

Results from the search for neutrinoless double beta decay of ¹³⁰Te with CUORE-0

Lucia Canonica INFN-LNGS

for the CUORE Collaboration

LNGS, April 9th 2015

The CUORE collaboration

L. Canonica (LNGS)

Results from the search for neutrinoless double beta decay of ¹³⁰Te with CUORE-0

UNIVERSITY OF

The CUORE Collaborators

C. Alduino¹, K. Alfonso², D. R. Artusa^{1,3}, F. T. Avignone III¹, O. Azzolini⁴, M. Balata³, T. I. Banks^{5,6}, G. Bari⁷, J.W. Beeman ⁸, F. Bellini ⁹, ¹⁰, A. Bersani ¹¹, M. Biassoni ¹², ¹³, C. Brofferio ¹², ¹³, C. Bucci ³, A. Camacho ⁴, A. Caminata ¹¹, L. Canonica ³, X. G. Cao¹⁴, S. Capelli^{12,13}, L. Cappelli^{3,15}, L. Carbone¹³, L. Cardani^{9,10}, N. Casali^{3,16}, L. Cassina^{12,13}, D. Chiesa^{12,13}, N. Chott¹, M. Clemenza^{12, 13}, S. Copello¹⁷, C. Cosmelli^{9, 10}, O. Cremonesi¹³, R. J. Creswick¹, J. S. Cushman¹⁸, I. Dafinei¹⁰, A. Dally ¹⁹, S. Dell'Oro ³, ²⁰, M. M. Deninno ⁷, S. Di Domizio ¹⁷, ¹¹, M. L. Di Vacri ³, ¹⁶, A. Drobizhev ⁵, ⁶, L. Ejzak ¹⁹, D. Q. Fang ¹⁴, M. Faverzani ¹², ¹³, G. Fernandes ¹⁷, ¹¹, E. Ferri ¹², ¹³, F. Ferroni ⁹, ¹⁰, E. Fiorini ¹³, ¹², M. A. Franceschi ²¹, S. J. Freedman ⁶, ⁵, B. K. Fujikawa⁶, A. Giachero^{12, 13}, L. Gironi^{12, 13}, A. Giuliani²², P. Gorla³, C. Gotti^{12, 13}, T. D. Gutierrez²³, E. E. Haller^{8, 24}, K. Han ^{18,6}, E. Hansen ^{25,2}, K. M. Heeger ¹⁸, R. Hennings-Yeomans ^{5,6}, K. P. Hickerson ², H. Z. Huang ², R. Kadel ²⁶, G. Keppel ⁴, Yu. G. Kolomensky ⁵, ²⁶, C. Ligi ²¹, K. E. Lim ¹⁸, X. Liu ², Y. G. Ma ¹⁴, M. Maino ¹², ¹³, M. Martinez ²⁷, R. H. Maruyama ¹⁸, Y. Mei ⁶, N. Moggi ²⁸, ⁷, S. Morganti ¹⁰, T. Napolitano ²¹, S. Nisi ³, C. Nones ²⁹, E. B. Norman ³⁰, ³¹, A. Nucciotti ¹², ¹³, T. O'Donnell ⁵, ⁶, F. Orio¹⁰, D. Orlandi³, J. L. Ouellet^{5,6}, C. E. Pagliarone^{3,15}, M. Pallavicini^{17,11}, V. Palmieri⁴, L. Pattavina³, M. Pavan^{12,13}, G. Pessina¹³, V. Pettinacci¹⁰, G. Piperno^{9,10}, C. Pira⁴, S. Pirro³, S. Pozzi^{12,13}, E. Previtali¹³, C. Rosenfeld¹, C. Rusconi¹³, E. Sala ¹², ¹³, S. Sangiorgio ³⁰, D. Santone ³, ¹⁶, N. D. Scielzo ³⁰, M. Sisti ¹², ¹³, A. R. Smith ⁶, L. Taffarello ³², M. Tenconi ²², F. Terranova ¹², ¹³, C. Tomei ¹⁰, S. Trentalange ², G. Ventura ³³, ³⁴, M. Vignati ¹⁰, S. L. Wagaarachchi ⁵, ⁶, B. S. Wang ³⁰, ³¹, H. W. Wang ¹⁴, L. Wielgus ¹⁹, J. Wilson ¹, L. A. Winslow ²⁵, T. Wise ^{18, 19}, A. Woodcraft ³⁵, L. Zanotti ^{12, 13}, C. Zarra ³, G. Q. Zhang ¹⁴, B. X. Zhu², S. Zucchelli³⁶, ⁷

• 19 groups

- 8 Italy
- 6 USA
- 5 associate groups
 - 157 collaborators
 - 120 researchers/authors
 - Italy: 71
 - USA: 38
 - Associated Institutions: 11

¹Department of Physics and Astronomy, University of South Carolina, Columbia, SC 29208 - USA ²Department of Physics and Astronomy, University of California, Los Angeles, CA 90095 - USA ³INFN - Laboratori Nazionali del Gran Sasso, Assergi (L'Aquila) I-67010 - Italy ⁴INFN - Laboratori Nazionali di Legnaro, Legnaro (Padova) I-35020 - Italy ⁵Department of Physics, University of California, Berkeley, CA 94720 - USA ⁶Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 - USA ⁷INFN - Sezione di Bologna, Bologna I-40127 - Italy ⁸Materials Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 - USA ⁹Dipartimento di Fisica, Sapienza Università di Roma, Roma I-00185 - Italy ¹⁰INFN - Sezione di Roma, Roma I-00185 - Italy ¹¹INFN - Sezione di Genova, Genova I-16146 - Italy ¹²Dipartimento di Fisica, Università di Milano-Bicocca, Milano I-20126 - Italy ¹³INFN - Sezione di Milano Bicocca, Milano I-20126 - Italy ¹⁴Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 - China ¹⁵Dipartimento di Ingegneria Civile e Meccanica, Università degli Studi di Cassino e del Lazio Meridionale, Cassino I-03043 - Italy ¹⁶Dipartimento di Scienze Fisiche e Chimiche, Università dell'Aquila, L'Aquila I-67100 - Italy ¹⁷Dipartimento di Fisica, Università di Genova, Genova I-16146 - Italy ¹⁸Department of Physics, Yale University, New Haven, CT 06520 - USA ¹⁹Department of Physics, University of Wisconsin, Madison, WI 53706 - USA ²⁰INFN - Gran Sasso Science Institute, L'Aquila I-67100 - Italy ²¹INFN - Laboratori Nazionali di Frascati, Frascati (Roma) I-00044 - Italy ²²Centre de Spectrométrie Nucléaire et de Spectrométrie de Masse, 91405 Orsay Campus - France ²³Physics Department, California Polytechnic State University, San Luis Obispo, CA 93407 - USA ²⁴Department of Materials Science and Engineering, University of California, Berkeley, CA 94720 - USA ²⁵Massachusetts Institute of Technology, Cambridge, MA 02139 - USA ²⁶Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 - USA ²⁷Laboratorio de Fisica Nuclear y Astroparticulas, Universidad de Zaragoza, Zaragoza 50009 - Spain ²⁸Dipartimento di Scienze per la Qualità della Vita, Alma Mater Studiorum - Università di Bologna, Bologna I-47921 - Italy ²⁹Service de Physique des Particules, CEA / Saclay, 91191 Gif-sur-Yvette - France ³⁰Lawrence Livermore National Laboratory, Livermore, CA 94550 - USA ³¹Department of Nuclear Engineering, University of California, Berkeley, CA 94720 - USA ³²INFN - Sezione di Padova, Padova I-35131 - Italy ³³Dipartimento di Fisica, Università di Firenze, Firenze I-50125 - Italy ³⁴INFN - Sezione di Firenze, Firenze I-50125 - Italy ³⁵SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ - UK ³⁶Dipartimento di Fisica e Astronomia, Alma Mater Studiorum - Università di Bologna, Bologna I-40127 - Italy

Outline

- Double beta decay physics
- Thermal detectors
- History of ¹³⁰Te double beta decay experiments
- CUORE-0 results
 - Detector performance
 - Neutrinoless double beta decay analysis

Outline

- Double beta decay physics
- Thermal detectors
- History of ¹³⁰Te double beta decay experiments
- CUORE-0 results
 - Detector performance
 - Neutrinoless double beta decay analysis

Double beta decay

Double beta decay is a very rare nuclear decay (N,Z) \rightarrow (N-2, Z+2)

$$\mathcal{T}_{1/2}^{0\nu} = \frac{m_e^2}{G_{0\nu} \cdot M_{nucl}^2 \cdot m_{\beta\beta}^2}$$

 G_{0v} : Phase space integral ~Q⁵ M_{nucl} : Nuclear Matrix Elements $m_{\beta\beta}$: effective neutrino mass

$$m_{\beta\beta} = |\sum_{i} m_{\nu_i} U_{ei}^2|$$

- The observation of 0vDBD:
 - proof of the Majorana nature of neutrino
 - constraints on neutrino mass hierarchy and scale

Sensitivity

 Half-life corresponding to the minimum number of detectable signal events above background at a given C.L.

Outline

- Double beta decay physics
- Thermal detectors
- History of ¹³⁰Te double beta decay experiments
- CUORE-0 results
 - Detector performance
 - Neutrinoless double beta decay analysis

Thermal detectors

The working principle is very simple:

- wide choice of detector materials
- source embedded in the detector
- excellent energy resolution

The energy deposited by a particle interaction in the absorber is converted to a measurable temperature variation.

130Te for 0vDBD

- Q-value (2528 keV)
- Highest natural isotopic abundance (~34%)
- Favourable calculation of NME

- natTeO₂ crystals
- NTD-Ge thermistor (R ~ 50M Ω) R(T)=R₀ exp $[\frac{T_0}{T}]^{1/2}$
- Resolution @0vDBD energy (2528 keV): $\Delta E= 5-7 \text{ keV FWHM}$

Outline

- Double beta decay physics
- Thermal detectors
- History of ¹³⁰Te double beta decay experiments
- CUORE-0 results
 - Detector performance
 - Neutrinoless double beta decay analysis

L. Canonica (LNGS) Results from the search for neutrinoless double beta decay of ¹³⁰Te with CUORE-0

The CUORE challenge

- Tightly packed array of 988 bolometric detectors.
- M = 741 kg of TeO₂ (206 kg ¹³⁰Te) to look for 0vDBD of ¹³⁰Te.

L. Canonica (LNGS)

Cuoricino

- 62 TeO₂ crystals, for a total mass of 40.7 kg.
- 19.75 kg · yr of ¹³⁰Te
- Run between 2003 and 2008

 $T_{1/2} > 2.8 \cdot 10^{24} y$ $m_{\beta\beta} < 0.3 \div 0.7 eV$

Astropart. Phys. (2011), doi:10.1016/j.astropartphys.2011.02.002

- Background suppression
 - New (lighter) detector design structure
 - Reduced overall detector surfaces by a factor ~2
 - New surface cleaning technique
 - Strict production protocols for TeO₂ surface contamination
 - Minimization of Rn exposure (Glove Box assembly)
 - Strict material selection (e.g. raw materials)

CUORE-0

CUORE-0 is the first tower produced out of the CUORE assembly line.

- 52 TeO₂ 5x5x5 cm³ crystals (~750 g each)
- 13 floors of 4 crystals each
- total detector mass: 39 kg TeO₂ (10.9 kg of 130 Te)

CUORE-0 has been taking data since March 2013 in the 25 year old Cuoricino cryostat.

- Proof of concept of CUORE detector in all stages
- Test and debug of the CUORE tower assembly line
- Test of the CUORE DAQ and analysis framework
- Extend the physics reach beyond Cuoricino while CUORE is being assembled

L. Canonica (LNGS) Results from the search for neutrinoless double beta decay of ¹³⁰Te with CUOR

Tower assembly

CUO

Sensors coupling

- The detector performance (e.g. energy resolution) are driven by the sensor-to-crystal coupling (glue spots).
- Features:
 - new semi-automatic system
 - highly-reproducible
 - minimize radioactive recontamination.

Tower assembly

CUORE-0 51/52 NTD connected

51/52 heaters connected

Tower assembly

CUORE-0

51/52 NTD connected

51/52 heaters connected

CUORE

988/988 NTD connected 988/988 heaters connected

Tower installation

From the CUORE assembly clean room, to the Cuoricino dilution refrigerator

Experimental setup

- Same cryostat as Cuoricino: •
 - inner shield: 1 cm of Roman Lead (A < 4 mBq/kg).
 - External shield: 20 cm of ● Modern Lead.
 - nitrogen flushing

gamma background from cryostat shields not expected to change (test of alpha background)

Outline

- Double beta decay physics
- Thermal detectors
- History of ¹³⁰Te double beta decay experiments
- CUORE-0 results
 - Detector performance
 - Neutrinoless double beta decay analysis

Data taking

Calibration data taking Physics data taking

L. Canonica (LNGS)

- Detector assembled in Spring 2012.
- First successful cooldown in March 2013.
- One heater connection lost during the cooldown
 - 51/52 NTD connected
 - 50/52 heater connected
- 2-3 days per months are devoted to ²³²Th calibrations
- Time between calibrations was devoted to physics data taking, and used for 0vDBD decay search

Exposure overview

- Acquired statistic for 0vDBD decay search:
 - 35.2 kg·yr TeO₂

C

• 9.8 kg·yr ¹³⁰Te

L. Canonica (LNGS) Results from the search for neutrinoless double beta decay of ¹³⁰Te with CUORE-0

Detector stability

• We measure the resistance of each bolometer daily, to monitor the detector stability over time

CUORE-0 Preliminary

		_																															
	15	_																			۸.					۸		۸	۸	•			A
	40	_				2.0		ъ.				Ξ.				х.					-2	- 2					•	•				•	1 0
		<u> </u>	-	-	+	.										Ξ.			Ξ.				1		L	*		+	*	*	*	*	**
		-	×	×	×	××	*	*	*	*	×	×	×	×	×	×	×	×	*		**	* *	×	~	~	^	*	^	^				^^
	40		ò	٠	ø	ø	8	ø	@	\$	Q	@	@	٢	4	٨	Q	Q	۵		۵ ۵	۵ 🏟	۵	8	8	٨	8	۵	۵	٢	۲	8	\$⊕
	40	_	•	•	•	▼ ▼			•	•	•	•	•	•	•	Ť	•	•				• 🐳	▼	Ť	Ť	۲	Ŧ	۲	۲	•	۲	۲	••
		-																															
																					۰.												••
	35					On			п		п			п			п	п															00
3	00	—	•	•	•	*	1	Ť	•	1		1	T	T		Ţ	-	T	,		Ŧ	¥ ¥	•	•	•	•	•	•	•	¥	•	*	**
≤.		-																				o											
e B			ŧ	ŧ	ŧ	÷.	1	Ŧ	‡	÷	4	1	\$	4	4	±.	\$	4	Ŧ		ŧŤ	ΞŦ	4	4	4	÷	4	÷	÷.	ŧ	÷	\$	##
Ĕ	30		\$	\$	\$	٥¢	0	0		°		°				δ,	۵	۵	8		80	δŶ.	8	8	8	8	ø	8	Ş	8	8	8	8
Sta Sta		-	Δ	Δ	Δ																λ.		Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	$\Delta \Delta$
500			Ĭ	Ĭ	Ĭ	Ī	Î	Î		Î	Î	Î	Ĩ	Î	Ĩ	Î	Î	Ĩ			Ĩ		Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	Ĭ	×.	Ă	Ă	Ă	
õ		_	*	*	*	**	*	*	*	*	*	*	*	*	*	*	*	*	×		**	* *	*	*	*	*	*	*	*	*	*	*	**
-	25	<u> </u>	7	7	7	∀ ₹	Y	Y	Y	Y	Y	Y	Y	Ţ	Y	X	Y	Ţ	X		⊻ ⊽	<u>v</u> v	X	X	X	2	¥	2	2	¥	2	2	V
			<u>,</u>	.	÷.	28	<u></u>	7	7				2			7			*			**	- 2	.	Ţ.	_	.	.	÷.	÷	Ŷ.	Ŷ.	.
			æ	*	8	28 28	ž	*	÷.		-	*	\$	8	-		å	*	*		×	**	-	÷.	ŝ	8	÷	2	8	ŝ	8	8	200 200
		<u> </u>	- 🐺	-	8	X	1	2	2	1	1	X	8	1		Ĩ	,	1	ž		Żž	X	X	1	1	-	1	×.	8	¥	1	1	XX
	20		÷.	÷.	ě.	éé	÷.	÷	ê.	÷.	ž	÷.	ě	÷.	ě	ĝ.	÷.	÷.	ě		÷.	ž š	÷	1	-	÷.	÷.	÷.	ě.	ģ	ż.	÷.	ėė –
			Ζ	Ζ	Ζ	22	Z	Z	2	2	Z	Z	Z	Z	Z	록	Ζ	Z	Z		22	2 2	Z	Z	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	Ζ	22
		F	0	٥	0	00	6	~	0	0	0	0	0	0	0	0	0	0	~		0~	0 0	0	0	0	0	0	0	0	0	0	0	00
	4 5	-	-	-	-	•	-	1	¥	¥.	¥	*	×	¥		¥ 9	¥ ¥	.		*	1	•	1	.	1	1	<u> </u>	
	15		ò	ò	Ď	ЪО	Ċ	ò	ò	ò	ò	ò	ò	ò	ò	ò	ò	ò	ŏ		òò	òò	ò	ò	ò	ò	ò	ò	ò	ò	ò	ò	ŏŏ
		_																															
					J	an	23	. 2	201	4		Já	an	30	. 2	201	4		F	eb C)6.	20 [.]	14		F	eb	13	3, 2	201	4			
															-		Г)a	te		,							,					
																		Ju	.0														

• The resistance of the bolometers are within a factor of 3

 The bolometers are stable within ~3% over a month timescale

Detector uniformity

- One of the main goal of CUORE-0 was to verify the improvements and the level of reproducibility in the bolometric performance achieved with the new CUORE assembly line.
- We evaluated the distribution of the thermistors temperatures once the detector has been cooled to base temperature and we compared to the Cuoricino one.

Calibration spectra

• We calibrate the detector using two thoriated tungsten wires source placed in between the outermost cryostat shield and the external lead shield.

Energy resolution

The 5 keV CUORE goal has been reached

Physics-exposure-weighted harmonic mean

	Average FWHM [keV]	RMS of FWHM [keV]
Cuoricino	5.8	2.1
CUORE-0	4.9	2.9

Background reduction

- 238 U and 232 Th lpha lines reduced thanks to the new detector surface treatment. Dedicated paper on
- ²³⁸U γ lines reduced by a factor 2 (better radon control)
- ²³²Th γ lines not reduced (originate from the cryostat).

background model is

in preparation

Alpha background rate

Outline

- Double beta decay physics
- Thermal detectors
- History of ¹³⁰Te double beta decay experiments
- CUORE-0 results
 - Detector performance
 - Neutrinoless double beta decay analysis

- Acquisition of triggered signals
- Data preprocessing: estimation of raw parameters
- Pulse filtering
- Thermal Gain Stabilization (TGS)
- Energy calibration
- Particle event selection
- Energy spectrum

• Acquisition of triggered signals

- Each thermistor voltage is continuously sampled at 125Hz
- Once triggered, a 5 sec window is selected for further study of the waveform

The pre trigger voltage is a good proxy for the bolometer temperature before the event The following 4 sec are analysed to determine the pulse amplitude and to study the pulse shape parameters

- Acquisition of triggered signals
- Data preprocessing: estimation of raw parameters
 - Raw waveform parameters: baseline, baseline RMS, raw pulse amplitude
 - rejection of noisy time intervals

L. Canonica (LNGS)

Results from the search for neutrinoless double beta decay of ¹³⁰Te with CUORE-0

- Acquisition of triggered signals
- Data preprocessing: estimation of raw parameters
- Pulse filtering
 - **Optimal Filter**: we require that the waveform is consistent with an average reference waveform template. We can optimise energy resolution by exploiting differences in the frequency characteristic of signal and noise events.
- **Decorrelated Optimal Filter**: reduces the correlated noise between adjacent crystals in the array.

New technique developed for CUORE-0 analysis

- Acquisition of triggered signals
- Data preprocessing: estimation of raw parameters
- Pulse filtering
- Thermal Gain Stabilization (TGS)
 - We need to correct the filtered pulse amplitude for small changes in the energyto-amplitude response of the bolometer:
 - heater-TGS: uses as input the mono-
 energetic heater pulse
 - calibration-TGS: uses the 2.6 MeV line from calibration runs, to correct for the electronic parameters that can affect the bolometers response (drift in amplifier gain or DC offset).

analysis. We were able to recover the two channels without active heater

- Acquisition of triggered signals
- Data preprocessing: estimation of raw parameters
- Pulse filtering
- Thermal Gain Stabilization (TGS)
- Energy calibration
 - Each stabilised amplitude is fitted with a gaussian peak and a polynomial function in the region of the peak.
 - We fit a quadratic function with zero intercept to the stabilized pulse amplitude vs know energy to determine the calibration function

 $E(StabAmpl) = a \cdot StabAmpl + b \cdot StabAmpl^2$

- Acquisition of triggered signals
- Data preprocessing: estimation of raw parameters

- Acquisition of triggered signals
- Data preprocessing: estimation of raw parameters
- Pulse filtering
- Thermal Gain Stabilization (TGS)
- Energy calibration
- Particle event selection
- Energy spectrum

• For each channel and dataset we choose the best performing energy estimator to draw the energy spectrum

L. Canonica (LNGS) Results from the search for neutrinoless double beta decay of ¹³⁰Te with CUORE-0

• Remove events from periods of low-quality data (total exposure reduced of 7%).

CUORE-0 Preliminary	efficiency [%]	error [%]
Trigger	98,529	0,004
Pile-up and PSA	93,7	0,7
Event containment	88,4	0,09
Accidental coincidence	99,64	0,10

• The total selection efficiency is: (81,3 ± 0,6)%

Blinded spectrum

 To blind our data we randomly move a blinded fraction of events within ±10 keV of the 2615 keV y-ray peak with events within ±10 keV of the 0vDBD Q-value.

- The blinding algorithm produces an artificial peak around the 0vDBD Q-value and blinds the real 0vDBD rate of ¹³⁰Te.
- This method of blinding the data preserves the integrity of the possible 0vDBD events while maintaining the spectral characteristics with measured energy resolution and introducing no discontinuities in the spectrum.

Before the unblinding

- We studied, discussed and froze the analysis methods prior to unblinding:
 - Exposure to be collected
 - Energy reconstruction approach
 - Pulse shape cuts
 - Efficiency calculation approach
 - Detector response model
 - Fitting function in the region of interest

Unblinding

• We unblinded our data in of February 2015, once we surpassed the Cuoricino equivalent sensitivity.

Unblinded spectrum

Unblinded spectrum

Fit in the ROI

- We determined the yield of 0vDBD events by performing a simultaneous UEML fit in the energy region 2470-2570 keV
- The fit has 3 components:
 - a posited peak at the Q-value of ¹³⁰Te
 - a peak at 2507 keV, attributed to the double gamma events from ⁶⁰Co in the nearby copper
 - a smooth continuum background, attributed to multi scatter Compton events from ²⁰⁸TI and surface alpha events

Fit in the ROI

• The best fit value of the 0vDBD decay rate is

 $\Gamma_{0\nu} = 0.01 \pm 0.12 \,(\text{stat.}) \pm 0.01 \,(\text{syst.}) \times 10^{-24} \text{yr}^{-1}$

• The background index in the ROI is:

 $0.058 \pm 0.004 \,(\text{stat.}) \pm 0.002 \,(\text{syst.}) \,\,\text{c/keV/kg/yr}$

• We set a 90% C.L. Bayesian lower limit of: $T_{1/2} > 2.7 \times 10^{24} \text{ yr}$.

Statistical fluctuations

We evaluated the statistical properties of the data (event excess above Qββ, dips below and above Qββ).

- A Kolmogorov-Smirnov test shows the data is consistent with the null hypothesis (i.e., the best-fit model but with Γ_{0v} fixed to zero).
- We compared the value of the binned χ^2 with the distribution from a large set of Toy MC. The 90% of such experiments return a value of χ^2 > 43.9.

Systematics errors

- For each systematic, we run toy MC experiments to evaluate bias on fitted 0vDBD decay rate. We parametrize the bias as p0 (additive) +p1· Γ_{0v} (scaling)
- Signal Lineshape: used variety of different line shapes to model signal.
- Energy resolution and scale: we varied the resolution up to 10% of calibration-derived values and we propagated the uncertainties at the Q-value energy.
- Fit bias: We evaluated the bias on fitted 0vDBD decay rate as a function of a simulated rate.
- **Bkg function**: we treated the choice of 0-, 1-, or 2-order polynomial for the continuum background as a discrete nuisance parameter.

	Additive (10^{-1})	$^{-24} y^{-1}$) Scaling (%)
Lineshape	0.007	1.3
Energy resolution	0.006	2.3
Fit bias	0.006	0.15
Energy scale	0.005	0.4
Bkg function	0.004	0.8
Signal normalization	L	0.7%

Cuoricino combination

- We combine the CUORE-0 result with the existing 19.75 kg \cdot yr of $^{\rm 130}{\rm Te}$ exposure from Cuoricino
- The combined 90% C.L. limit is $T_{0v} > 4.0 \times 10^{24} \text{ yr}$.

L. Canonica (LNGS)

Results from the search for neutrinoless double beta decay of ¹³⁰Te with CUORE-0

Limit on mbb

Conclusions

• TeO2 bolometers offer a well-established, competitive technique in the search for 0vDBD decay

CUORE-0

- Achieved its energy resolution and background level objectives, surpassing the Cuoricino sensitivity in ~ half the time.
- Did not find evidence of 0vDBD decay.
- Indicated CUORE sensitivity goal is within reach.
- We are going to post the paper to arXiv and to submit it to PRL. We have two more papers in preparation (detector and background).

CUORE:

- Assembly of the 19 CUORE towers is complete.
- Commissioning of the cryogenic system and experimental infrastructure is in progress
- Plan to start operations by end of 2015.