Introduction Single rates K40 contribution Bioluminescence Xfold coincidence rates Conclusio

PPM-DU data analysis

Alexandre Creusot 1

¹AstroParticules et Cosmologie, Paris

Simulation workshop, Genova, April 2015

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

・ロト・日本・モート モー うへぐ

- 2 prototypes deployed in 2 sites
- PPM-DOM (April 2013) in Toulon
- PPM-DU (May 2014) in Capo Passero
- 1 DOM of 31 PMTs for the PPM-DOM
- 3 DOMs of 31 PMTs for the PPM-DU

Xfold coincidence rates

Conclusion

Rates from slice content

- one time slice: 2^{27} ns
- Gaussian distribution with tail
- mean μ is taken for single rate
- High Rate Cut (HRC) is defined as $\mu + 3\sigma$
- burst fraction is defined as $\frac{\text{number of slices above HRC}}{\text{total number of slices}}$

Rates

- more than one year of data taking for both prototypes
- more bioluminescence for Toulon site as compared to Capo Passero
- stable all over the DOM
- DOM 3 of the PPM-DU (green) as larger surface detection

2-fold rates

- after combinatorial background subtraction
- shuffling of the event start time within a slice
- small systematics (below 5%)

Introduction	Single rates	K40 contribution	Bioluminescence	Xfold coincidence rates	Conclusion
2-fold ra	ates				

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト の Q @

- after combinatorial background subtraction
- shuffling of the event start time within a slice
- small systematics (below 5%)

Angular separation between PMTs

- PMTs looking in a similar direction see more coincidences \rightarrow Cherenkov light of the ${}^{40}K$ decay product
- the decay angles are the very similar $\rightarrow {}^{40}K$ rates are the same in both sites
- constants are slightly different
 - \rightarrow different detection efficiencies

Burst fraction

- burst fraction for the PPM-DOM and the DOM 1 (PPM-DU)
- ratio of the burst fraction
- PPM-DOM: increase in the direction of the LCM structure
- PPM-DU: no LCM, only 2 thin strings

Xfold coincidence rates

3, 4, 5 and 6-fold

<ロト <回ト < 注ト < 注ト æ

muon (> 6-fold)

			PPMDOM		
		DOM 1	DOM 2	DOM 3	DOM1
single	$244 \cdot 10^{3}$	$166 \cdot 10^3_{\pm 4 \cdot 10^3}$	$162 \cdot 10^3_{\pm 12 \cdot 10^3}$	$188 \cdot 10^{3}_{\pm 14 \cdot 10^{3}}$	1.49
2fold	302.4 ± 23.5	307.4 _{±4.7}	278.2 _{±5.50}	473.5 _{±7.2}	0.984
3fold	25.09 + 3.66	23.15 ± 0.50	18.56 ± 0.70	$44.07_{\pm 0.86}$	1.084
4fold	2.266 ± 0.454	2.028 ± 0.073	$1.347_{\pm 0.082}$	4.895 ± 0.190	1.117
5fold	0.226 ± 0.060	$0.171_{\pm 0.024}$	$0.096_{\pm 0.016}$	$0.534_{\pm 0.037}$	1.319
6fold	$0.040_{\pm 0.016}$	0.018 ± 0.005	0.012 ± 0.005	$0.057_{\pm 0.011}$	2.235
>6fold	0.058 ± 0.021	0.017 ± 0.006	0.017 ± 0.006	0.030 ± 0.011	3.456

Introduction

Single rates

K40 contribution

Bioluminescence

Xfold coincidence rates

Conclusion

PPM-DU detection efficiency

- rate ratio driven by the detection efficiency ratio to the power of the multiplicity
- fit for multiplicities within in [2; 5]
- the relative detection efficiency given by the fit
- above 5, out of the single photo-electron regime

Introduction

le rates

40 contribution

Bioluminescence

Xfold coincidence rates

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Conclusion

PPM-DOM detector efficiency

- correction from the relative efficiencies between DOMs of the PPM-DU
- correction from the surface area for DOM 3 of the PPM-DU

Introduction	Single rates	K40 contribution	Bioluminescence	Xfold coincidence rates	Conclusion
Conclus	ion				

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = = の�?

•