Physics goals for data taking at Y(3S)

Roberto Mussa INFN Torino

Belle-II Italian Meeting 3

LNF, May 21, 2015

Outline

F	Experiment	Scans/Off.	Res.	$\Upsilon($	5S)	Υ(4	(S)	Υ(3	SS)	$\Upsilon(2$	2S)	Υ (1	1S)
				10876	MeV	10580	MeV	10355	MeV	10023	MeV	9460	MeV
		$\rm fb^{-1}$		$\rm fb^{-1}$	10^{6}	$\rm fb^{-1}$	10^{6}	$\rm fb^{-1}$	10^{6}	$\rm fb^{-1}$	10^{6}	$\rm fb^{-1}$	10^6
C	CLEO	17.1		0.4	0.1	16	17.1	1.2	5	1.2	10	1.2	21
E	BaBar	54		R_b s	scan	433	471	30	122	14	99	-	_
E	Belle	100		121	36	711	772	3	12	25	158	6	102

- Physics with 600 M Y(3S):
- The η,π transitions
- Hindered E1 transitions
- M1 transitions to $\eta_{b}(1,2S)$
- D waves
- $\Upsilon(3S) \rightarrow \pi\pi \Upsilon(1,2S)$
- Antinuclei from Y(3S)
- Target Ldt: 150 fb⁻¹

All during BEAST-2 Phase? Or 50 during BEAST-2, and 100 while taking first Y(4S) data (3 ab⁻¹)

Alternative scenarios:

Running at $\Upsilon(4S)$ and continuum point Running at $\Upsilon(6S)$, 30 fb⁻¹ = 6x Belle-I

Scan of $\Upsilon(1^{3}D_{1})$, $7x2fb^{-1}$ points , 14 total Scan of $\Upsilon(2^{3}D_{1})$, $10x1.5fb^{-1}$ points , 15 total

Can we do them during BEAST-2 Phase?

Luminosity ramp-up scenarios: - at $L1 = 1 \times 10^{34}$, 0.75 fb⁻¹ / day How many days to reach L1? How long will Phase-II last?

Krakow B2TIP: WG7

R.Mizuk(ITEP), <u>R.Mussa (INFN Torino)</u>, C.P.Shen(Beihang), Y.Kiyo(Juntendo), A.Polosa (Roma), S.Prelovsek (Ljubljana)

Theory:

Maiani,Guerrieri: Charmed (and light) Tetraquarks Ali: Beauty,charmed and light Tetraquarks Guo: Molecules Eichten: Hadronic Transitions in cc and bb Vairo: Radiative Transitions in cc and bb

Experiment:

Mizuk: *Running at 6S, scanning* 10.95 *to* 11.25 Mussa: *Running at 3S, scanning* Y(1,2D) Tamponi: *MC Generators*

The $\pi\pi/\eta$ transitions: TH vs EXP

 $\pi\pi$ transitions

Hadron transition puzzle: solved?

From Eichten's talk at Krakow

- Above heavy flavor production threshold the usual QCDME fails.
 - The transitions rate are much larger than expected.
 - The factorization assumption fails. Heavy quark and light hadronic dynamics interact strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium wavefunctions. Magnetic transitions not suppressed.
 - A new mechanism for hadronic transitions is required.
- A new mechanism, in which the dynamics is factored differently, is purposed.
 - It requires an intermediate state containing two narrow heavy-light mesons nearby and near threshold (v -> zero). This is the factor. Other light hadrons may be present or not.
 - The production of this state from the initial state is calculated using familiar strong dynamics of coupled channels.
 - The evolution of this threshold system into the final quarkonium state and light hadrons requires a new threshold dynamics.
- HQS as well as the usual SU(3) and chiral symmetry expectations are recovered.
- Resolves the puzzles in n transitions.

Hadron transitions: a new paradigm?

From Eichten's talk at Krakow

For lower states, QCDME works:

$$R_{Q\bar{Q}}(n \to m) \equiv \frac{\Gamma(n^3 S_1 \to m^3 S_1 + \eta)}{\Gamma(n^3 S_1 \to m^3 S_1 + \pi^+ \pi^-)} :$$

Ratio	theory	experiment
$R^{c\bar{c}}(2 \to 1)$	3.29×10^{-3}	9.78×10^{-2}
$R^{b\bar{b}}(2 \to 1)$	$1.16 imes 10^{-3}$	$1.16 imes 10^{-3}$
$R^{b\bar{b}}(3 \to 1)$	4.57×10^{-3}	$<4.13\times10^{-3}$
$R^{b\bar{b}}(4 \to 1)$	2.23×10^{-3}	2.45
$R^{b\bar{b}}(4 \rightarrow 2)$	5.28×10^{-4}	

~ 30 > theory sets $C_3/C_1 = 0.143 \pm 0.024$ related to $\pi\pi$ suppression ~ 1000 > theory

 $2M(D^{0})-M(\psi') = 53.11 \text{ MeV}/c^{2} \qquad 2M(B^{0})-M(\Upsilon 3S) = 204 \text{ MeV}/c^{2} \\ 2M(D^{+})-M(\psi') = 43.57 \text{ MeV}/c^{2} \qquad 2M(B^{+})-M(\Upsilon 3S) = 204 \text{ MeV}/c^{2} \\ 2M(D_{s})-M(\psi') = 250.5 \text{ MeV}/c^{2} \qquad 2M(B_{s})-M(\Upsilon 3S) = 378 \text{ MeV}/c^{2} \\ \text{Large enhancement of } \psi' \rightarrow \eta \psi \text{ explained by the proximity of the } D\overline{D}, D_{s}\overline{D}_{s} \text{ thresholds.} \\ \text{Large isospin violation in } \psi' \rightarrow \pi h \text{ due to the large } D^{0}-D^{+} \text{ mass difference} \\ \text{In bottomonium , degenerate } B^{0}\overline{B}^{0}/B^{+}B^{-} \text{ threshold} \rightarrow \text{ no isospin violation} \\ \text{The eta transition 3S to 1S is still in the ballpark: wavefunction overlaps can suppress is , like it happens in hindered E1 transitions. We ought to measure it, and (precisely) the E1 hindered transitions from 3S to 1P states. \\ \end{array}$

The η transitions

Testing QCD multipole expansion In low mass region: $Y' \rightarrow \eta Y : M2^*E1 + M1^*M1$ $Y' \rightarrow \pi\pi Y : E1^*E1$ $(Y' \rightarrow \eta Y)/(Y' \rightarrow \pi\pi Y) \sim (\Lambda_{QCD}/m_b)^2$

Three more transitions should be visible from Y(3S) but experimental limits, whe**1025**0 available, are below theory expectations:

- B(Y(3S) → ηY(1S)) theory: 5-10×10⁻⁴ BaBarprd84,42003(2011) <1x10⁻⁴ - Y(1D) → ηY(1S)

Voloshin: PLB 562, 68(2003)

QCD Axial Anomaly should enhance $Y(1D) \land 9500$ $\eta Y(1S)$ with respect to $Y(1D) \land \pi\pi Y(1S)$: no quantitative estimates available.

 $- \operatorname{B}(\chi_{b0}(2P) \rightarrow \eta \eta_{b}) \sim \text{few 10}^{-3} \text{ (S-wave)}$ $Voloshin: \operatorname{Mod.Phys.Lett. A19, 2895(2004)}$ $\frac{\Gamma(\chi_{b0}(2P) \rightarrow \eta \eta_{b})}{\Gamma(\chi_{b0}(2P) \rightarrow \gamma \Upsilon)} \approx \frac{\pi^{3}}{3\alpha} \frac{p_{\eta} f_{\eta}^{2} m_{\eta}^{4}}{\omega_{\gamma}^{3} m_{b}^{2} \Delta^{2}} \approx 0.2 \left(\frac{f_{\eta}}{0.16 \text{ GeV}}\right)^{2} \left(\frac{1 \text{ GeV}}{\Delta}\right)^{2}$

3rd Belle-II Italian Meeting

 $\Upsilon(3S) \rightarrow \Upsilon(2S) \pi^0 \pi^0$

CLEO: Bhari et al. PRD79,011103 (2009) Sample: 6M 3S decays, excl for neutrals, incl+excl for charged Assuming Y(2S) to ee+uu = 4.06%

Analysis Effi	ciency-corrected Yie	eld $\mathcal{B}(\%)$
$3S \rightarrow 1S\pi^0\pi^0$	6584 ± 274	$2.24 \pm 0.09 \pm 0.11$
$3S \rightarrow 2S\pi^0\pi^0$	4391 ± 207	$1.82 \pm 0.09 \pm 0.12$
$2S \rightarrow 1S\pi^0\pi^0$	38069 ± 727	$8.43 \pm 0.16 \pm 0.42$
Analysis Data	Yield Efficiency ($\%$) <i>B</i> (%)
3S Excl. 5215	$\pm 72 \qquad 39.7 \pm 0.1$	$4.47 \pm 0.06 \pm 0.18$
3S Incl. 184760	$\pm 430 69.9 \pm 0.2$	$4.46 \pm 0.01 \pm 0.14$
Average		$4.46 \pm 0.01 \pm 0.13$
2S Excl. 26417	$\pm 163 \qquad 32.0 \pm 0.1$	$18.26 \pm 0.11 \pm 0.81$
2S Incl. 824418	$\pm 908 50.3 \pm 0.1$	$17.99 \pm 0.02 \pm 0.59$
Average		$18.02 \pm 0.02 \pm 0.61$

		$\Upsilon(3S)$	$\tilde{p}) \rightarrow$			$\Upsilon(2S) \rightarrow$	
Contribution	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(1S)\pi^0\pi^0$	$\Upsilon(2S)\pi^0\pi^0$	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(1S)\pi^+\pi^-$	$\Upsilon(1S)\pi^0\pi^0$
	Excl.	Incl.			$\operatorname{Excl.}$	Incl.	
π^{\pm}/π^{0}	1.2	2.4	3.2	3.2	1.2	2.4	3.2
ℓ Tracks	1.0	N/A	1.0	1.0	1.0	N/A	1.0
Luminosity	1.7	1.7	1.7	1.7	1.5	1.5	1.5
ℓ Type	2.5	N/A	2.5	2.5	2.5	N/A	2.5
MC Modelling	0.2	0.4	0.5	2.2	2.3	1.4	0.2
$\ell\ell \ { m BR}$	2.0	N/A	2.0	4.2	2.0	N/A	2.0
Other Sources	0.35	0.8	1.0	1.0	0.1	0.8	1.0
Total	4.0	3.1	5.1	6.6	4.5	3.3	5.0

 $\Upsilon(3S) \rightarrow \Upsilon(2S) \pi^+ \pi^-$

Systematics dominated:

Babar: two analyses:

Aubert et al., PRD78, 112002 (2008)
Using data from Y(4S): ISR exclusive decays
Lees et al, PRD84, 011104 (2011)
Inclusive dipion transitions from 108 M Y(3S)

Belle-II startup

 $\Upsilon(3S) \rightarrow \Upsilon(2S) \pi^+ \pi^-$

Systematics dominated:

Babar: two analyses:

Aubert et al., PRD78, 112002 (2008)
Using data from Y(4S): ISR exclusive decays
Lees et al, PRD84, 011104 (2011)
Inclusive dipion transitions from 108 M Y(3S)

Belle-II startup

M1-E1 Discrepancy in $\eta_{h}(1S)$ mass measurements

M1 transitions: inclusive from 3S (Babar,CLEO) and 2S (Babar, Belle) E1 transitions: inclusive from hb(1,2P) produced in Y(4,S) decays (Belle) Lineshape Skewness, as in the case of charmonium? Width = 10 MeV vs 30 in cc In any case : we must improve the error on the M1 radiative width:

PNRQCD@NLL PRL92,242001(2004) Lattice QCD PRD82,114502(2010)

3rd Belle-II Italian Meeting

Converted photons for $\eta_{h}(1S)$ mass measurements

Energy resolution improves from 25% to 5% : ISR peak and η_b peak are better resolved. Width+lineshape measurement can be possible.

Selecting conversions in the inner CDC wall reduces multiple scattering and allows further improvement of the resolution.

BEAST-2 material can favor conversions, increasing the Vee sample.

Perfect understanding of material budget is key.

Phys.Rev. D84 (2011) 072002

Transition	E^*_{γ}	Yield	ϵ	Derived Branching F	Traction (%	6)
	(MeV $)$		(%)	BABAR	CUSB	CLEO
$\chi_{b0}(2P) \to \gamma \Upsilon(1S)$	742.7	469^{+260}_{-259}	1.025	$0.7 \pm 0.4^{+0.2}_{-0.1} \pm 0.1 \ (< 1.2)$	< 1.9	< 2.2
$\chi_{b1}(2P) \to \gamma \Upsilon(1S)$	764.1	14965^{+381}_{-383}	1.039	$9.9 \pm 0.3^{+0.5}_{-0.4} \pm 0.9$	7.5 ± 1.3	10.4 ± 2.4
$\chi_{b2}(2P) \to \gamma \Upsilon(1S)$	776.4	11283^{+384}_{-385}	1.056	$7.0 \pm 0.2 \pm 0.3 \pm 0.9$	6.1 ± 1.2	7.7 ± 2.0
$\Upsilon(3S) \to \gamma \eta_b(1S)$	$907.9 \pm 2.8 \pm 0.9$	933^{+263}_{-262}	1.388	$0.058 \pm 0.016^{+0.014}_{-0.016} \ (< 0.085)$	-	-

3rd Belle-II Italian Meeting

Converted photons for $\eta_{h}(1S)$ mass measurements

Energy resolution improves from 25% to 5% : ISR peak and η_b peak are better resolved. Width+lineshape measurement can be possible.

Selecting conversions in the inner CDC wall reduces multiple scattering and allows further improvement of the resolution.

BEAST-2 material can favor conversions, increasing the Vee sample.

Perfect understanding of material budget is key.

Phys.Rev. D84 (2011) 072002

Transition	E^*_{γ}	Yield	ϵ	Derived Branchi	ng Frac	tion (%))
	(MeV $)$		(%)	BABAR	CB	CUSB	CLEO
$\chi_{b0}(1P) \to \gamma \Upsilon(1S)$	391.5	391 ± 267	0.496	$2.2 \pm 1.5^{+1.0}_{-0.7} \pm 0.2 \ (< 4.6)$	< 5	< 12	1.7 ± 0.4
$\chi_{b1}(1P) \to \gamma \Upsilon(1S)$	423.0	12604 ± 285	0.548	$34.9 \pm 0.8 \pm 2.2 \pm 2.0$	34 ± 7	40 ± 10	33.0 ± 2.6
$\chi_{b2}(1P) \to \gamma \Upsilon(1S)$	442.0	7665^{+270}_{-272}	0.576	$19.5 \pm 0.7^{+1.3}_{-1.5} \pm 1.0$	25 ± 6	19 ± 8	18.5 ± 1.4
$\Upsilon(2S) \to \gamma \eta_b(1S)$	$613.7_{-2.6-1.1}^{+3.0+0.7}$	1109 ± 348	1.050	$0.11 \pm 0.04^{+0.07}_{-0.05} \ (< 0.21)$	-	-	-

3rd Belle-II Italian Meeting

More $\eta_{\rm b}(1S)$ pathways

Can we improve systematics and resolution removing the ISR peak? From 600M Y(3S), we have 3% dipion tagged Y(2S), i.e. 18M, about 1/8 (1/6) of the Belle (Babar) sample, with 30% less combinatorial contamination (from qq continuum) Again, the slow pion efficiency is the key factor.

Radiative E1 Widths: direct

	process	$\Gamma^{\rm LO}_{ m pNRQCD}/ m keV$	$\Gamma_{\rm pNRQCD}^{\rm NLO}/{ m keV}$	$\Gamma_{\rm mod}/{\rm keV}$	Γ_{exp}^{PDG}/keV
Precise pNROCD	$\chi_{b0}(1P) \rightarrow \Upsilon(1S)\gamma$	31.8	29.7 ± 3.1	25.7-27.0	-
calculations on direct E1	$\chi_{b1}(1P) \rightarrow \Upsilon(1S)\gamma$	40.3	35.8 ± 4.0	29.8-31.2	-
transitions are now	$\chi_{b2}(1P) \rightarrow \Upsilon(1S)\gamma$	45.9	40.6 ± 4.6	33.0-34.2	-
available to be compared	$h_b(1P) \rightarrow \eta_b(1S)\gamma$	60.8	44.3 ± 6.1	-	-
with phenomenological	$\Upsilon(2S) \rightarrow \chi_{b0}(1P)\gamma$	1.52	1.13 ± 0.15	0.72-0.73	1.22 ± 0.16
models	$\Upsilon(2S) \rightarrow \chi_{b1}(1P)\gamma$	2.26	1.94 ± 0.23	1.62-1.65	2.21 ± 0.22
	$\Upsilon(2S) \rightarrow \chi_{b2}(1P)\gamma$	2.34	2.19 ± 0.23	1.84-1.93	2.29 ± 0.22
	$\chi_{b0}(2P) \rightarrow \Upsilon(2S)\gamma$	12.6	13.0 ± 1.3	10.6-11.4	-
	$\chi_{b1}(2P) \to \Upsilon(2S)\gamma$	17.1	16.3 ± 1.7	11.9-12.5	-
	$\chi_{b2}(2P) \rightarrow \Upsilon(2S)\gamma$	20.4	18.1 ± 2.0	12.9-13.1	-
	$\Upsilon(3S) \rightarrow \chi_{b0}(2P)\gamma$	1.44	1.05 ± 0.14	1.07-1.09	1.20 ± 0.16
	$\Upsilon(3S) \to \chi_{b1}(2P)\gamma$	2.38	2.05 ± 0.24	2.15-2.24	2.56 ± 0.34
	$\Upsilon(3S) \rightarrow \chi_{b2}(2P)\gamma$	2.53	2.35 ± 0.25	2.29-2.44	2.66 ± 0.41

The direct E1 transitions are already systematics limited.

The 1P to 1S transitions can be compared to theory only measuring total widths: best candidate is $\chi_{b0}(1P)$: 30 keV / 0.02 = 1.5 MeV?

3rd Belle-II Italian Meeting

Hindered E1 Widths

Hindered E1 transition widths are the most sensitive to relativistic corrections on wavefunctions, which are essential for the calculations on hadronic transitions.

Table 1: Cancellations in \mathcal{E}_{if} by node regions.

	$\Gamma_{J=0}$ (eV)	$\Gamma_{J=1}$ (eV)	$\Gamma_{J=1}/\Gamma_{J=0}$	$\Gamma_{J=2}$ (eV)	$\Gamma_{J=2}/\Gamma_{J=0}$	$\Gamma_{J=2}/\Gamma_{J=1}$
Moxhay–Rosner (1983)	25	25	1.0	150	6.0	6.0
Gupta et al. (1984)	1.2	3.1	2.6	4.6	3.8	1.5
Grotch et al. (1984) (a)	114	3.4	0.03	194	1.7	57
Grotch et al. (1984) (b)	130	0.3	0.002	430	3.3	1433
Daghighian–Silverman (1987)	42	(c)	(c)	130	3.1	(c)
Fulcher (1990)	10	20	2.0	30	3.0	1.5
Lähde (2003)	150	110	0.7	40	0.3	0.4
Ebert et al. (2003)	27	67	2.5	97	3.6	1.4
$E_{\gamma}^3 \times (2J+1)$			2.4		3.6	1.5

(a) Scalar confining potential. (b) Vector confining potential.

(c) The authors did not provide a prediction for $\Gamma[\Upsilon(3S) \to \gamma \chi_{b1}(1P)]$.

3rd Belle-II Italian Meeting

Hindered M1 between P waves

Idea: search for the first hindered M1 transition between P-wave bottomonia, in $MM(\gamma\gamma\gamma)$ replacing the π^0 mass constraint with the requirement that $MM(\gamma_{low}) = M(\chi_{b})$.

3rd Belle-II Italian Meeting

Theory papers on hindered P-wave M1 transitions in bottomonium do not exist; for charmonium see Guo,**PoS ConfinementX (2012) 136**)

Urgently need theory calculations on this topic: Vairo , Pineda ?

Spectrum below threshold

Below threshold:

* 3S: $\eta_{b}(3S)$ not yet observed by anyone, maybe reachable from $h_{b}(3P)$? * 3P: $\chi_{b}(3P)$ discovered at LHC, not yet resolved, we may eventually study them from 4S

 $h_{b}(3P)$: too high to be reached from 5S via $Z_{b'}$ maybe from 6S? How?

* 1D states : S=1 states BEST STUDIED from 3S, S=0 maybe reachable from $h_{b}(2P)$

* 2D, 1F, 1G: totally unknown

We propose to search for the lowest member of the 2D triplet with a scan. The others may be reached from 6S. The 1F triplet 2,3,4⁺⁺ is very close in mass to Y3S, but may be reached from the 2D triplet via E1 radiative transitions.

A puzzling π^0 transition

Babar: PRD 84 (2011)091101 3 sigma evidence of h_b from the inclusive search of $e^+e^- \rightarrow \Upsilon(3S) \rightarrow \pi^0 h_b \rightarrow \pi^0 \gamma \eta_b$

Theory on Y(1,2D)

Spectrum open items:

Lattice predictions on 1D splittings: Daldrop et al., PRL 108, 102003 (2012)

CoG of Y(1,2D) systems in potential models: Godfrey/Rosner, PRD 64, 097501 (2001)

Figure 1: Predictions for the spin-weighted averages of ${}^{3}D_{J} b\bar{b}$ states. Open circle (\circ): KR [3] (inverse scattering); open square (\Box): Cornell [6] (QCD-based potential); open triangle (\triangle): BT [7] (QCD-based potential; published masses only quoted to nearest 10 MeV); open inverted triangle (\bigtriangledown): Gupta *et al.* [8] (QCD-based potential); open diamond (\diamond): MR [9] (QCD-based potential); solid circle: MB [10] (relativistic corrections; mass of ${}^{3}D_{1}$ plotted); solid square: GI [11] (QCD-based potential, masses calculated to nearest MeV); solid triangle: Grant *et al.* [12] (power-law potential); solid inverted triangle: EQ [13] (QCD-based potential [7], quoted for n = 1): solid diamond: lattice [14] (quenched approximation with $\beta = 6.0$, quoted for n = 1).

3rd Belle-II Italian Meeting

Tetraquark-mania

From Ali's talk at Krakow

		charmonium	bottomor	nium-like	
Label	J^{PC}	State	Mass [MeV]	State	Mass [MeV]
X_0	0++	—	3756	—	10562.2
X'_0	0^{++}		4024		10652.2
X_1°	1^{++}	X(3872)	3890	—	10607.2
Ζ	1^{+-}	$Z_{c}^{+}(3900)$	3890	$Z_{h}^{+,0}(10610)$	10607.2
Z'	1+-	$Z_{c}^{+}(4020)$	4024	$\tilde{Z}_{h}^{+}(10650)$	10652.2
<i>X</i> ₂	2++	—	4024		10652.2
Y_1	1	Y(4008)	4024	$Y_b(10891)$	10891.1
Y_2	1	Y(4260)	4263	$Y_b(10987)$	10987.5
Y_3	1	Y(4290) (or $Y(4220)$)	4292		10981.1
Y_4	1	Y(4630)	4607		11135.3
Y_5	1		6472		13036.8

SuperKEK Limits

0.7

0.4

0.3

0.2

0.1

HER Beam Energy (GeV)

 $R_{b}(s)$

Wrap-up (in italiano)

Fisica durante BEAST-II dipende da:

- Ldt integrabile
- Rapida definizione del material budget

Y(3S) e' la best option per > 100 fb⁻¹ First papers most likely from :

- eta transitions
- radiative (hindered) transitions
- 4-photon cascades , for D states
- 3S to 1S dipion transitions

Y(6S) e' buona per <60 fb⁻¹ (10x Belle-I)

Scans alla Y(1,2D) non realistici per il 2017 Alternative: prese dati sul continuo? DarkPhoton?

Backup

3rd Belle-II Italian Meeting

Cusp in
$$K^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$$

In 2006, NA48/2 measured the $\pi\pi$ scattering length using 60 M K+ decays, fitting the cusp observed at M=2m($\pi\pm$) in the neutral dipion mass spectrum.

At low energy the $\pi\pi$ interaction is described by two scattering lengths who vanish in the chiral limit:

$$a_0^0 = \frac{7M_\pi^2}{32\pi F_\pi^2} + \mathcal{O}(m_q^2)$$
 $a_0^2 = -\frac{M_\pi^2}{16\pi F_\pi^2} + \mathcal{O}(m_q^2)$
Weinberg, PRL17,616(1966)

Using ChPT, theory predicts: $a_0^0 - a_0^2 = 0.265 \pm 0.004$

3rd Belle-II Italian Meeting

R.Mussa, Physics at Belle-II startup

 q_3

Cusp in $\Upsilon(3S) \rightarrow \Upsilon(2S) \pi^+ \pi^-$

The cusp effect was calculated using NREFT. Liu et al,EPJC73, 2284 (2013)

The reduction on the number of events is 9% in this process. (13% in K+ decay, 8% in $\eta' \rightarrow \eta \pi \pi$)

Can we measure it with 600M Y(3S) decays ?

3rd Belle-II Italian Meeting

Cusp in $\Upsilon(3S) \rightarrow \Upsilon(2S) \pi^+ \pi^-$

The effect was simulated assuming to have 60k,600k,6M events in the range M($\pi^0\pi^0$)=0.27-0.29, 1/6 of the total.

Assuming 600M decays with 10% dipion acceptance, we have $0.1*1.85\%/6 \sim 185$ k decays in that range.

Can we use all events under the Y(2S) peak in MM($\pi^0\pi^0$)? Penalty for extra clean Y(2S) decays:

- exclusive dilepton : $4\%^*\alpha\epsilon$
- charge dipion recoil: $20\%^*\alpha\epsilon$

Bin width	Events	6×10^4	6×10^5	3×10^6	6×10^6
0.1 MeV	χ^2/dof	1.21	1.09	1.16	0.88
	$a_0 - a_2$	0.293 ± 0.036	0.260 ± 0.012	0.2717 ± 0.0048	0.2661 ± 0.0036
0.2 MeV	χ^2/dof	0.72	1.15	1.05	1.12
0.2 ivic v	$a_0 - a_2$	0.286 ± 0.035	0.251 ± 0.014	0.2722 ± 0.0048	0.2621 ± 0.0038
0.5 MeV	χ^2/dof	0.93	0.54	1.27	1.30
0.5 1010 0	$a_0 - a_2$	0.262 ± 0.026	0.256 ± 0.012	0.2659 ± 0.0051	0.2693 ± 0.0035
1 MeV	χ^2/dof	1.05	0.78	1.17	0.69
	$a_0 - a_2$	0.221 ± 0.054	0.291 ± 0.010	0.2658 ± 0.0054	0.2661 ± 0.0037
2 MeV	χ^2/dof	0.59	1.06	1.05	1.37
	$a_0 - a_2$	0.260 ± 0.040	0.262 ± 0.012	0.2592 ± 0.0055	0.2632 ± 0.0037

3rd Belle-II Italian Meeting

Total widths of $c\overline{c}$ and $b\overline{b}$ even P waves

1/1	TIDEE III. I wo gluon decay within of the p wave neavy quarkonium states.					
	$\Gamma^{\chi_{c0}}_{2g}~({ m MeV})$	$\Gamma^{\chi_{c2}}_{2g}~({ m MeV})$	$\Gamma^{\chi_{b0}}_{2g}~({ m keV})$	$\Gamma^{\chi_{b2}}_{2g}~({ m keV})$	$\Gamma_{2g}^{\chi_{b0}'}~({ m keV})$	$\Gamma_{2g}^{\chi_{b2}'}~(\mathrm{keV})$
PDG^{a} [1]	10.4 ± 0.7	1.98 ± 0.11				
This work	$11.9\substack{+0.7 \\ -0.9}$	$1.74\substack{+0.08\\+0.09}$	$431\substack{+45 \\ -49}$	214^{-0}_{+1}	122^{+4}_{-6}	$92.3\substack{+17.7 \\ -14.8}$
Wang <u>[6, 7]</u>	10.3	2.64	887	220	914	248
Laverty ^{b} [8]	4.68(4.88)	1.72(0.69)	960(2740)	330(250)	990(2740)	350(260)
$\operatorname{Gupta}^{c} [\underline{9}]$	13.44(17.10)	1.20(2.39)	2150(2290)	220(330)		
Bodwin [<u>19</u>]	4.8 ± 0.7	$\underline{1.98\pm0.18}$				
Barbieri [<u>4</u>]	2.4	0.64				
Godfrey [<u>12</u>]	6.25	0.774	672	123	672	137
Ebert [<u>11]</u>			653	109	431	76

TABLE III: Two-gluon decay widths of the *p*-wave heavy quarkonium states.

 ${}^{a}\Gamma_{\mathrm{tot}}\cong\Gamma_{2g}.$

 b The values are obtained by the perturbative (nonperturbative) calculation.

 c The values are obtained by the QCD potential (alternative treatment).

3rd Belle-II Italian Meeting

Y(3S) in PDG nutshell

$\Upsilon(3S)$ MASS

VALUE (MeV)	DOCUMENT ID	TECN	COMMENT
10355.2±0.5	¹ ARTAMONOV 00	MD1	$e^+e^- ightarrow$ hadrons

*T***(35) WIDTH**

203 MeV below the lowest $B\overline{B}$ threshold

 $\Upsilon(3S)$ DECAY MODES

VALUE (keV)

DOCUMENT ID

20.32 ± 1.85 OUR EVALUATION See the Note on "Width Determinations of the γ

States"

Scale factor/

The narrowest vector quarkonium Annihilation width to light hadrons ~10 keV

	Mode	Fraction (Γ_i/Γ) Con	fidence level				
Γ ₁ Γ ₂	$\Upsilon(2S)$ anything $\Upsilon(2S) \pi^+ \pi^-$	$(10.6 \pm 0.8)\%$	S=1.6		R	adiative decays	
· 2 Γ ₃	$\Upsilon(2S) \pi^0 \pi^0$	$(1.85\pm0.14)\%$	0 110	Г ₁₉	$\gamma \chi_{b2}(2P)$	(13.1 ± 1.6) %	S=3.4
Γ ₄	$\Upsilon(2S)\gamma\gamma$	(5.0 ± 0.7)%		Γ ₂₀	$\gamma \chi_{b1}(2P)$	(12.6 \pm 1.2) %	S=2.4
Г ₅ Гс	$\Upsilon(2S)\pi^0$ $\Upsilon(1S)\pi^+\pi^-$	$< 5.1 \times 10^{-4}$	CL=90%	Γ ₂₁	$\gamma \chi_{b0}(2P)$	(5.9 \pm 0.6)%	S=1.4
Γ ₇	$\Upsilon(1S)\pi^0\pi^0$	$(2.20\pm0.13)\%$		Γ ₂₂	$\gamma \chi_{b2}(1P)$	(9.9 ± 1.3) $ imes 10^{-3}$	S=2.0
Г <mark>8</mark>	$\Upsilon(1S)\eta$	$< 1 \times 10^{-4}$	CL=90%	Γ ₂₃	$\gamma A^0 \rightarrow \gamma$ hadrons	$< 8 \times 10^{-5}$	CL=90%
F٩	$\Upsilon(1S)\pi^0$	$< 7 \times 10^{-5}$	CL=90%	Γ ₂₄	$\gamma \chi_{b1}(1P)$	$(9 \pm 5) \times 10^{-4}$	S=1.9
Г ₁₀ Г ₁₁	$h_b(1P)\pi^0 \rightarrow \gamma \eta_b(1S)\pi^0$	< 1.2	CL=90%	Γ ₂₅	$\gamma \chi_{b0}(1P)$	$(2.7 \pm 0.4) \times 10^{-3}$	
Γ ₁₂	$h_b(1P)\pi^+\pi^-$	$< 1.2 \times 10^{-4}$	CL=90%	Г ₂₆	$\gamma \eta_b(2S)$	$< 6.2 \times 10^{-4}$	CL=90%
Γ ₁₃	$\tau^+ \tau^-$	(2.29±0.30) %	_	Γ ₂₇	$\gamma \eta_{b}(1S)$	(5.1 \pm 0.7) $ imes$ 10 $^{-4}$	
I ₁₄ Г ₁₅	$\mu^+ \mu^-$ $e^+ e^-$	$(2.18\pm0.21)\%$ seen	S=2.1	Γ ₂₈	$\gamma X \rightarrow \gamma + \geq$ 4 prongs	$[a] < 2.2 \times 10^{-4}$	CL=95%
Γ ₁₆	hadrons			Γ ₂₉	$\gamma a_1^0 \rightarrow \gamma \mu^+ \mu^-$	$< 5.5 \times 10^{-6}$	CL=90%
Γ ₁₇	ggg	(35.7 ±2.6)%		Γ ₂₀	$\gamma a^{0} \rightarrow \gamma \tau^{+} \tau^{-}$	$[b] < 1.6 \times 10^{-4}$	CI 90%
Γ ₁₈	$\gamma g g$	(9.7 ± 1.8) $ imes 10^{-3}$		' 30			22-3070

Systematics dominates already dipion 1,2S transitions and direct E1 transitions

3rd Belle-II Italian Meeting

C'e' spazio per la fisica?

Goal of Commissioning Phase 2

Many group working with different goals during phase 2. Beam background measurements are just a small part of the overall program

- Beam commissioning to start collision (machine group: KCG)
 - Forward luminosity monitors(ZDLM) for knob tuning
- BG measurements and mitigation (KEK Belle group: BCG)
 - BG studies of each component to check consistency with simulation
 - Studies of relation between VXD hits and monitor hits
 - Beam collimators control study
 - Neutron measurement (fast and slow)
- Belle II commissioning with partial VXD sensors (Belle II shift)
 - Full Belle II DAQ
 - Slow control (also communication with machine)
 - PXD RoI finding with CDC+SVD tracking data
 - Detector noise check
 - And investigation and confirmation to install the full VXD
- Optimization of interlock system
 - Slow info. Some alarms or abort by environmental or rad. monitors
 - First info.: beam abort by hard wired signals

C'e' spazio per la fisica?

Goal of Commissioning Phase 2 (part II)

- Beam injection BG study (VXD group)
 - BG damping time measurement for Trigger veto gate
 - requiring storing veto gate width to condition database
 - With moderate update timing
- First try of CO2 cooling system for VXD sensors (VXD group)
 - Checking water vapor level by sucking air
 - cold and warm dry volume
- Detailed characterization of beam backgrounds (BEAST group)
 - Target luminosity at phase-2 is L ~ 10³⁴ cm⁻² s⁻¹, and BG structure is not exactly same as phase-3. We need somehow extrapolation to expect phase-3 beam BG.
 - how to extrapolate it?
 - We have a lot of monitor sensors, diamond sensors, 64 PIN diodes, FE-I4, CLOWS.
 - Effect from each BG component has to be studied separately by BG MC.
 - This extrapolation can be done only after the BG is will controlled by collimator studies.
 - Deferent BG components have different dependence for collimator setting. We can separate the BG components by using this feature.

BEAST-II inventory

Feb. 4, 2015

Phase-2 sensors in VXD volume

sensor contact person		number	location	DAQ	note	
PXD + SVD C. Marinas K. Nakamura		2 PXD ladders 4 SVD ladders	decided +X	Belle II DAQ		
diamond L. Vitale w/ PIN diode (beam BG, abort)		4 diamonds 64 PIN diodes	diamond: decided	Belle II monitor DB (EPICS)	PIN diode location: around diamond and beam pipe	
FE-I4 pixels (Synchrotron rad. and track multiplicity)	C. Marinas	3 arms	decided (90, 180, 270)	?	arm design has to be fixed	
CLAWS (beam BG)	C. Marinas	2 ladders	decided (135 and 225)	?		
Scintillator PIN diode (beam BG)	H. Nakayama K. Nakamura	~60 (scintillator) ? (PIN diode)	not decided	?	Basically put them around QCS	
BGO J. Liau (Bhabha events)		8 (if space allows)	under discussion	BEAST DAQ	Acceptance is overlapped with PXD cooling block.	
temperature (NTC), humidity (DMT242B)	L. Vitale	not decided	not decided	Belle II monitor DB		
(crosscheck for FOS)	See b					
FOS + L-shape (temp. and humidity)	I. Vila D. Moya	{	?	2	sensor on outer cover?	
PLUME (beam BG)	I. Ripp-Baudot	1 ladder	not decided	EPICS DB BEAST DAQ?	baseline: PLUME-2 (hopefully PLUME-3)	

3rd Belle-II Italian Meeting

Phase 2 Detectors

- VXD BEAST assembly
 - SVD, PXD ladders
 - Dedicated background and environment sensors (see next page)
- Scintillators and PIN diodes around QCS
- Neutron detector in dock space

CLAWS (Scintillator + SiPM)

- contact person
 - C. Marinas
- motivation and brief analysis plan
 - spatial dependence of BG hits, injection BG
- what kind of data to be stored on DAQ
 - energy deposit, hit timing
- designs of sensor/package/support
 - Are they already fixed???
- number and locations
 - 2 ladders on 135 and 225 deg.
- cables and space for service
 - cables ???
- readout system and DAQ
 - 6404D (PICOTECH) DAQ???
- request for dock boxes
 - no
- request for Belle II clock, trigger, injection timing?
 - how does it get injection timing?

Neutron Detectors

- He-3 tubes and micro-TPCs in dock space
 - TPCs image direction of incoming fast neutrons, but detected rate is low
 - He-3 measure rate of thermal neutrons, which is high

		$Y(2S) \rightarrow$		$Y(3S) \rightarrow$		
	$\pi^+\pi^-Y(1S)$	$\eta Y(1S)$	()	$\pi^+ \pi^- Y(1S)$	$\eta Y(1S)$	
Source		$\eta o \pi^+ \pi^- \pi^0$	$\eta ightarrow \gamma \gamma$		$\eta ightarrow \pi^+ \pi^- \pi^0$	$\eta ightarrow \gamma \gamma$
$\overline{N_{Y}}$		0.9			1.0	
Tracking	1.4	1.4	1.0	2.5	2.5	1.7
π^0/γ		3.6	3.6		3.6	3.6
Lepton identification		1.1		1.0 (1.2)	1.0 (1.2)	1.0
$\pi^+\pi^-$ model	0.5	•••	• • •	0.4 (1.5)		•••
Selection	0.4	2.6	5.5	0.9 (1.2)	4.4 (5.3)	5.6
PDFs	0.1	5.4	5.0	0.1	5.4	5.0
Total \mathcal{B}	2.9	7.6	8.7	3.6 (4.1)	8.6 (9.1)	8.1
Total ratio		7.2	8.3		8.3 (8.9)	7.8

Phase 2 is still a commissioning stage for the accelerator

Accelerator goals

- Opctics tuning
- First beam background study
- Increase of beam currents
- Beam collision tuning
- Luminosity tuning
- Target luminosity: $\mathcal{L}_{peak}^{phase2} = 10^{34} cm^{-2} s^{-1}$
- BEAST II goals already mentioned in previous slide but study will be done only when

target luminosity will be achieved

- We requested two to three weeks
- Belle II detectors will also be used with a random trigger

If acccelerator and BEAST II goals are achieved before summer shutdown: $\mathcal{L} = 16 \text{ fb}^{-1}$ for physics available if \mathcal{L}_{peak} constant