Physics goals for data taking at $\Upsilon(3 S)$

Belle II
Roberto Mussa
INFN Torino

Physics with $600 \mathrm{M} \mathrm{Y(3S):}$

Experiment	Scans/Off. Res.fb^{-1}	$\begin{array}{\|c} \Upsilon(5 S) \\ 10876 \\ \mathrm{MeV} \\ \mathrm{fb}^{-1} \\ 10^{6} \end{array}$	$$	$\begin{array}{\|c} \mid \Upsilon(3 S) \\ 10355 \mathrm{MeV} \\ \mathrm{fb}^{-1} \quad 10^{6} \end{array}$	$\begin{gathered} \Upsilon(2 S) \\ 10023 \mathrm{MeV} \\ \mathrm{fb}^{-1} \quad 10^{6} \end{gathered}$	$\begin{gathered} \Upsilon(1 S) \\ 9460 \mathrm{MeV} \\ \mathrm{fb}^{-1} \quad 10^{6} \end{gathered}$
CLEO	17.1	0.40 .1	$16 \quad 17.1$	1.2	1.210	1.221
BaBar	54	R_{b} scan	433471	30122	1499	-
Belle	100	12136	711772	312	25158	6102

- The η, π transitions

- Hindered E1 transitions
- M1 transitions to $\eta_{b}(1,2 S)$
- D waves
$-\mathrm{Y}(3 \mathrm{~S}) \rightarrow \pi \pi \mathrm{Y}(1,2 \mathrm{~S})$
- Antinuclei from Y(3S)

Target Ldt: $150 \mathrm{fb}^{-1}$

All during BEAST-2 Phase? Or
50 during BEAST-2, and 100 while taking first $Y(4 S)$ data (3 ab^{-1})

Alternative scenarios:
Running at $\Upsilon(4 \mathrm{~S})$ and continuum point Running at $\Upsilon(6 S), 30 \mathrm{fb}^{-1}=6 \times$ Belle-I

Scan of $Y\left(1^{3} D_{1}\right), 7 \times 2 \mathrm{fb}^{-1}$ points, 14 total Scan of $\Upsilon\left(2^{3} D_{1}\right), 10 \times 1.5 \mathrm{fb}^{-1}$ points , 15 total

Can we do them during BEAST-2 Phase?
Luminosity ramp-up scenarios:

- at $\mathrm{L} 1=1 \times 10^{34}, 0.75 \mathrm{fb}^{-1} /$ day

How many days to reach L1?
How long will Phase-II last?

Krakow B2TIP: WG7 R.Mizuk(ITEP), R.Mussa (INFN Torino), C.P.Shen(Beihang), Y.Kiyo(Juntendo), A.Polosa (Roma), S.Prelovsek (Ljubljana)

Theory:

Maiani,Guerrieri: Charmed (and light) Tetraquarks
Ali: Beauty,charmed and light Tetraquarks
Guo: Molecules
Eichten: Hadronic Transitions in $\overline{c c}$ and $b \bar{b}$
Vairo: Radiative Transitions in $\bar{c} \bar{c}$ and $b \bar{b}$

Experiment:

Mizuk: Running at 6S, scanning 10.95 to 11.25
Mussa: Running at $3 S$, scanning $Y(1,2 D)$
Tamponi: MC Generators

The $\pi \tau / \eta$ transitions: TH vs EXP

Hadron transition puzzle: solved?

From Eichten's talk at Krakow

- Above heavy flavor production threshold the usual QCDME fails.
- The transitions rate are much larger than expected.
- The factorization assumption fails. Heavy quark and light hadronic dynamics interact strongly due to heavy flavor meson pair (four quark) contributions to the quarkonium wavefunctions. Magnetic transitions not suppressed.
- A new mechanism for hadronic transitions is required.
- A new mechanism, in which the dynamics is factored differently, is purposed.
- It requires an intermediate state containing two narrow heavy-light mesons nearby and near threshold (v-> zero). This is the factor. Other light hadrons may be present or not.
- The production of this state from the initial state is calculated using familiar strong dynamics of coupled channels.
- The evolution of this threshold system into the final quarkonium state and light hadrons requires a new threshold dynamics.
- HQS as well as the usual $\operatorname{SU}(3)$ and chiral symmetry expectations are recovered.
- Resolves the puzzles in n transitions.

Hadron transitions: a new paradigm?

From Eichten's talk at Krakow

For lower states, QCDME works:
$R_{Q \bar{Q}}(n \rightarrow m) \equiv \frac{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\eta\right)}{\Gamma\left(n^{3} S_{1} \rightarrow m^{3} S_{1}+\pi^{+} \pi^{-}\right)}:$

Ratio	theory	experiment
$R^{c \bar{c}}(2 \rightarrow 1)$	3.29×10^{-3}	9.78×10^{-2}
$R^{b \bar{b}}(2 \rightarrow 1)$	1.16×10^{-3}	1.16×10^{-3}
$R^{b \bar{b}}(3 \rightarrow 1)$	4.57×10^{-3}	$<4.13 \times 10^{-3}$
$R^{b \bar{b}}(4 \rightarrow 1)$	2.23×10^{-3}	2.45
$R^{b \bar{b}}(4 \rightarrow 2)$	5.28×10^{-4}	

~ 30 > theory sets $C_{3} / C_{1}=0.143 \pm 0.024$ related to $\pi \pi$ suppression ~ 1000 > theory
$2 \mathrm{M}\left(\mathrm{D}^{0}\right)-\mathrm{M}\left(\psi^{\prime}\right)=53.11 \mathrm{MeV} / \mathrm{c}^{2} \quad 2 \mathrm{M}\left(\mathrm{B}^{0}\right)-\mathrm{M}(\Upsilon 3 S)=204 \mathrm{MeV} / \mathrm{c}^{2}$
$2 \mathrm{M}\left(\mathrm{D}^{+}\right)-\mathrm{M}\left(\psi^{\prime}\right)=43.57 \mathrm{MeV} / \mathrm{c}^{2} \quad 2 \mathrm{M}\left(\mathrm{B}^{+}\right)-\mathrm{M}(\mathrm{Y} 3 \mathrm{~S})=204 \mathrm{MeV} / \mathrm{c}^{2}$
$2 \mathrm{M}\left(\mathrm{D}_{\mathrm{s}}\right)-\mathrm{M}\left(\psi^{\prime}\right)=250.5 \mathrm{MeV} / \mathrm{c}^{2} \quad 2 \mathrm{M}\left(\mathrm{B}_{\mathrm{s}}\right)-\mathrm{M}(\mathrm{Y} 3 \mathrm{~S})=378 \mathrm{MeV} / \mathrm{c}^{2}$
Large enhancement of $\psi^{\prime} \rightarrow \eta \psi$ explained by the proximity of the $D \bar{D}, D_{s} \bar{D}_{\bar{s}}$ thresholds.
Large isospin violation in $\psi^{\prime} \rightarrow \pi h_{c}$ due to the large $\mathrm{D}^{0}-\mathrm{D}^{+}$mass difference
In bottomonium, degenerate $\mathrm{B}^{0} \overline{\mathrm{~B}}^{0} / \mathrm{B}^{+} \mathrm{B}^{-}$threshold \rightarrow no isospin violation
The eta transition $3 S$ to 1 S is still in the ballpark: wavefunction overlaps can suppress is, like it happens in hindered E1 transitions. We ought to measure it, and (precisely) the E1 hindered transitions from 3S to 1P states.

The η transitions

Testing QCD multipole expansion In low mass region:
$\mathrm{Y}^{\prime} \rightarrow \eta \mathrm{Y}: \mathrm{M} 2^{\star} \mathrm{E} 1+\mathrm{M} 1^{*} \mathrm{M} 1$
$\mathrm{Y}^{\prime} \rightarrow \pi \pi Y: E 1 * E 1$
$\left(\mathrm{Y}^{\prime} \rightarrow \eta \mathrm{Y}\right) /\left(\mathrm{Y}^{\prime} \rightarrow \pi \pi \mathrm{Y}\right) \sim\left(\Lambda_{\mathrm{QCD}} / \mathrm{m}_{\mathrm{b}}\right)^{2}$
Three more transitions should be visible from $Y(3 S)$ but experimental limits, wheie250 available, are below theory expectations:
$-\mathrm{B}(\mathrm{Y}(3 S) \rightarrow \eta \mathrm{Y}(1 S)) \quad$ theory: $5-10 \times 10^{-4}$ BaBarprd84,42003(2011) $<1 \times 10^{-4}$

- $\mathrm{Y}(1 \mathrm{D}) \rightarrow \eta \mathrm{Y}(1 S)$

Voloshin: PLB 562, 68(2003)
QCD Axial Anomaly should enhance $Y(1 D) \wedge 9500$ $\eta \mathrm{Y}(1 \mathrm{~S})$ with respect to $\mathrm{Y}(1 \mathrm{D})^{\wedge} \pi \pi \mathrm{Y}(1 \mathrm{~S})$: no quantitative estimates available.

- $\mathrm{B}\left(\chi_{\mathrm{b} 0}(2 \mathrm{P}) \rightarrow \eta \eta_{\mathrm{b}}\right) \sim$ few 10^{-3} (S-wave)

Voloshin: Mod.Phys.Lett. A19, 2895(2004)
$\frac{\Gamma\left(\chi_{b 0}(2 P) \rightarrow \eta \eta_{b}\right)}{\Gamma\left(\chi_{b 0}(2 P) \rightarrow \gamma \Upsilon\right)} \approx \frac{\pi^{3}}{3 \alpha} \frac{p_{\eta} f_{\eta}^{2} m_{\eta}^{4}}{\omega_{\gamma}^{3} m_{b}^{2} \Delta^{2}} \approx 0.2\left(\frac{f_{\eta}}{0.16 \mathrm{GeV}}\right)^{2}\left(\frac{1 \mathrm{GeV}}{\Delta}\right)^{2}$

$$
M\left(\pi^{0} \pi^{0}\right)[\mathrm{GeV}]
$$

CLEO: Bhari et al. PRD79,011103 (2009) Sample: 6M 3S decays, excl for neutrals, incl+excl for charged
Assuming $\mathrm{Y}(2 \mathrm{~S})$ to ee $+\mathrm{uu}=4.06 \%$

Analysis	Efficiency-corrected Yield	$\mathcal{B}(\%)$
$3 S \rightarrow 1 S \pi^{0} \pi^{0}$	6584 ± 274	$2.24 \pm 0.09 \pm 0.11$
$3 S \rightarrow 2 S \pi^{0} \pi^{0}$	4391 ± 207	$1.82 \pm 0.09 \pm 0.12$
$2 S \rightarrow 1 S \pi^{0} \pi^{0}$	38069 ± 727	$8.43 \pm 0.16 \pm 0.42$
Analysis	Data Yield	Efficiency (\%)
3S Excl.	5215 ± 72	39.7 ± 0.1
3S Incl.	184760 ± 430	69.9 ± 0.2
Average	$4.46 \pm 0.06 \pm 0.01 \pm 0.14$	
2S Excl.	26417 ± 163	32.0 ± 0.1
2S Incl. 824418 ± 908	50.3 ± 0.1	$18.26 \pm 0.01 \pm 0.13$
Average		$18.99 \pm 0.02 \pm 0.02 \pm 0.59$

	$\Upsilon(3 S) \rightarrow$				$\Upsilon(2 S) \rightarrow$		
Contribution	$\Upsilon(1 S) \pi^{+} \pi^{-} \Upsilon(1 S) \pi^{+} \pi^{-} \Upsilon(1 S) \pi^{0} \pi^{0}$	$\Upsilon(2 S) \pi^{0} \pi^{0} \Upsilon(1 S) \pi^{+} \pi^{-} \Upsilon(1 S) \pi^{+} \pi^{-} \Upsilon(1 S) \pi^{0} \pi^{0}$					
	Excl.	Incl.			3.2	1.2	2.4
$\pi^{ \pm} / \pi^{0}$	1.2	2.4	3.2	3.2	Incl.		
ℓ Tracks	1.0	N/A	1.0	1.0	1.0	N/A	1.0
Luminosity	1.7	1.7	1.7	1.7	1.5	1.5	1.5
ℓ Type	2.5	N/A	2.5	2.5	2.5	N/A	2.5
MC Modelling	0.2	0.4	0.5	2.2	2.3	1.4	0.2
$\ell \ell$ BR	2.0	N/A	2.0	4.2	2.0	N/A	2.0
Other Sources	0.35	0.8	1.0	1.0	0.1	0.8	1.0
Total	4.0	3.1	5.1	6.6	4.5	3.3	5.0

$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \mathrm{Y}(2 \mathrm{~S}) \pi^{*} \pi \pi^{i}$

Systematics dominated:

Belle-II startup

Babar: two analyses:

- Aubert et al., PRD78, 112002 (2008)

Using data from $\mathrm{Y}(4 \mathrm{~S})$: ISR exclusive decays

- Lees et al, PRD84, 011104 (2011)

Inclusive dipion transitions from $108 \mathrm{M} \mathrm{Y}(3 \mathrm{~S})$

$\mathrm{Y}(3 \mathrm{~S}) \rightarrow \mathrm{Y}(2 \mathrm{~S}) \pi^{*} \pi \pi^{i}$

Systematics dominated:

Belle-II startup

Babar: two analyses:

- Aubert et al., PRD78, 112002 (2008)

Using data from $\mathrm{Y}(4 \mathrm{~S})$: ISR exclusive decays

- Lees et al, PRD84, 011104 (2011)

Inclusive dipion transitions from $108 \mathrm{M} \mathrm{Y}(3 \mathrm{~S})$

M1-E1 Discrepancy in $\eta_{\mathrm{b}}(1 S)$ mass measurements

M1 transitions: inclusive from 3S (Babar,CLEO) and 2S (Babar, Belle)
E1 transitions: inclusive from $\mathrm{hb}(1,2 \mathrm{P})$ produced in $\mathrm{Y}(4, \mathrm{~S})$ decays (Belle)
Lineshape Skewness, as in the case of charmonium? Width = 10 MeV vs 30 in cc In any case : we must improve the error on the M1 radiative width:

PNRQCD@NLL PRL92,242001(2004)

Lattice QCD PRD82,114502(2010)

PRL 109, 232002 (2012)

ICHEP 2014

Energy resolution improves from 25% to 5% : ISR peak and η_{b} peak are better resolved. Width+lineshape measurement can be possible.

Selecting conversions in the inner CDC wall reduces multiple scattering and allows further improvement of the resolution.

BEAST-2 material can favor conversions, increasing the Vee sample.

Perfect understanding of material budget is key.
Phys.Rev. D84 (2011) 072002

Transition	E_{γ}^{*}	Yield	ϵ	Derived Branching Fraction (\%)		
	(MeV)		$(\%)$	CUSB	CLEO	
$\chi_{b 0}(2 P) \rightarrow \gamma \Upsilon(1 S)$	742.7	469_{-259}^{+260}	1.025	$0.7 \pm 0.4_{-0.1}^{+0.2} \pm 0.1(<1.2)$	<1.9	<2.2
$\chi_{b 1}(2 P) \rightarrow \gamma \Upsilon(1 S)$	764.1	14965_{-383}^{+381}	1.039	$9.9 \pm 0.3_{-0.4}^{+0.5} \pm 0.9$	7.5 ± 1.3	10.4 ± 2.4
$\chi_{b 2}(2 P) \rightarrow \gamma \Upsilon(1 S)$	776.4	11283_{-385}^{+384}	1.056	$7.0 \pm 0.2 \pm 0.3 \pm 0.9$	6.1 ± 1.2	7.7 ± 2.0
$\Upsilon(3 S) \rightarrow \gamma \eta_{b}(1 S)$	$907.9 \pm 2.8 \pm 0.9$	933_{-262}^{+263}	1.388	$0.058 \pm 0.016_{-0.016}^{+0.014}(<0.085)$	-	-

Energy resolution improves from 25% to 5% : ISR peak and η_{b} peak are better resolved. Width+lineshape measurement can be possible.

Selecting conversions in the inner CDC wall reduces multiple scattering and allows further improvement of the resolution.

BEAST-2 material can favor conversions, increasing the Vee sample.

Perfect understanding of material budget is key.
Phys.Rev. D84 (2011) 072002

Transition	E_{γ}^{*}	Yield	ϵ	Derived Branching Fraction (\%)			
	(MeV)		$(\%)$	BABAR	CB	CUSB	CLEO
$\chi_{b 0}(1 P) \rightarrow \gamma \Upsilon(1 S)$	391.5	391 ± 267	0.496	$2.2 \pm 1.5_{-0.7}^{+1.0} \pm 0.2(<4.6)$	<5	<12	1.7 ± 0.4
$\chi_{b 1}(1 P) \rightarrow \gamma \Upsilon(1 S)$	423.0	12604 ± 285	0.548	$34.9 \pm 0.8 \pm 2.2 \pm 2.0$	34 ± 7	40 ± 10	33.0 ± 2.6
$\chi_{b 2}(1 P) \rightarrow \gamma \Upsilon(1 S)$	442.0	7665_{-272}^{+270}	0.576	$19.5 \pm 0.7_{-1.5}^{+1.3} \pm 1.0$	25 ± 6	19 ± 8	18.5 ± 1.4
$\Upsilon(2 S) \rightarrow \gamma \eta_{b}(1 S)$	$613.7_{-2.6-1.1}^{+3.0+0.7}$	1109 ± 348	1.050	$0.11 \pm 0.04_{-0.05}^{+0.07}(<0.21)$	-	-	-

Can we improve systematics and resolution removing the ISR peak?
From 600M Y(3S), we have 3% dipion tagged $\mathrm{Y}(2 \mathrm{~S})$, i.e. 18 M , about $1 / 8(1 / 6)$ of the Belle (Babar) sample, with 30% less combinatorial contamination (from qq continuum) Again, the slow pion efficiency is the key factor.

Best limits on $Y(3 S)$ to $\eta_{b}(2 S)$: Photons:
CLEO $<6.4 \times 10^{-4}$
Conversions:
Babar $<13 \times 10^{-4}$
With 600 M decays: $\mathrm{UL}<10^{-5}$?

Hints of signal from single Photon spectrum in Belle Data (unpublished)

Radiative E1 Widths: direct

Precise pNRQCD calculations on direct E1 transitions are now available to be compared with phenomenological models.

process	$\Gamma_{\mathrm{pNRQCD}}^{\mathrm{LO}} / \mathrm{keV}$	$\Gamma_{\mathrm{pNROCD}}^{\mathrm{NLO}} / \mathrm{keV}$	$\Gamma_{\mathrm{mod}} / \mathrm{keV}$	$\Gamma_{\exp }^{\mathrm{PDG}} / \mathrm{keV}$
$\chi_{b 0}(1 P) \rightarrow \Upsilon(1 S) \gamma$	31.8	29.7 ± 3.1	$25.7-27.0$	-
$\chi_{b 1}(1 P) \rightarrow \Upsilon(1 S) \gamma$	40.3	35.8 ± 4.0	$29.8-31.2$	-
$\chi_{b 2}(1 P) \rightarrow \Upsilon(1 S) \gamma$	45.9	40.6 ± 4.6	$33.0-34.2$	-
$h_{b}(1 P) \rightarrow \eta_{b}(1 S) \gamma$	60.8	44.3 ± 6.1	-	-
$\Upsilon(2 S) \rightarrow \chi_{b 0}(1 P) \gamma$	1.52	1.13 ± 0.15	$0.72-0.73$	1.22 ± 0.16
$\Upsilon(2 S) \rightarrow \chi_{b 1}(1 P) \gamma$	2.26	1.94 ± 0.23	$1.62-1.65$	2.21 ± 0.22
$\Upsilon(2 S) \rightarrow \chi_{b 2}(1 P) \gamma$	2.34	2.19 ± 0.23	$1.84-1.93$	2.29 ± 0.22
$\chi_{b 0}(2 P) \rightarrow \Upsilon(2 S) \gamma$	12.6	13.0 ± 1.3	$10.6-11.4$	-
$\chi_{b 1}(2 P) \rightarrow \Upsilon(2 S) \gamma$	17.1	16.3 ± 1.7	$11.9-12.5$	-
$\chi_{b 2}(2 P) \rightarrow \Upsilon(2 S) \gamma$	20.4	18.1 ± 2.0	$12.9-13.1$	-
$\Upsilon(3 S) \rightarrow \chi_{b 0}(2 P) \gamma$	1.44	1.05 ± 0.14	$1.07-1.09$	1.20 ± 0.16
$\Upsilon(3 S) \rightarrow \chi_{b 1}(2 P) \gamma$	2.38	2.05 ± 0.24	$2.15-2.24$	2.56 ± 0.34
$\Upsilon(3 S) \rightarrow \chi_{b 2}(2 P) \gamma$	2.53	2.35 ± 0.25	$2.29-2.44$	2.66 ± 0.41

The direct E1 transitions are already systematics limited.

The 1 P to 1 S transitions can be compared to theory only measuring total widths: best candidate is $\chi_{\mathrm{b} 0}(1 \mathrm{P}): 30 \mathrm{keV} / 0.02=1.5 \mathrm{MeV}$?

Hindered E1 Widths

Hindered E1 transition widths are the most sensitive to relativistic corrections on wavefunctions, which are essential for the calculations on hadronic transitions.

Table 1: Cancellations in $\mathcal{E}_{i f}$ by node regions.

	$\Gamma_{J=0}(\mathrm{eV}) \Gamma_{J=1}(\mathrm{eV}) \Gamma_{J=1} / \Gamma_{J=0} \Gamma_{J=2}(\mathrm{eV}) \Gamma_{J=2} / \Gamma_{J==}$	$\Gamma_{J=2} / \Gamma_{J=1}$				
Moxhay-Rosner (1983)	25	25	1.0	150	6.0	6.0
Gupta et al. (1984)	1.2	3.1	2.6	4.6	3.8	1.5
Grotch et al. (1984) (a)	114	3.4	0.03	194	1.7	57
Grotch et al. . 1984) (b)	130	0.3	0.002	430	3.3	1433
Daghighian-Silverman (1987)	42	(c)	(c)	130	3.1	(c)
Fulcher (1990)	10	20	2.0	30	3.0	1.5
Lähde (2003)	150	110	0.7	40	0.3	0.4
Ebert et al. (2003)	27	67	2.5	97	3.6	1.4
$E_{\gamma}^{3} \times(2 J+1)$			2.4		3.6	1.5
(a) Scalar confining potential. (b) Vector confining potential.						

(a) Scalar confining potential. (b) Vector confining potential.
(c) The authors did not provide a prediction for $\Gamma\left[\Upsilon(3 S) \rightarrow \gamma \chi_{b 1}(1 P)\right]$.

3rd Belle-II Italian Meeting
R.Mussa, Physics at Belle-II startup

Hindered M1 between P waves

Idea: search for the first hindered M1 transition between P-wave bottomonia, in $\mathrm{MM}(\gamma \gamma \gamma)$ replacing the π^{0} mass constraint with the requirement that $\mathrm{MM}\left(\gamma_{\text {low }}\right)=\mathrm{M}\left(\chi_{\mathrm{b}}\right)$.

Theory papers on hindered P-wave M1 transitions in bottomonium do not exist; for charmonium see Guo,Pos ConfinementX (2012) 136)

Urgently need theory calculations on this topic: Vairo , Pineda?
in

π^{0} recoil mass $\left(\mathbf{G e V} / \mathbf{c}^{2}\right)$
sra Beıle-ı ıtaıan IVreetıng

Spectrum below threshold

Below threshold:

* $3 S$: η_{b} (3S) not yet observed by anyone, maybe reachable from $h_{b}(3 \mathrm{P})$? * 3P: $\chi_{b}(3 P)$ discovered at LHC, not yet resolved, we may eventually study them from 4 S
$h_{b}(3 P)$: too high to be reached from $5 S$ via $Z_{b^{\prime}}$, maybe from 6S? How?
* 1D states : S=1 states BEST STUDIED from 3S, $\mathrm{S}=0$ maybe reachable from $\mathrm{h}_{\mathrm{b}}(2 \mathrm{P})$
* 2D, 1F, 1G: totally unknown We propose to search for the lowest member of the 2D triplet with a scan. The others may be reached from 6 S . The $1 F$ triplet $2,3,4^{++}$is very close in mass to Y3S, but may be reached from the 2 D triplet via E 1 radiative transitions.

A puzzling π^{0} transition
Babar: PRD 84 (2011)091101
3 sigma evidence of h_{b} from the inclusive search of
$e^{+} e^{-} \rightarrow Y(3 S) \rightarrow \pi^{0} h_{b} \rightarrow \pi^{0} \gamma \eta_{b}$

In charmonium:

$$
\frac{\Psi+\pi^{0} \mathrm{~h}_{\mathrm{c}}(1 \mathrm{P})}{\Psi+\rceil \mathrm{J} / \psi}=\frac{8.410^{-4}}{3.310^{-2}}=2.510^{-2}
$$

In bottomonium:
$\frac{\Upsilon(3 S) \rightarrow \pi^{0} h_{b}(1 P)}{\Upsilon(3 S) \rightarrow \eta \Upsilon(1 S)}=\frac{8.610^{-4}}{<10^{-4}}>8.6$ PRD 84 (2011)091101
Isospin violating transition strongly favored?

Theory on $Y(1,2 \mathrm{D})$

Spectrum open items:

Lattice predictions on 1D splittings: Daldrop et al., PRL 108, 102003 (2012)

CoG of $\mathrm{Y}(1,2 \mathrm{D})$ systems in potential models: Godfrey/Rosner, PRD 64, 097501 (2001)

Bottomonium D waves

Belle $\quad 10164.7 \pm 1.4 \pm 1.0 \mathrm{MeV}$
BaBar $10164.5 \pm 0.8 \pm 0.5 \mathrm{MeV}$ CLEO $10161.1 \pm 0.6 \pm 1.6 \mathrm{MeV}$

3rd Belle-II Italian Meeting
R.Mussa, Physics at Belle-II start

From Ali's talk at Krakow

		charmonium-like		bottomonium-like	
Label	$J^{P C}$	State	Mass [MeV]	State	Mass [MeV]
X_{0}	0^{++}	-	3756	-	10562.2
X_{0}^{\prime}	0^{++}	-	4024	-	10652.2
X_{1}	1^{++}	$X(3872)$	3890	-	10607.2
Z	1^{+-}	$Z_{c}^{+}(3900)$	3890	$Z_{b}^{+, 0}(10610)$	10607.2
Z^{\prime}	1^{+-}	$Z_{c}^{+}(4020)$	4024	$Z_{b}^{+}(10650)$	10652.2
X_{2}	2^{++}	-	4024	-	10652.2
Y_{1}	1^{--}	$Y(4008)$	4024	$Y_{b}(10891)$	10891.1
Y_{2}	1^{--}	$Y(4260)$	4263	$Y_{b}(10987)$	$\mathbf{1 0 9 8 7 . 5}$
Y_{3}	1^{--}	$Y(4290)($ or $Y(4220))$	4292	-	$\mathbf{1 0 9 8 1 . 1}$
Y_{4}	1^{--}	$Y(4630)$	4607	-	11135.3
Y_{5}	1^{--}	-	6472	-	13036.8

SuperKEK Limits

Voloshin PRD84, 031502 (2011)

12 GeV \qquad

Phase space at $\Upsilon(6 S)$ is sufficient for $W_{b 0} \rho$?
BESIII observed $\mathrm{Y}(4260) \rightarrow \mathrm{X}(3872) \gamma$
Belle did not find $\mathrm{Y}(5 \mathrm{~S}) \rightarrow \mathrm{X}_{\mathrm{b}} \gamma$.
\Rightarrow Search for $\Upsilon(6 \mathrm{~S}) \rightarrow \mathrm{X}_{\mathrm{b}} \gamma$.

$B\left(1 P_{1}\right) B_{s}^{*}, B^{*} B_{s}\left(1 P_{1}\right), B\left(1 P_{2}\right) B_{s}^{*}, B^{*} B_{s}\left(1 P_{2}\right)$
) $B_{s,} B B_{s}\left(1 P_{1}\right), B\left(1 P_{2}\right) B_{s}, B B_{s}\left(1 P_{2}\right.$
$B^{*} B\left(1 P_{1}\right), B^{*} B\left(1 P_{2}\right)$
$B B\left(1 P_{1}\right), B B\left(1 P_{2}\right)$

$$
\begin{aligned}
& B_{s}^{*} B_{s}^{*} \\
& B_{s} B_{s}^{*} \\
& \beta^{*} B_{s}^{*} B_{s} B_{s} \\
& \beta^{*} B_{s,} B B_{s}^{*} \\
& 3 B_{s} \\
& \\
& \\
& \hline
\end{aligned}
$$

Wrap-up (in italiano)

Fisica durante BEAST-II dipende da:

- Ldt integrabile
- Rapida definizione del material budget
$\mathrm{Y}(3 \mathrm{~S}) \mathrm{e}^{\prime}$ la best option per $>100 \mathrm{fb}^{-1}$
First papers most likely from :
- eta transitions
- radiative (hindered) transitions
- 4-photon cascades, for D states
- 35 to 1 S dipion transitions
$\mathrm{Y}(6 \mathrm{~S})$ e' buona per $<60 \mathrm{fb}^{-1}$ (10x Belle-I)
Scans alla Y(1,2D) non realistici per il 2017
Alternative: prese dati sul continuo? DarkPhoton?

Backup

Cusp in $\mathrm{K}^{+} \rightarrow \pi^{+} \pi^{0} \pi^{0}$

In 2006, NA48 / 2 measured the $\pi \pi$ scattering length using $60 \mathrm{M} \mathrm{K}+$ decays, fitting the cusp observed at $\mathrm{M}=2 \mathrm{~m}(\pi \pm)$ in the neutral dipion mass spectrum.

At low energy the $\pi \pi$ interaction is described by two scattering lengths who vanish in the chiral limit:
$a_{0}^{0}=\frac{7 M_{\pi}^{2}}{32 \pi F_{\pi}^{2}}+\mathcal{O}\left(m_{q}^{2}\right) \quad a_{0}^{2}=-\frac{M_{\pi}^{2}}{16 \pi F_{\pi}^{2}}+\mathcal{O}\left(m_{q}^{2}\right)$ Weinberg, PRL17,616(1966)

Using ChPT, theory predicts:

$$
a_{0}^{0}-a_{0}^{2}=0.265 \pm 0.004
$$

Colangelo, et al, PLB488,261(2000)

Cusp in $\Upsilon(3 S) \rightarrow \Upsilon(2 S) \pi^{+} \pi^{-}$

The cusp effect was calculated using NREFT. Liu et al,EPJC73, 2284 (2013)

The reduction on the number of events is 9% in this process. (13% in $\mathrm{K}+$ decay, 8% in $\eta^{\prime} \rightarrow \eta \pi \pi$)

Can we measure it with $600 \mathrm{M} \mathrm{Y}(3 \mathrm{~S})$ decays ?

Cusp in $\Upsilon(3 S) \rightarrow \Upsilon(2 S) \pi^{+} \pi^{-}$

The effect was simulated assuming to have $60 \mathrm{k}, 600 \mathrm{k}, 6 \mathrm{M}$ events in the range $\mathrm{M}\left(\pi^{0} \pi^{0}\right)=0.27-0.29,1 / 6$ of the total.

Assuming 600M decays with 10% dipion acceptance, we have $0.1 * 1.85 \% / 6 \sim 185 \mathrm{k}$ decays in that range.

Can we use all events under the $\mathrm{Y}(2 \mathrm{~S})$ peak in $\mathrm{MM}\left(\pi^{0} \pi^{0}\right)$? Penalty for extra clean $\mathrm{Y}(2 \mathrm{~S})$ decays:

- exclusive dilepton : $4 \%^{*} \alpha \varepsilon$
- charge dipion recoil: $20 \%{ }^{*} \alpha \varepsilon$

Bin width	Events	6×10^{4}	6×10^{5}	3×10^{6}	6×10^{6}
0.1 MeV	$\chi^{2} / d o f$	1.21	1.09	1.16	0.88
	$a_{0}-a_{2}$	0.293 ± 0.036	0.260 ± 0.012	0.2717 ± 0.0048	0.2661 ± 0.0036
0.2 MeV	$\chi^{2} / d o f$	0.72	1.15	1.05	1.12
	$a_{0}-a_{2}$	0.286 ± 0.035	0.251 ± 0.014	0.2722 ± 0.0048	0.2621 ± 0.0038
0.5 MeV	$\chi^{2} / d o f$	0.93	0.54	1.27	1.30
	$a_{0}-a_{2}$	0.262 ± 0.026	0.256 ± 0.012	0.2659 ± 0.0051	0.2693 ± 0.0035
1 MeV	$\chi^{2} / d o f$	1.05	0.78	1.17	0.69
	$a_{0}-a_{2}$	0.221 ± 0.054	0.291 ± 0.010	0.2658 ± 0.0054	0.2661 ± 0.0037
2 MeV	$\chi^{2} / d o f$	0.59	1.06	1.05	1.37
	$a_{0}-a_{2}$	0.260 ± 0.040	0.262 ± 0.012	0.2592 ± 0.0055	0.2632 ± 0.0037

3rd Belle-II Italian Meeting
R.Mussa, Physics at Belle-II startup

$$
M\left(\pi^{0} \pi^{0}\right)[\mathrm{GeV}]
$$

$M\left(\pi^{0} \pi^{0}\right)[\mathrm{GeV}]$

TABLE III: Two-gluon decay widths of the p-wave heavy quarkonium states.

	$\Gamma_{2 g}^{\chi_{c 0}}(\mathrm{MeV})$	$\Gamma_{2 g}^{\chi} \chi_{c 2}(\mathrm{MeV})$	$\Gamma_{2 g}^{\chi_{b 0}}(\mathrm{keV})$	$\Gamma_{2 g}^{\chi}{ }^{\text {b2 }}$ (keV)	$\Gamma_{2 g}^{\chi_{b 0}^{\prime}}(\mathrm{keV})$	$\Gamma_{2 g}^{\chi_{\text {b2 }}^{\prime}}(\mathrm{keV})$
PDG^{a} [1]	10.4 ± 0.7	1.98 ± 0.11				
This work	$11.9_{-0.9}^{+0.7}$	$1.74_{+0.09}^{-0.08}$	431_{-49}^{+45}	214_{+1}^{-0}	122_{-6}^{+4}	$92.3{ }_{-14.8}^{+17.7}$
Wang [$\underline{6}, 7]$	10.3	2.64	887	220	914	248
Laverty ${ }^{\text {b }}$ [8]	4.68(4.88)	1.72(0.69)	960(2740)	330 (250)	990(2740)	350(260)
Gupta ${ }^{\text {c }}$ [9]	13.44(17.10)	1.20 (2.39)	2150(2290)	220(330)		
Bodwin [19]	4.8 ± 0.7	$\underline{1.98 \pm 0.18}$				
Barbieri [4]	2.4	0.64				
Godfrey [12]	6.25	0.774	672	123	672	137
Ebert [11]			653	109	431	76

${ }^{a} \Gamma_{\text {tot }} \cong \Gamma_{2 g}$.
${ }^{b}$ The values are obtained by the perturbative (nonperturbative) calculation.
${ }^{c}$ The values are obtained by the QCD potential (alternative treatment).

Y(3S) in PDG nutshell

$r(3 S)$ MASS

VALUE (MeV)
10355.2 ± 0.5
$1 \frac{\text { DOCUMENT ID }}{\text { ARTAMONOV } 00} \frac{\text { TECN }}{\text { MD1 }} \frac{\text { COMMENT }}{e^{+} e^{-} \rightarrow \text { hadrons }}$

$r(3 S)$ WIDTH

203 MeV below the lowest $\mathrm{B} \overline{\mathrm{B}}$ threshold
$r(3 S)$ DECAY MODES

Fraction $(\Gamma ; / \Gamma)$

	Mode	Fraction $\left(\Gamma_{i} / \Gamma\right)$	Confidence level
Γ_{1}	$\gamma(2 S)$ anything	$(10.6 \pm 0.8) \%$	
Γ_{2}	$\gamma(2 S) \pi^{+} \pi^{-}$	$(2.82 \pm 0.18) \%$	$\mathrm{~S}=1.6$
Γ_{3}	$\gamma(2 S) \pi^{0} \pi^{0}$	$(1.85 \pm 0.14) \%$	
Γ_{4}	$\gamma(2 S) \gamma \gamma$	$(5.0 \pm 0.7) \%$	
Γ_{5}	$\gamma(2 S) \pi^{0}$	<5.1	$\times 10^{-4}$
Γ_{6}	$\gamma(1 S) \pi^{+} \pi^{-}$	$\mathrm{CL}=90 \%$	
Γ_{7}	$\gamma(1 S) \pi^{0} \pi^{0}$	$(4.37 \pm 0.08) \%$	
Γ_{8}	$\gamma(1 S) \eta$	$(2.20 \pm 0.13) \%$	
Γ_{9}	$\gamma(1 S) \pi^{0}$	<1	$\times 10^{-4}$
Γ_{10}	$h_{b}(1 P) \pi^{0}$	<7	$\mathrm{CL}=90 \%$
Γ_{11}	$h_{b}(1 P) \pi^{0} \rightarrow \gamma \eta_{b}(1 S) \pi^{0}$	<1.2	$\times 10^{-5}$
Γ_{12}	$h_{b}(1 P) \pi^{+} \pi^{-}$	$(4.3 \pm 1.4) \times 10^{-4}$	$\mathrm{CL}=90 \%$
Γ_{13}	$\tau^{+} \tau^{-}$	<1.2	$\times 10^{-4}$
Γ_{14}	$\mu^{+} \mu^{-}$	$(2.29 \pm 0.30) \%$	$\mathrm{CL}=90 \%$
Γ_{15}	$e^{+} e^{-}$	$(2.18 \pm 0.21) \%$	
Γ_{16}	hadrons	seen	$\mathrm{S}=2.1$
Γ_{17}	$g g g$		
Γ_{18}	$\gamma g g$	$(35.7 \pm 2.6) \%$	
		$(9.7 \pm 1.8) \times 10^{-3}$	

Scale factor/

VALUE (keV)
DOCUMENT ID States"

The narrowest vector quarkonium Annihilation width to light hadrons $\sim 10 \mathrm{keV}$

Radiative decays

Γ_{19}	$\gamma \chi_{b 2}(2 P)$
Γ_{20}	$\gamma \chi_{b 1}(2 P)$
Γ_{21}	$\gamma \chi_{b 0}(2 P)$
Γ_{22}	$\gamma \chi_{b 2}(1 P)$
Γ_{23}	$\gamma A^{0} \rightarrow \gamma$ hadrons
Γ_{24}	$\gamma \chi_{b 1}(1 P)$
Γ_{25}	$\gamma \chi_{b 0}(1 P)$
Γ_{26}	$\gamma \eta_{b}(2 S)$
Γ_{27}	$\gamma \eta_{b}(1 S)$
Γ_{28}	$\gamma X \rightarrow \gamma+\geq 4$ prongs
Γ_{22}	$\gamma a_{1}^{0} \rightarrow \gamma \mu^{+} \mu^{-}$
Γ_{30}	$\gamma a_{1}^{0} \rightarrow \gamma \tau^{+} \tau^{-}$

$(13.1 \pm 1.6) \%$	S=3.4
$(12.6 \pm 1.2) \%$	$\mathrm{S}=2.4$
(5.9 ± 0.6) \%	$\mathrm{S}=1.4$
$(9.9 \pm 1.3) \times 10^{-3}$	$\mathrm{S}=2.0$
$<8 \times 10^{-5}$	$\mathrm{CL}=90 \%$
$\left(\begin{array}{ll}9 & \pm 5\end{array}\right) \times 10^{-4}$	$\mathrm{S}=1.9$
$(2.7 \pm 0.4) \times 10^{-3}$	
$<6.2 \times 10^{-4}$	$\mathrm{CL}=90 \%$
$(5.1 \pm 0.7) \times 10^{-4}$	
$<2.2 \times 10^{-4}$	$\mathrm{CL}=95 \%$
$<5.5 \times 10^{-6}$	CL=90\%
$<1.6 \times 10^{-4}$	CL=90\%

C'e' spazio per la fisica?

Goal of Commissioning Phase 2

Many group working with different goals during phase 2. Beam background measurements are just a small part of the overall program

- Beam commissioning to start collision (machine group: KCG)
- Forward luminosity monitors(ZDLM) for knob tuning
- BG measurements and mitigation (KEK Belle group: BCG)
- BG studies of each component to check consistency with simulation
- Studies of relation between VXD hits and monitor hits
- Beam collimators control study
- Neutron measurement (fast and slow)
- Belle II commissioning with partial VXD sensors (Belle II shift)
- Full Belle II DAQ
- Slow control (also communication with machine)
- PXD Rol finding with CDC+SVD tracking data
- Detector noise check
- And investigation and confirmation to install the full VXD
- Optimization of interlock system
- Slow info. Some alarms or abort by environmental or rad. monitors
- First info.: beam abort by hard wired signals

spazio per la fisica?

Goal of Commissioning Phase 2 (part II)

- Beam injection BG study (VXD group)
- BG damping time measurement for Trigger veto gate
- requiring storing veto gate width to condition database
- With moderate update timing
- First try of CO2 cooling system for VXD sensors (VXD group)
- Checking water vapor level by sucking air
- cold and warm dry volume
- Detailed characterization of beam backgrounds (BEAST group)
- Target luminosity at phase-2 is $\mathrm{L} \sim 10^{34} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, and BG structure is not exactly same as phase-3. We need somehow extrapolation to expect phase-3 beam BG.
- how to extrapolate it?
- We have a lot of monitor sensors, diamond sensors, 64 PIN diodes, FE-I4, CLOWS.
- Effect from each BG component has to be studied separately by BG MC.
- This extrapolation can be done only after the BG is will controlled by collimator studies.
- Deferent BG components have different dependence for collimator setting. We can separate the BG components by using this feature.

Phase-2 sensors in VXD volume

sensor	contact person	number	location	DAQ	note
PXD + SVD	C. Marinas K. Nakamura	2 PXD ladders 4 SVD ladders	decided +X	Belle II DAQ	
diamond w/ PIN diode (beam BG, abort)	L. Vitale	4 diamonds 64 PIN diodes	diamond: decided	Belle II monitor DB (EPICS)	PIN diode location: around diamond and beam pipe
FE-I4 pixels (Synchrotron rad. and track multiplicity)	C. Marinas	3 arms	$\begin{gathered} \text { decided } \\ (90,180,270) \end{gathered}$?	arm design has to be fixed
CLAWS (beam BG)	C. Marinas	2 ladders	$\begin{gathered} \text { decided } \\ (135 \text { and } 225) \end{gathered}$?	
Scintillator PIN diode (beam BG)	H. Nakayama K. Nakamura	~60 (scintillator) ? (PIN diode)	not decided	?	Basically put them around QCS
BGO (Bhabha events)	J. Liau	8 (if space allows)	under discussion	BEAST DAQ	Acceptance is overlapped with PXD cooling block.
```temperature (NTC), humidity (DMT242B) (crosscheck for FOS)```	L. Vitale See b	not decided	not decided	Belle II monitor DB se systems.	
FOS + L-shape (temp. and humidity)	I. Vila   D. Moya	?	?	?	sensor on outer cover?
PLUME (beam BG)	I. Ripp-Baudot	1 ladder	not decided	EPICS DB BEAST DAQ?	baseline: PLUME-2 (hopefully PLUME-3)

3rd Belle-II Italian Meeting
R.Mussa, Physics at Belle-II startup

## Phase 2 Detectors

- VXD BEAST assembly
- SVD, PXD ladders
- Dedicated background and environment sensors (see next page)
- Scintillators and PIN diodes around QCS
- Neutron detector in dock space



## CLAWS (Scintillator + SiPM)

- contact person
- C. Marinas
- motivation and brief analysis plan
- spatial dependence of BG hits, injection BG
- what kind of data to be stored on DAQ
- energy deposit, hit timing
- designs of sensor/package/support
- Are they already fixed???
- number and locations
- 2 ladders on 135 and 225 deg.

- cables and space for service
- cables ???
- readout system and DAQ
- 6404D (PICOTECH) DAQ???
- request for dock boxes
- no
- request for Belle II clock, trigger, injection timing?

- how does it get injection timing?


## Neutron Detectors

- He-3 tubes and microTPCs in dock space
- TPCs image direction of incoming fast neutrons, but detected rate is low
- He-3 measure rate of thermal neutrons, which is high


Source	$Y(2 S) \rightarrow$			$Y(3 S) \rightarrow$		
	$\pi^{+} \pi^{-} \Upsilon(1 S)$	$\eta Y(1 S)$		$\pi^{+} \pi^{-} \Upsilon(1 S)$	$\eta Y(1 S)$	
		$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$\eta \rightarrow \gamma \gamma$		$\eta \rightarrow \pi^{+} \pi^{-} \pi^{0}$	$\eta \rightarrow \gamma \gamma$
$N_{Y}$		0.9			1.0	
Tracking	1.4	1.4	1.0	2.5	2.5	1.7
$\pi^{0} / \gamma$	$\cdots$	3.6	3.6	. $\cdot$	3.6	3.6
Lepton identification		1.1		1.0 (1.2)	1.0 (1.2)	1.0
$\pi^{+} \pi^{-}$model	0.5	. .	$\ldots$	0.4 (1.5)	...	...
Selection	0.4	2.6	5.5	0.9 (1.2)	4.4 (5.3)	5.6
PDFs	0.1	5.4	5.0	0.1	5.4	5.0
Total $\mathcal{B}$	2.9	7.6	8.7	3.6 (4.1)	8.6 (9.1)	8.1
Total ratio		7.2	8.3		8.3 (8.9)	7.8

Phase 2 is still a commissioning stage for the accelerator

- Accelerator goals
- Opctics tuning
- First beam background study
- Increase of beam currents
- Beam collision tuning
- Luminosity tuning
- Target luminosity: $\mathcal{L}_{\text {peak }}^{\text {phase2 }}=10^{34} \mathrm{~cm}^{-2} s^{-1}$
- BEAST II goals already mentioned in previous slide but study will be done only when target luminosity will be achieved
- We requested two to three weeks
- Belle II detectors will also be used with a random trigger

If acccelerator and BEAST II goals are achieved before summer shutdown: $\mathcal{L}=16 \mathrm{fb}^{-1}$ for physics available if $\mathcal{L}_{\text {peak }}$ constant

