2	0.9	-1.1
$[1.1,2.5]$	-0.2	-0.4	-0.9	-0.6	0.1	-2.0	-0.9	-1.3
$[2.5,4]$	-0.8	1.4	0.6	-1.1	0.3	0.4	0.1	-0.8
$[4,6]$	-0.8	-0.5	1.3	-1.2	-0.3	-0.2	1.5	-0.4
$[6,8]$	0.1	0.1	0.5	-2.3	-1.3	-0.4	-1.3	0.4
$[1.1,6]$	-1.0	0.1	1.0	-1.3	0.1	-0.9	0.2	-0.6

Belle II can also contribute competitive exclusive and inclusive measurements of $b \rightarrow s e^{+} e^{-}$to help clarifying the issue of lepton universality recently challenged by LHCb

$$
R_{K}{ }^{5 M}=1.0003 \pm 0.0001
$$

Bobeth et al., arXiv:0709.4174
2.6σ deviation from the SM
It may be correlated to large LFV in B decays

$$
\mathrm{b} \rightarrow \mathrm{~s} \ell_{i}^{+} \ell_{j}^{-}
$$

Glashow et al., arXiv:1411.0565

affected by models with Z^{\prime}, RH currents and light scalars

Belle II golden channels CPV in D mixing

$\tau \rightarrow \mu \gamma\left(\times 10^{-9}\right)$	<44		<2.4	<5.0		
$\tau \rightarrow e \gamma\left(\times 10^{-9}\right)$	<33		<3.0	<3.7 (est.)		
$\tau \rightarrow \ell \ell \ell\left(\times 10^{-10}\right)$	$<150-270$	$<244{ }^{a}$	$<2.3-8.2$	<10	$<24{ }^{b}$	
$B_{u, d}$ Decays						
$\operatorname{BR}(B \rightarrow \tau \nu)\left(\times 10^{-4}\right)$	1.64 ± 0.34		0.05	0.04		1.1 ± 0.2

Observable/mode	Current now	$\begin{aligned} & \text { LHCb } \\ & (2017) \\ & 5 \mathrm{fb}^{-1} \end{aligned}$	Super 6 (2021) TV. 1	Belle II (2021) $50 \mathrm{ab}^{-1}$	LHCb upgrade (10 years of running) $50 \mathrm{fb}^{-1}$	theory now
			Decaus			
x	(0.41 $\pm 0.15) \%$	0.06\%	0.0.6\%	0.04\%	0.02\%	$\sim 10^{-2 k}$
y	(0.63 $\pm 0.08) \%$	0.03\%	0.0.10	0.03\%	0.01\%	$\sim 10^{-2}$ (see above).
$y_{C P}$	(0.63土0.08)	0.02\%	0.0.5\%	0.05\%	0.01\%	$\sim 10^{-2}$ (see above).
$\|q / p\|$	0.93 ± 0.09	8.5\%	2.7\%	3.0\%	3%	$\sim 10^{-3}$ (see above).
$\arg \{q / p\}\left({ }^{\circ}\right)$	-9 ± 9	4.4	1.4	1.4	2.0	$\sim 10^{-3}$ (see above).

B_{s}^{0} Decays						
$\overline{\mathrm{BR}\left(B_{s}^{0} \rightarrow \gamma \gamma\right)}\left(\times 10^{-6}\right)$	<8.7		0.3	0.2-0.3		0.4-1.0
$A^{A_{S L}^{s}\left(\times 10^{-3}\right)}$	$-7.87 \pm 1.96{ }^{i}$	j	4.	5. (est.)		0.02 ± 0.01
D Decays						
x	(0.63 $\pm 0.20 \%$	0.06\%	0.02\%	0.04\%	0.02\%	$\sim 10^{-2 k}$
y	$(0.75 \pm 0.12) \%$	0.03\%	0.01\%	0.03\%	0.01\%	$\sim 10^{-2}$ (see above).
$y_{C P}$	$(1.11 \pm 0.22) \%$	0.05\%	0.03\%	0.05\%	0.01\%	$\sim 10^{-2}$ (see above).
$\|q / p\|$	$(0.91 \pm 0.17) \%$	10\%	2.7\%	3.0\%	3%	$\sim 10^{-3}$ (see above).
$\underline{\arg \{q / p\}\left({ }^{\circ}\right)}$	-10.2 ± 9.2	5.6	1.4	1.4	2.0	$\sim 10^{-3}$ (see above).

| Other processes Decays | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\sin ^{2} \theta_{W}$ at $\sqrt{s}=10.58 \mathrm{GeV} / \mathrm{c}^{2}$ | | 0.0002 | ${ }^{l}$ | clean |

Precision CKM measurement

Observable/mode	Current now	$\begin{aligned} & \hline \text { LHCb } \\ & (2017) \end{aligned}$	super	Belle II (2021)	LHCb upgrade (10 years of running)	theory now
		$5 \mathrm{fb}^{-1}$	75ar ${ }^{\text {a }}$	$50 \mathrm{ab}^{-1}$	$50 \mathrm{fb}^{-1}$	
α from $u \bar{u} d$	6.1°	$5^{\circ a}$	1.	1°	b	$1-2^{\circ}$
β from $c \bar{c} s$ (S)	$0.9^{\circ}(0.024)$	$0.5^{\circ}(0.008)$	0.10 (0.002)	$0.3^{\circ}(0.007)$	$0.2^{\circ}(0.003)$	clean
S from $B_{d} \rightarrow J / \psi \pi^{0}$	0.21		0.014	0.021 (est.)		clean
S from $B_{s} \rightarrow J / \psi K_{S}^{0}$?			?	clean
γ from $B \rightarrow D K$	11°	$\sim 4^{\circ}$	13	$1.5{ }^{\circ}$	0.9°	clean
$\left\|V_{c b}\right\|$ (inclusive) \%	1.7		0.5\%	0.6 (est.)		dominant
$\left\|V_{c b}\right\|$ (exclusive) \%	2.2		1.10\%	1.2 (est.)		dominant
$\left\|V_{u b}\right\|$ (inclusive) \%	4.4		2.0\%	3.0		dominant
$\underline{\left\|V_{u b}\right\| \text { (exclusive) \% }}$	7.0		3.0\%\%	5.0		dominant

based on arXiv:1109.5028

$\mathrm{V}_{\mathrm{ub}} @ L H C b$

Great result from the β decay of the Λ_{B} baryon - lattice results for baryon MEs less mature

- long-standing disagreement with inclusive results still pending

Λ_{B}
LHCb-PAPER-2015-013

CKM matrix at 1%

Generalized UT fits: today future CKM at 1% in the $\bar{\rho} 0.159 \pm 0.045 \pm 0.008$ presence of NP! $\bar{\eta} 0.363 \pm 0.049 \pm 0.010$

- good place to look for \% NP
- crucial for many NP searches

NP parameters

in $\Delta \mathrm{B}=2$
 amplitudes

From 1D projections:
$\begin{aligned} \sigma\left(C_{B_{d}}\right) & \simeq 0.17 \longrightarrow 0.03 \\ \sigma\left(\phi_{B_{d}}\right) & \simeq 3.2^{\circ} \longrightarrow 0.7^{\circ}\end{aligned}$

Conclusions

* there is a rich physics program waiting for Belle II to start taking data
* the interest of this program stays high whatever the result of direct searches will be
* as time goes by and data sample increases, LHCb starts entering domains which belonged traditionally to $e^{+} e^{-}$machines; yet several key measurements (inclusive modes, neutrals, open kinematics) remain Belle II domain only
* The impressive work at LHCb is producing new puzzles/tensions for Belle II to elucidate

Spare Slides

no theory improvements needed	$\beta(J / \psi K), \gamma(D K), \alpha(\pi \pi)^{\star},$ lepton FV and UV, S $\left(\rho^{0} \gamma\right)$ CPV in $B->X_{\gamma}, D$ and τ decays zero of FB asymmetry $B->X_{s} I^{+-}$	NP insensitive or null tests of the SM or SM already known with the required accuracy
improved lattice QCD	$\left\lvert\, \begin{gathered} \text { meson mixing, } B \rightarrow D\left(^{\star}\right)\|v, B->\pi(\rho)\| v \\ B \rightarrow K^{\star} \gamma, B \rightarrow \rho \gamma, B \rightarrow>\mid v, B_{s}>\mu \mu \end{gathered}\right.$	target error: ~1-2\% Feasible (see below)
improved OPE+HQE	B-> $\mathrm{X}_{u, \mathrm{c}}$ lv, $\mathrm{B} \rightarrow \mathrm{X}^{\prime}$	target error: ~1-2\% Possibly feasible with SuperB data getting rid of the shape function. Detailed studies required
improved QCDF/SCET or flavour symmetries	S's from TD Acp in $b \rightarrow s$ transitions	target error: ~2-3\% large and hard to improve uncertainties on small corrections. FS+data can bound the th. error

$\tau F V$ in the Littlest Higgs model with T-parity

$$
\operatorname{Br}(\tau \rightarrow \mu \gamma)
$$

Charm mixing

Fit	$x \times 10^{3}$	$y \times 10^{3}$	$\delta_{K^{+} \pi^{-}}^{\circ}$	$\delta_{K+\pi^{-} \pi^{0}}^{\circ}$
(a)	$3.01_{-3.39}^{+3.12}$	$10.10_{-1.72}^{+1.69}$	$41.3_{-24.0}^{+2.0}$	43.8 ± 26.4
Stat.	(2.76)	(1.36)	(18.8)	(22.4)
(b)	$x x x_{-0.75}^{+0.72}$	$x x x \pm 0.19$	$x x x_{-3.4}^{+3.7}$	$x x x_{-4.5}^{+4.6}$
Stat.	(0.18)	(0.11)	(1.3)	(2.9)
(c)	$x x x \pm 0.42$	$x x x \pm 0.17$	$x x x \pm 2.2$	$x x x_{-3.4}^{+3.3}$

Stat. (0.18) (0.11) (2.3)
(d) $\quad x x x \pm 0.20 \quad x x x \pm 0.12 \quad x x x \pm 1.0 \quad x x x \pm 1.1$

Stat. (0.17) (0.10) (0.9) (1.1)

MSSM: flavour violation in the squark sector

LHCb, SuperB

and similarly for $M_{\tilde{u}}^{2}$

NP scale:
FV \& CPV couplings:

m^{q}

$\left(\delta^{\mathrm{d} j}\right)_{A B}=\left(\Delta^{\mathrm{d}}{ }_{\mathrm{ij}}\right)_{A B} / m \tilde{q}^{2}$

$\operatorname{Im}\left(\delta^{d}{ }_{23}\right)_{L R} \operatorname{VS} \operatorname{Re}\left(\delta^{d}{ }_{23}\right)_{L R}$
reconstruction of

$$
\begin{aligned}
& \left(\delta^{d}{ }_{23}\right)_{L R}=0.028 e^{i \pi / 4} \text { for } \\
& \Lambda=m_{\tilde{g}}=m_{\tilde{q}}=1 \mathrm{TeV}
\end{aligned}
$$

Determination of $\left(\delta^{\mathrm{d}}{ }_{23}\right)_{\mathrm{LR}}$ using SuperB data

i) sensitive to $m_{\tilde{q}}<20 \mathrm{TeV}$
ii) sensitive to $\left|\left(\delta^{d}{ }_{23}\right)_{L R}\right|>10^{-2}$ for $m_{\tilde{q}}<1 \mathrm{TeV}$

An explicit example: hierarchical soft terms

Sparticles at the EW scale

Nardecchia, Giudice, Romanino, arXiv:0812.3610
Cohen, Kaplan, Nelson, hep-ph/9607394
Dine, Kagan, Samuel, PLB243 (1990) but for $1^{\text {st }}$ and $2^{\text {nd }}$ generation squarks and sleptons

- no "unnatural" correction to the Higgs mass
- alleviate the flavour problem
- indicate "natural" values for the δ 's:

$$
\hat{\delta}_{d b}^{L L} \approx V_{t d}^{*} \sim \mathbf{0 . 0 1} \quad \hat{\delta}_{s b}^{L L} \approx V_{t s}^{*} \sim \mathbf{0 . 0 5}
$$

$$
\hat{\delta}_{i 3}^{L R} \equiv \frac{\mathcal{M}_{L 3, R 3}^{2}}{\tilde{m}^{2}} \hat{\delta}_{i 3}^{L L} \quad i, j=1,2
$$

$$
\hat{\delta}_{i j}^{L L} \equiv \hat{\delta}_{i 3}^{L L} \hat{\delta}_{j 3}^{L L *} \quad \hat{\delta}_{i j}^{L R} \equiv \frac{\mathcal{M}_{L 3, R 3}^{2}}{\tilde{m}^{2}} \hat{\delta}_{i 3}^{L L} \hat{\delta}_{j 3}^{R R *}
$$

these figures are in the ballpark of SuperB sensitivities

OVERALL SUSY ASSESSMENT

Studying correlations in flavour observables, together with high- p_{+}info, we can learn about:

* the SUSY-breaking mechanism
* the flavour breaking mechanism
* the underlying presence of a GUT structure
* the origin of lepton flavour violation
more information in arXiv:1008.1541, arXiv:0909.1333, and arXiv:0810.1312

Observable/mode	charged Higgs high $\tan \beta$	MFV NP low $\tan \beta$	$\begin{gathered} \text { non-MFV NP } \\ 2-3 \text { sector } \end{gathered}$	NP in Z penguins	Right-handed currents	LHT	SUSY					
							AC	RVV2	AKM	$\delta L L$	FBMSSM	GUT-CMM
$\begin{aligned} & \tau \rightarrow \mu \gamma \\ & \tau \rightarrow \ell \ell \end{aligned}$						* *	***	***	*	* **	***	$\begin{gathered} \star \star \star \\ ? \end{gathered}$
$\begin{aligned} & B \rightarrow \tau \nu, \mu \nu \\ & B \rightarrow K^{(*)+} \nu \bar{\nu} \\ & S \text { in } B \rightarrow K_{S}^{0} \pi^{0} \gamma \\ & S \text { in other penguin modes } \\ & A_{C P}\left(B \rightarrow X_{s} \gamma\right) \\ & B R\left(B \rightarrow X_{s} \gamma\right) \\ & B R\left(B \rightarrow X_{s} \ell \ell\right) \\ & B \rightarrow K^{(*)} \ell(\text { FB Asym }) \end{aligned}$	* **(CKM)	*	$\star \star \star(\mathrm{CKM})$ * * *	* **						$\left.\right\|_{* * *} ^{*} \begin{gathered} \star * \\ * * * \\ \\ * * * \end{gathered}$	* * * $\star \star \star$ $\star * *$	$\begin{gathered} ? \\ ? \\ ? \\ ? \\ \text { + } \\ ? \\ ? \end{gathered}$
$a_{s l}^{s}$			***			*						***
Charm mixing CPV in Charm	**						***	*	*	* ${ }_{\text {* }}$	*	

R-S models

- flavour in extra-dim. is severely constrained by ε_{k}
- large B/Bs effect are still possible

there are R-S models where effects in $\mathrm{B}(\mathrm{s})$ are confined to the mixing amplitudes
M. Blanke et al., 0906.5454

LHT model

- LFV: $\tau \rightarrow \mu \gamma$ vs $\tau \rightarrow$ lll
- semileptonic asymmetries

I.I. Bigi et al., 0904.1545
 \section*{Recently:
 \section*{Recently: large and large and correlated CPV correlated CPV effects in D mixing} effects in D mixing}

ratio	LHT	MSSM (dipole)	MSSM (Higgs)
$\frac{B r\left(\tau^{-} \rightarrow e^{-} e^{+} e^{-}\right)}{B r(T \rightarrow e \gamma)}$	$0.04 \ldots 0.4$	$\sim 1 \cdot 10^{-2}$	$\sim 1 \cdot 10^{-2}$
$\frac{B r\left(\tau^{-} \rightarrow \mu^{-} \mu^{+} \mu^{-}\right)}{B r(t \rightarrow \mu)}$	$0.04 \ldots 0.4$	$\sim 2 \cdot 10^{-3}$	$0.06 \ldots 0.1$
$\frac{B r\left(\tau^{-} \rightarrow e^{-} \mu^{+} \mu^{-}\right)}{B r(t \rightarrow e \gamma)}$	$0.04 \ldots 0.3$	$\sim 2 \cdot 10^{-3}$	$0.02 \ldots 0.04$
$\frac{B r\left(\tau^{-} \rightarrow \mu^{-} e^{+} e^{-}\right)}{B r(\tau \rightarrow \mu \gamma)}$	$0.04 \ldots 0.3$	$\sim 1 \cdot 10^{-2}$	$\sim 1 \cdot 10^{-2}$
$\frac{B r\left(\tau^{-} \rightarrow e^{-} e^{+}-\right)}{B r\left(\tau^{-} \rightarrow e^{-} \mu^{+}+\mu^{-}\right)}$	$0.8 \ldots 2.0$	~ 5	$0.3 \ldots 0.5$
$\frac{B r\left(\tau^{-} \rightarrow \mu^{-} \mu^{+} \mu^{-}\right)}{B r\left(\tau^{-} \rightarrow \mu^{-} e^{+} e^{-}\right)}$	$0.7 \ldots 1.6$	~ 0.2	$5 \ldots 10$

