www.nasa.gov/fermi

ammaray Space Telescope

Fermi Collaboration Science Highlights

Luca Latronico INFN-Torino <u>luca.latronico@to.infn.it</u>

on behalf of the Fermi-LAT collaboration

Torino - Fermi Open Day 4 September 2015

Talk outline

- LAT key design elements
- Impact on selected science results
- LAT key Pass8 performance elements
- New results and prospects

Large Area Telescope (LAT) - pair conversion telescope
20 MeV - > 300 GeV

Huge field of view (2.4sr)

- 20% sky any instant
- All sky for 30' every 3h Huge energy range
- Including 10-100 GeV

Gamma Burst Monitor (GBM) - counters • 8 KeV – 40 MeV

The Fermi Observatory

Brief History of Detectors Pre-Fermi

- Image: 1967-1968, OSO-3 detected Milky Way as an extended γray source, 621 γ-rays
- 1972-1973, SAS-2, ~8,000 celestial γ-rays

sermi

Gamma-ray Space Telescope

- 1975-1982, COS-B, orbit resulted in a large and variable background of charged particles, ~200,000 γ-rays.
- 1991-2000, EGRET, large effective area, good PSF, long mission life, excellent background rejection, and >1.4 × 10⁶ γ-rays
- 2007-, AGILE, like 1/16-th LAT, with small calorimeter, sensitivity ~EGRET

Pair Conversion telescope concept

Large Area Telescope improvements

solid state detectors

- Iarge FOV
- no consumables
- onboard processing
 - soft trigger
- detectors segmentation
 - optimal performance

5 years γ -ray skymap showing thousands of sources and Galactic plane glowing in γ -rays

Surprises from the gamma-ray sky

GRB 130427A, centered on the north galactic pole

Blazar 3C 454.3's Record Flare

The LAT delivers a 4pi light curve of the Universe through many years (W. Atwood)

Intensity and source counts maps evolution

Dermi

Intensity and source counts maps evolution

Dermi

- 3 years Pass7 data, 279 ROIs studied, 102 detections
- population studies, spectral and morphology studies
- Diffuse emission modeling systematics

Radio-GeV Index

If radio and GeV emission arise from the same particle population(s), under simple assumptions, the GeV and radio indices should be correlated:

Dermi

Gamma-ray Space Telescope

LAT detects many HE electrons thanks to flexible onboard trigger

Inclusive spectrum and positron fraction (with Earth magnetic field)

Astrophysics > High Energy Astrophysical Phenomena

The spectrum of isotropic diffuse gamma-ray emission between 100 MeV and 820 GeV

The Fermi LAT collaboration: M. Ackermann, M. Ajello, A. Albert, W. B. Atwood, L. Baldini, J. Ballet, G. Barbiellini, D. Bastieri, K. Bechtol, R.

Extended to 820 GeV Includes foreground modeling uncertainties Evidence for high energy cut-off consistent with EBL attuenation

Dark Matter Search Strategies

source id, but low sensitivity because of expected small branching ratio

Galaxy Clusters

Low background, but low statistics

Isotropic" contributions

Large statistics, but astrophysics, galactic diffuse background

(some other) Fermi Science Results

•*Fermi* data have forced fundamental changes in our understanding of almost every source of high energy γ rays, and of particle acceleration processes that drive them

Pulsar γ-ray emission does not come from polar caps

Cosmic rays **are** trapped in cocoons and bubbles

AGN γ-ray emission *is not* confined to region near the central black hole

Solar Flares high-energy γ rays are associated with mass ejections

GRBs *are not* adequately described by "Band" model

Supernova remnants are sites of hadronic acceleration

Pass8 New Event Reconstruction

arxiv 1303.3514

- Complete subsytems recon rewrite (ACD, CAL, TKR)
 - Well beyond original motivation of suppressing cosmic-ray pileup
- TKR: new tree-based pattern recognition
 - Mitigates mistracking at high energy and angle

- CAL: new clustering stage
 - Separates ghost from primary photon
- CAL: revamped calorimeter shower profile fitting
 - Mitigates crystal saturation, opens multi-TeV domain
- ACD: improved track/cluster to tile fitting
 - Uses full covariant errors, avoids harsh background rejection cuts

Pass8 performance

Sermi

Comparing VERITAS to Fermi-LAT Pass 8

- Counts map: Fermi-LAT photons selected above 5 GeV.
 - 83 months of data; P8R2_SOURCE_V6; Fermi Science Tools v10r0p5
 - Event classes PSF2 and PSF3 (50% events with best PSF).
- ♦ GeV, TeV emission show remarkable spatial correlation.
 - Single population of CRs interacting with shocked gas?

courtesy: J. Hewitt for Fermi-LAT Collaboration

T. B. Humensky, ICRC 2015

CRE spectrum

working on E>1TeV, systematics, anisotropies

Gamma-ray Space Telescope

2FHL Spectral Energy Distributions

M.Ajello ICRC 2015 - arxiv 1508.04449

2FHL Galactic Sources

103 sources at |b|<10°</p>

serm

Gamma-ray

- 42 blazars, 39 Galactic objects, 13 unassociated and 9 Dark Acc.
- PWNe/SNRs represent 87% of the Galactic population
- Half of the unassociated sources are hard and thus (likely) Galactic

Models predict that the >50 GeV EGB is produced by blazars

Dark Matter constraints with dwarf spheroidals 2011, PRL 107, 241302 - 2012, AstroPart. Phys., 37, 2014 2014, PRD, 89

Dwarfs are DM dominated

Gamma-ray Space Telescope

- up to ~1000x visible matter
- No star-formation, no gas, no magnetic field

Clean Upper Limit analysis of high latitude point sources

FOURTH GENERATION				
tag	irf	time	targets	joint?
1001.4531	P6	II mo.	ю	no
1108.3546	P6	24 mo.	ю	yes
1310.0828	P7	48 mo.	15	yes
Current	P8	60 mo.	15	yes x2!

 $\begin{aligned} \mathbf{EFFECTIVE LIKELIHOOD} & \swarrow & \text{(term accounts for uncertainty in J-factor)} \\ L_2(\mathcal{D}|\boldsymbol{\mu}, \boldsymbol{\theta_t}) = L_t^{\text{LAT}}(\mathcal{D}_t | \boldsymbol{\mu}, \boldsymbol{\theta_t}) \times \frac{1}{\ln(10) J_t \sqrt{2\pi} \sigma_t} e^{-(\log_{10}(J_t) - \overline{\log_{10}(J_t)})^2 / 2\sigma_t^2} \\ L_3(\mathcal{D}|\boldsymbol{\mu}, \{\boldsymbol{\theta_t}\}) = \prod_{targets} L_2(\mathcal{D}|\boldsymbol{\mu}, \boldsymbol{\theta_t}) & \leftarrow \text{ (combine information from all targets)} \\ L_4(\mathcal{D}|\boldsymbol{\mu}, \{\boldsymbol{\theta_t}\}) = \prod_{classes} L_3(\mathcal{D}_c | \boldsymbol{\mu}, \{\boldsymbol{\theta_t}\}) \leftarrow \text{ (combine information from all psf classes)} \end{aligned}$

Pass 8 Improvements Relevant for Dwarfs

- Effective area increase by ~25% above 1GeV
- Angular resolution improved by ~10-15% above 1 GeV
- Point-source sensitivity improved by ~40% for 1-10 GeV
- Joint likelihood with all PSFs types improves sensitivity by ~15%
 - Similar to using energy reconstruction quality in line analysis

Simulation of region around dwarf

Gamma-ray Space Telescope

Dwarf spheroidals with Pass8

Minor deviation from expectations likely due to combination of better catalog and diffuse model all possible with improved performances and strong multi-wavelength sinergies (room for further improvements by minimizing LAT UNIDs, see eg arxiv 1409.1572)

Line-like Feature Near 133 GeV – 3.7 year

- Same fit parameters as 3.7 year line search (Ackerman et al. PRD 88, 082002 (2013))
 Fits in R3, 3.7 year, ±6σ_E fit window
 - No strong evidence of 133 GeV Feature in Pass 8
 - Lower fractional size and significance
 - Energy recon. in P7 vs. P8 changes within expected energy resolution

Line-like Feature Near 133 GeV – 5.8 yr

Feature is even smaller in 5.8 year P8 Clean dataset
 Consistent with statistical fluctuation in P7 REP 3.7 year dataset

28

Long-term observations opportunities

Sermi

Gamma-ray Space Telescope

Galactic latitude (deg)

Gamma-rays from the Sun and variations with solar cycle
Recurrent Novae

PSR state change (eg J2021+4026), years-long orbital periods

Conclusions

LAT design provides all-sky, high sensitivity monitor of gamma-ray sky enabling new science

Pass8 radical performance improvement started opening new window

extended long term operations unique
 opportunity for time domain astrophysics and
 multi wavelength observations