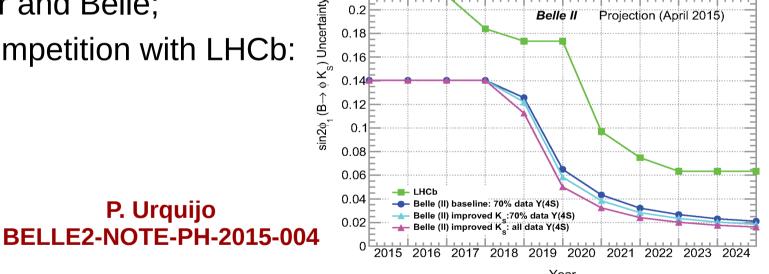

Study of the sensitivity of the $B^0 \rightarrow \phi K^0$ time dependent CP analysis

S. Lacaprara, A. Gaz, University of Padova & INFN


Belle II Italia, Frascati 21 may 2015

Motivations

• $B^0 \rightarrow \phi K^0$ is one of the "Old Superstars" (A.J.Buras);

P. Urquijo

- Time-dependent CP asymmetry is little affected by "wrong-phase amplitudes", so it's expected to be tightly related to $sin 2\beta_{WK0}$ (and V_{Ub});
- The errors will be dominated by the statistical uncertainty for very long, so the initial progress will be quick, as soon as we have more data than BaBar and Belle; Belle II Projection (April 2015)
- There will be competition with LHCb:

 Padova is involved in the activities of the TOP, this is a good channel to commission/check PID performance on signal reconstruction and B flavor tagging. 21/05/2015 A. Gaz 2

Outline

- Analysis strategy;
- Computing resources;
- Signal Monte Carlo;
- Δt resolution;
- Backgrounds:
 - Combinatorial;
 - Peaking;
- Multidimensional fit;
- What's missing;
- To do list, conclusions.

Most of what I'll show today is done using build-2015-05-01

Analysis strategy

 The ultimate sensitivity in BaBar and Belle was reached with a Dalitz Plot analysis of K⁺K⁻K_c; BaBar: PRD 85, 112010 (2012)

PRD 82, 073011 (2010) Belle:

- We propose to start with a simpler quasi-two body approach, restricting the $K^{+}K^{-}$ invariant mass range around the ϕ mass;
- We can separate the vector (ϕ) component from the scalar (mostly f and non-resonant) using the helicity angle of the ϕ decay products;
- We started considering the channels:

1)
$$\phi$$
 (K⁺K⁻) K_s ($\pi^{+}\pi^{-}$)
2) ϕ (K⁺K⁻) K_s ($\pi^{0}\pi^{0}$)
3) ϕ ($\pi^{+}\pi^{-}\pi^{0}$) K_s ($\pi^{+}\pi^{-}$)
4) ϕ (K⁺K⁻) K₁

In the past this mode has not been used. With higher statistics and better background suppression, it could give a significant contribution

• Today I'll mostly focus on $\phi \to K^+K^-$, $K_s \to \pi^+\pi^-$. 21/05/2015 A. Gaz

Computing resources

So far we used a variety of resources:

- Signal MC production: as of now it is not centrally provided, we (Belle II Pd) have a quota at the local INFN Cloud, and can dedicate some virtual machines to the production of signal MC: we can generate ~18k events/(core day);
- To run on generic ($B\overline{B}$ and continuum) MC, we need to use the grid:
 - Not very user friendly and sometimes unstable;
 - Now it is optimized for MC production, so the limit on #events per job is somewhat inconvenient for analyzing existing MC;
- The analysis of the flat root files can then proceed on our local resources.

Selection

Main selection cuts:

- M_{bc} > 5.25;
- |∆E| < 0.2;
- 1.00 < M(K⁺K⁻) < 1.04;</p>
- 0.42 < M(π⁺π⁻) < 0.58;
- d₀(K[±]) < 0.05;
- z₀(K[±]) < 0.2;
- At least one PXD hit for each K[±];
- PIDk(K) > 0.5;
- PIDpi(π) > 0.5;
- VtxPvalue(K_s, φ, B) > 0.0001.

Objects:

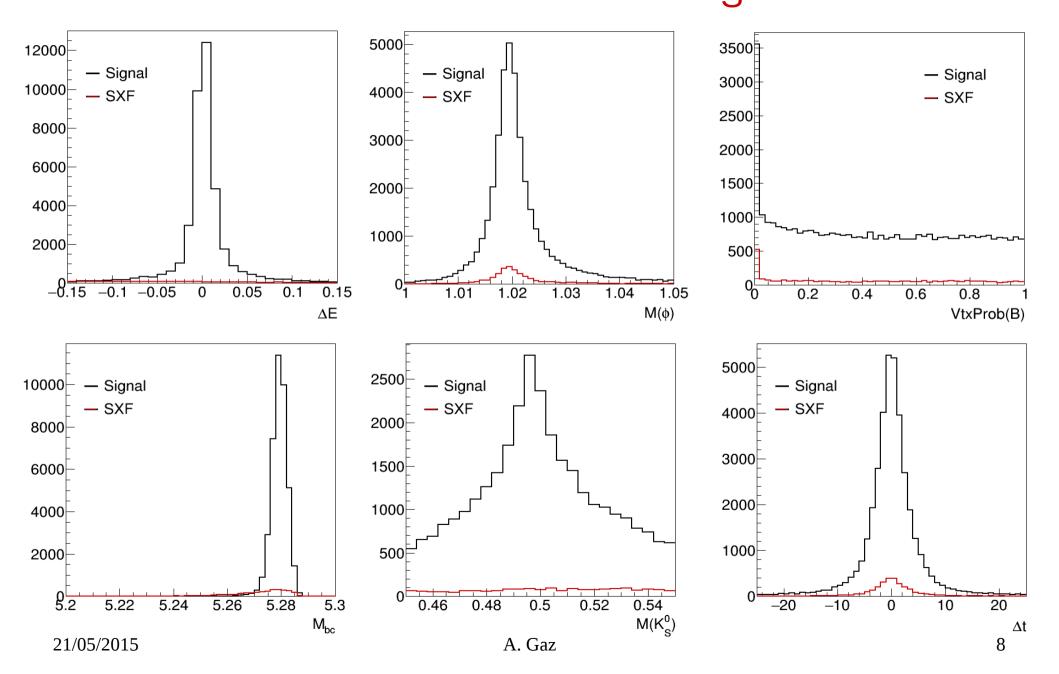
- K[±]: stdLooseK
- π^{\pm} : stdLoosePi

Vertexing: K_s, ϕ : vertexKFit

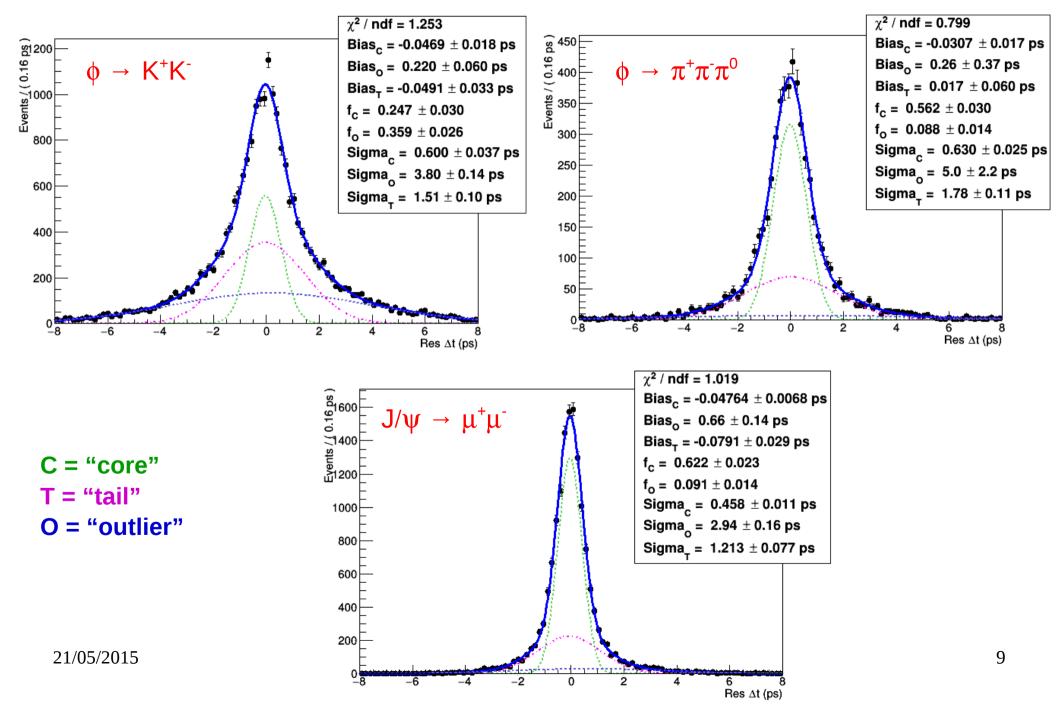
B: vertexRave

Signal efficiency ϵ = 22.5% Candidate multiplicity = 1.0086 (it was ϵ ~ 40% in BaBar)

Signal MC


Generated 100k events of B $\rightarrow \phi(KK) K_{S}(\pi^{+}\pi^{-})$ and B $\rightarrow \phi(\pi^{+}\pi^{-}\pi^{0}) K_{S}(\pi^{+}\pi^{-})$ True Δt - true B_{tag} True Δt - true B_{tag} 500 1400 $B_{tag} = \frac{B^0}{B_{tag}}$ $B_{tag} = \frac{B^0}{B_{tag}}$ 1200 400 1000 300 800 600 200 400 100 200 0 0 10 -10 -5 0 0 10 -5 5 -10 True ∆t (ps) True ∆t (ps) Asymmetry Asymmetry 0.5 0.5 0 0 -0.5 -0.5 10 -10-5 0 5 10 -10 -5 0 5

A. Gaz


True ∆t (ps)

True ∆t (ps)

Signal MC – $\phi(KK) K_{S}(\pi^{+}\pi^{-})$

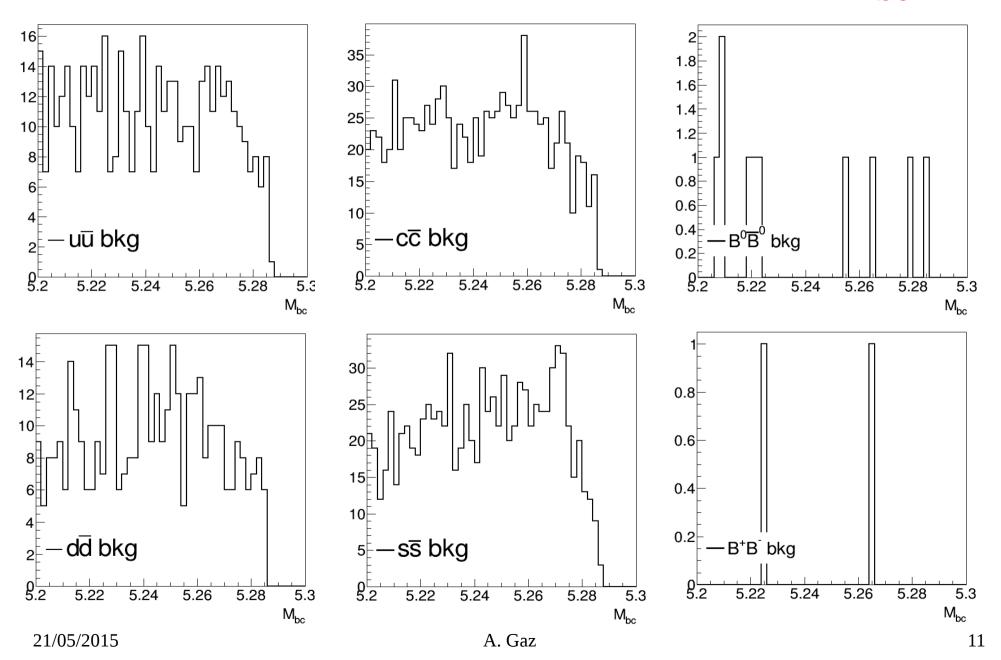
∆t resolution

Background overview

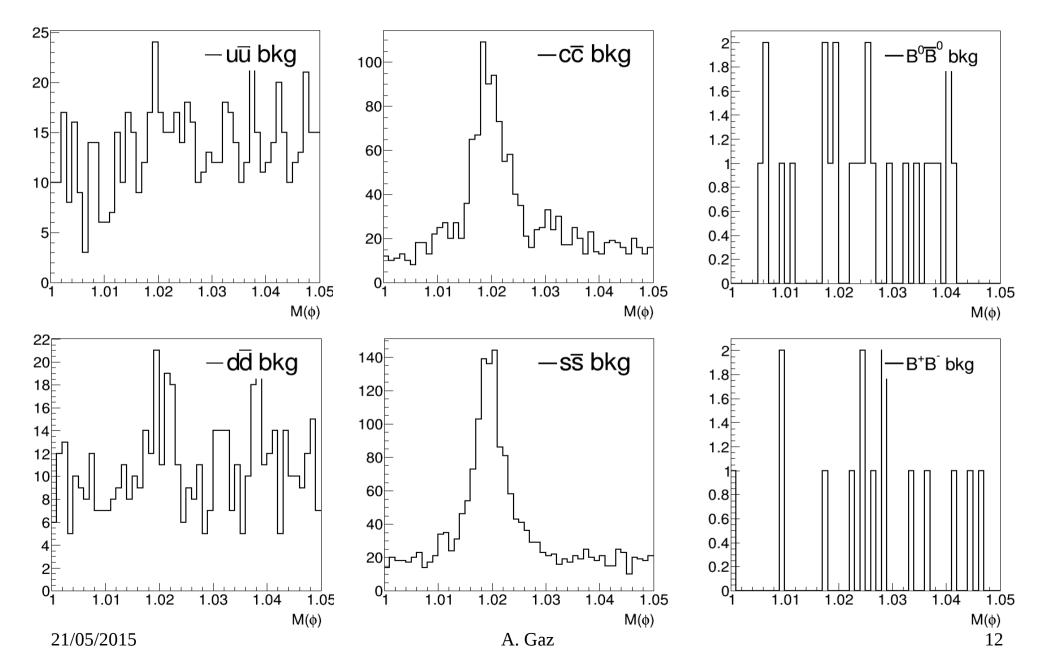
Two main background components:

• Combinatorial: dominated by continuum events.

On a real analysis, this is taken from the data on M_{bc} or ΔE sidebands.


For preliminary studies, I ran on a small (few %'s of what's available) amount of version 3.5 generic MC.

Continuum suppression non yet applied;


Peaking: typically it contains events from (charmless) B decays, which peak in one or more of the variables used in the analysis (M_{bc}, ΔE, M(φ), ...). It is modeled from a MC cocktail containing the modes that have a non negligible probability of passing the selection. Not yet studied.

21/05/2015

Combinatorial background: M_{bc}

Combinatorial background: $M(\phi)$

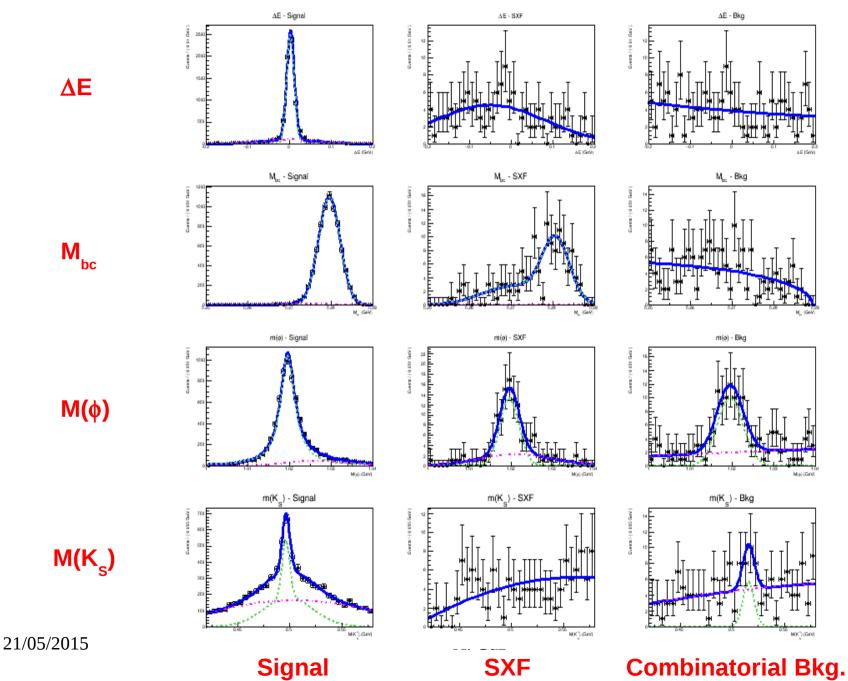
Multidimensional fit

- The extraction of the parameters of interest (mostly S and C), is done performing a multi-dimensional maximum likelihood fit, using the variables:
 - Δt ; The pdf is of the form:
 - $\mathcal{P}_{j}^{i} \equiv \mathcal{T}_{j} \left(\Delta t^{i}, \sigma_{\Delta t}^{i}, \varphi^{i} \right) \cdot \prod_{k} \underbrace{\mathcal{Q}_{k,j}(x_{k}^{i})}_{\text{time}}$

part

• M(**(**);

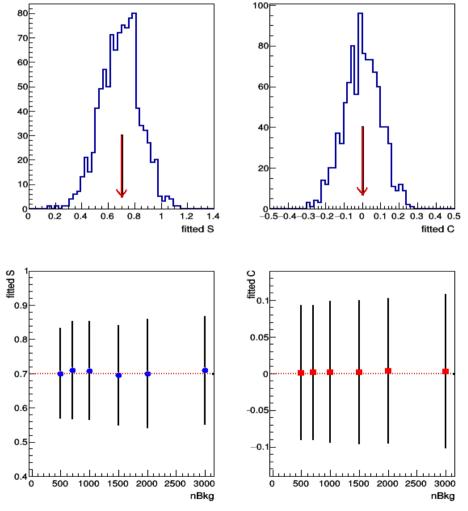
• ΔE;


• M_{bc};

- Continuum suppression variable; (not yet used)

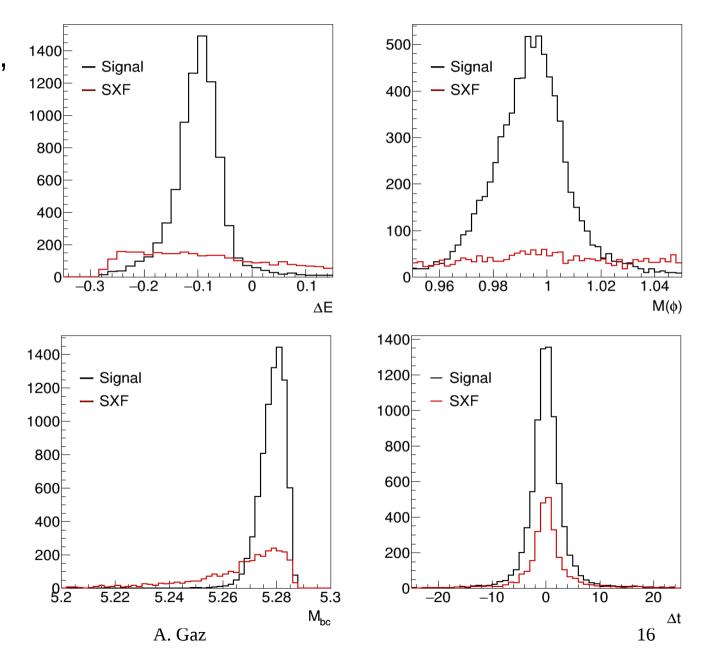
• Right now we are using the old package RooRarFit, updated to cope with the newer version of ROOT/RooFit.

integrated

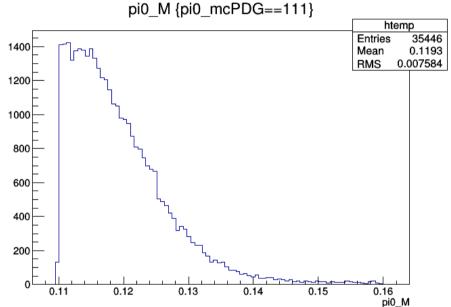

Multidimensional fit

14

Toy studies


- We started testing the fitting machinery using toy experiments;
- We embed 250 signal (and 12 SXF) events in a variable number of combinatorial background events, generated from their pdf's;
- We check that the fit is stable and unbiased, and that the dependence of the errors on S and C on the number of background events is mild;
- The results are not very realistic, because the modeling of the combinatorial background is sketchy and the peaking background is missing...
- However, we are not yet exploiting all the information in the analysis, so this looks encouraging.

A look at $\phi \rightarrow \pi^+ \pi^- \pi^0$


Compared to $\phi \rightarrow K^+K^-$, we have:

- Lower efficiency;
- Higher SXF fraction;
- Pretty large bias on ΔE and M(ϕ).

What's missing

- I just used pi0:good from stdPi0(). Evident calibration issue (unless there is some recipe that I need to apply in order to correct this effect)
- K⁰_L also are problematic: there is no particle list provided yet. For the time being the recommendation is to identify the (endcap) KLM clusters with at least 2 hits, not matched with any track.

To do list

- Implement the ϕ helicity infrastructure;
- Study the non-resonant $K^+K^-K^0$ component;
- Optimize continuum suppression;
- Run on all the relevant generic ($B\bar{B}$ and continuum) MC as soon as it is produced with the new release;
- Identify and include the most relevant peaking background modes;
- Provide a realistic estimate of the sensitivity of the analysis with an integrated luminosity of 0.3-1.0 ab⁻¹;
- Spin-off: measure direct CP asymmetry in $B^+ \rightarrow \phi K^+$, which is interesting because it could be connected to the $B \rightarrow K\pi$ puzzle. It will be challenging to control the detector related asymmetries in the early phases of the experiment.

•

Conclusions / outlook

- The time dependent CP analysis of $B^0 \rightarrow \phi K^0$ has started;
- We are still in the very early stages, but things so far look encouraging;
- The reconstruction/analysis tools are in reasonable shape, quite a bit of work is needed especially on the neutrals;
- We plan to have a realistic estimate of the Belle II sensitivity on these channels in a few months time scale;
- Help is welcome!

Backup Slides

∆t resolution

Comparison of Δt resolutions, on different B \rightarrow X K_s channels:

Channel	RMS ($\Delta t_{reco} - \Delta t_{true}$)
$J/\psi \rightarrow \mu^+\mu^-$	1.192
$\phi \rightarrow \mu^+ \mu^-$	1.297
$J/\psi \rightarrow \mu^{+}\mu^{-}$ $\phi \rightarrow \mu^{+}\mu^{-}$ $J/\psi \rightarrow K^{+}K^{-}$	1.365
$\phi \rightarrow \pi^+ \pi^- \pi^0$	1.622
$\phi \rightarrow K^+ K^-$	2.661

build-2015-02-09

Selection efficiency breakdown

	# events	Efficiency	Rel. efficiency	Cand. multiplicity
Generated	100000			
Reconstructed	43079	43.1%	43.1%	1.0482
M _{bc} cut	42717	42.7%	99.2%	1.0431
∆E cut	41925	41.9%	98.1%	1.0346
M(ø) cut	39039	39.0%	93.1%	1.0313
M(K _s) cut	36007	36.0%	92.2%	1.0256
d _o (K) cut	35011	35.0%	97.2%	1.0250
z _o (K) cut	33844	33.8%	96.6%	1.0250
K PXD hits cut	29406	29.4%	86.9%	1.0247
PID(K)	26085	26.1%	88.7%	1.0252
PID(π)	24491	24.5%	93.9%	1.0251
K _s VtxProb	22821	22.8%	93.2%	1.0087
<pre></pre>	22525	22.5%	98.7%	1.0086
B VtxProb	22515	22.5%	99.9%	1.0086

Peaking backgrounds

• Some of the modes considered in the old analyses:

$$\begin{array}{l} B^{0} \to K^{+}\pi^{-}K^{0} \\ B^{0} \to \pi^{+}\pi^{-}K^{0} \\ B^{0} \to f^{0}K^{0} \\ B^{0} \to a^{0}K^{0} \\ B^{0} \to \phi K^{*0}, K^{*0} \to K^{0}\pi^{0} \\ B^{+} \to \phi K^{*+}, K^{*+} \to K^{0}\pi^{+} \end{array}$$