

Recent results from the T2K experiment

Stefania Bordoni

Bologna, 15 May 2015

Overview of the talk

- Introduction to neutrino oscillations
- The T2K experiment
 - The experimental setup
 - Towards the oscillation analysis
 - The oscillation results
 - First look to anti-neutrino data

- Neutrino oscillations have a long history
- postulated by B. Pontecorvo in 1957
- First experimental evidence in 1968 observing a deficit in the expected solar neutrino flux
- First experimental evidence of atmospheric neutrino oscillation by Super Kamiokande in 1998
- Confirmation of the solar neutrino transition by SNO in 2001

Neutrino oscillations : various sources, vastly different energy and distance scales

solar neutrinos

E ~ [KeV, 10MeV]

atmospheric neutrinos E ~ [MeV, 100TeV]

reactor neutrinos

E ~ [MeV, 10MeV]

accelerator neutrinos

E ~ [100MeV, 100GeV]

- Flavour states are coherent superposition of the mass states → flavour mixing
 - Similar to the CKM mixing matrix for quarks

- Flavour states are coherent superposition of the mass states → flavour mixing
 - Similar to the CKM mixing matrix for quarks
- Neutrinos are always **produced** and **detected** as **flavour eigenstates**, while they **propagate** as **mass eigenstates**
- If mass eigenstates are different, they propagate with different phases \rightarrow quantum interference changing the proportion of ν_1 and ν_2 at the detection

2 neutrino scenario

- Flavour states are coherent superposition of the mass states → flavour mixing
 - Similar to the CKM mixing matrix for quarks
- Neutrinos are always **produced** and **detected** as **flavour eigenstates**, while they **propagate** as **mass eigenstates**
- If mass eigenstates are different, they propagate with different phases \rightarrow quantum interference changing the proportion of ν_1 and ν_2 at the detection

2 neutrino scenario

$$P_{\nu_{\alpha} \to \nu_{\beta}} = \sin^{2} 2\theta \sin^{2} \left(1.27 \frac{\Delta m^{2} [eV^{2}]}{E [GeV]} L[km] \right)$$
$$L = \nu \text{ flight path}$$
$$E = \nu \text{ energy}$$

- Flavour states are coherent superposition of the mass states → flavour mixing
 - Similar to the CKM mixing matrix for quarks
- Neutrinos are always **produced** and **detected** as **flavour eigenstates**, while they **propagate** as **mass eigenstates**
- If mass eigenstates are different, they propagate with different phases \rightarrow quantum interference changing the proportion of ν_1 and ν_2 at the detection

- Flavour states are coherent superposition of the mass states → flavour mixing
 - Similar to the CKM mixing matrix for quarks
- Neutrinos are always **produced** and **detected** as **flavour eigenstates**, while they **propagate** as **mass eigenstates**
- If mass eigenstates are different, they propagate with different phases \rightarrow quantum interference changing the proportion of ν_1 and ν_2 at the detection

- Flavour states are coherent superposition of the mass states → flavour mixing
 - Similar to the CKM mixing matrix for quarks
- Neutrinos are always **produced** and **detected** as **flavour eigenstates**, while they **propagate** as **mass eigenstates**
- If mass eigenstates are different, they propagate with different phases \rightarrow quantum interference changing the proportion of ν_1 and ν_2 at the detection

Pontecorvo Maki Nakagawa Sakata (PMNS) mixing matrix

- 3 angles $(\theta_{12}, \theta_{23}, \theta_{13})$
- I imaginary phase (δ) allowing for CP violation
- 2 independent mass differences ($\Delta m_{ij}^2 = m_i^2 m_j^2$)

What do we (not) know about v oscillations

PMNS parameter	Best Fit point (NH)	Best Fit point (IH)	Examples of experiments
$\Delta m_{12}^{2} (10^{-5})$	$7.50_{-0.17}^{+0.19}$	$7.50^{+0.19}_{-0.17}$	SK, SNO, KL, BOREX
$\Delta m^2_{3\ell}$ (10 ⁻³)	$+2.457^{+0.047}_{-0.047}$	$-2.449^{+0.048}_{-0.047}$	SK, K2K, MINOS, T2K
${\sf sin}^2 heta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.304^{+0.013}_{-0.012}$	SK, SNO, KL, BOREX
$sin^2 heta_{23}$	$0.452_{-0.028}^{+0.052}$	$0.579^{+0.025}_{-0.037}$	SK,K2K,MINOS, T2K
${\sf sin}^2 heta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0219^{+0.0011}_{-0.0010}$	T2K, DB,DC,RENO
$\delta_{ ext{CP}}$	306^{+39}_{-70}	254^{+63}_{-62}	MINOS,T2K

T.Schwetz et al. arXiv:1409.5439 [hep-ph]

What do we (not) know about v oscillations

PMNS parameter	Best Fit point (NH)	Best Fit point (IH)	Examples of experiments
$\Delta m_{12}^{2} (10^{-5})$	$7.50_{-0.17}^{+0.19}$	$7.50_{-0.17}^{+0.19}$	SK, SNO, KL, BOREX
∆m² _{3ℓ} (10 ⁻³)	$+2.457^{+0.047}_{-0.047}$	$-2.449^{+0.048}_{-0.047}$	SK, K2K, MINOS, T2K
${\sf sin}^2 heta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.304\substack{+0.013\\-0.012}$	SK, SNO, KL, BOREX
$sin^2 heta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.579_{-0.037}^{+0.025}$	sk,k2k,minos, T2k
${\sf sin}^2 heta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0219\substack{+0.0011\\-0.0010}$	T2K, DB,DC,RENO
$\delta_{ ext{CP}}$	306^{+39}_{-70}	254^{+63}_{-62}	MINOS,T2K

• Mass hierarchy still not known $(m_3 > m_2?)$

T.Schwetz et al. arXiv:1409.5439 [hep-ph]

What do we (not) know about v oscillations

PMNS parameter	Best Fit point (NH)	Best Fit point (IH)	Examples of experiments
$\Delta m_{12}^{2} (10^{-5})$	$7.50_{-0.17}^{+0.19}$	$7.50_{-0.17}^{+0.19}$	SK, SNO, KL, BOREX
∆m² _{3ℓ} (10 ⁻³)	$+2.457^{+0.047}_{-0.047}$	$-2.449^{+0.048}_{-0.047}$	SK, K2K, MINOS, T2K
${\sf sin}^2 heta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.304^{+0.013}_{-0.012}$	SK, SNO, KL, BOREX
$sin^2 heta_{23}$	$0.452^{+0.052}_{-0.028}$	$0.579^{+0.025}_{-0.037}$	SK,K2K,MINOS, T2K
${\sf sin}^2 heta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0219\substack{+0.0011\\-0.0010}$	T2K, DB,DC,RENO
$\delta_{ ext{CP}}$	306^{+39}_{-70}	254^{+63}_{-62}	MINOS,T2K

• Mass hierarchy still not known $(m_3 > m_2?)$

• θ_{23} octant still not determined : (e.g. is it > or < 45° ? is θ_{23} maximal?)

T.Schwetz et al. arXiv:1409.5439 [hep-ph]

What do we (not) know about ν oscillations

PMNS parameter	Best Fit point (NH)	Best Fit point (IH)	Examples of experiments
$\Delta m_{12}^2 (10^{-5})$	$7.50_{-0.17}^{+0.19}$	$7.50_{-0.17}^{+0.19}$	SK, SNO, KL, BOREX
∆m² _{3ℓ} (10 ⁻³)	$+2.457^{+0.047}_{-0.047}$	$-2.449^{+0.048}_{-0.047}$	SK, K2K, MINOS, T2K
${\sf sin}^2 heta_{12}$	$0.304^{+0.013}_{-0.012}$	$0.304^{+0.013}_{-0.012}$	SK, SNO, KL, BOREX
$sin^2 \theta_{23}$	$0.452_{-0.028}^{+0.052}$	$0.579^{+0.025}_{-0.037}$	SK,K2K,MINOS, T2K
${\sf sin}^2 heta_{13}$	$0.0218\substack{+0.0010\\-0.0010}$	$0.0219^{+0.0011}_{-0.0010}$	T2K, DB,DC,RENO
$\delta_{ ext{CP}}$	306^{+39}_{-70}	254^{+63}_{-62}	MINOS, T2K

T.Schwetz et al. arXiv:1409.5439 [hep-ph]

• Mass hierarchy still not known $(m_3 > m_2?)$

- θ_{23} octant still not determined : (e.g. is it > or < 45° ? is θ_{23} maximal?)
- δ_{CP} still unknown (some hints..)
- Are they only three? (sterile neutrinos)
- Are they Dirac or Majorana particle

Overview of the T2K experiment

- Physics goals
- Experimental setup : beam-line, near detector, far detector

The T2K experiment

- Long baseline neutrino oscillation experiment in Japan (Tokai to Kamioka)
- Muon neutrinos produced from a 30GeV proton beam (JPARC)
- Neutrinos detected in 2 points :
 - at the near detector (ND280) at 280 m
 - at the far detector (Super-Kamiokande) at 295 Km

A bit of history...

- 1999 : idea of a ν_{μ} to ν_{e} experiment at JPARC
- 2000-2004: letter of Intent, formation of the collaboration and construction approved by the Japanese government
- 2009 : commissioning of the beam-line

Japan Proton

Accelerator Research

The T2K experiment

The T2K Collaboration

Canada

TRIUMF U. Alberta U. B. Columbia U. Regina U. Toronto U. Victoria U. Victoria U. Winnipeg York U.

France

CEA Saclay IPN Lyon LLR E. Poly. LPNHE Paris

Germany

Aachen U.

1

INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma

Japan

Italy

ICRR Kamioka ICRR RCCN Kavli IPMU KEK Kobe U. Kyoto U. Miyagi U. Edu. Osaka City U. Okayama U. Tokyo Metropolitan U. U. Tokyo

Poland

IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T. Wroklaw U.

Russia

INR

Spain

IFAE, Barcelona IFIC, Valencia

Switzerland

ETH Zurich U. Bern U. Geneva

United Kingdom

Imperial C. London Lancaster U. Oxford U. Queen Mary U. L. STFC/Daresbury STFC/RAL U. Liverpool U. Sheffield U. Warwick

USA

- Boston U. Colorado S. U. Duke U. Louisiana S. U. Stony Brook U. U. C. Irvine U. Colorado U. Pittsburgh U. Rochester
- U. Washington

~500 physicists, 59 institutions, 11 countries

The T2K main physics goals

• ν_{μ} disappearance ($\nu_{\mu} \rightarrow \nu_{\mu}$)

$$P(\nu_{\mu} \to \nu_{\mu}) \approx 1 - (\cos^4 \theta_{13} \sin^2 2\theta_{23} + \sin^2 2\theta_{13} \sin^2 \theta_{23}) \sin^2 \left(\frac{\Delta m_{13}^2 L}{4E}\right) + (\text{matter terms})$$

• \mathbf{v}_{e} appearance $(\mathbf{v}_{\mu} \rightarrow \mathbf{v}_{e})$

$$\begin{split} P(\nu_{\mu} \to \nu_{e}) &\simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E_{\nu}} \\ &- \frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2 \sin \theta_{13}} \sin \frac{\Delta m_{21}^{2} L}{4E_{\nu}} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E_{\nu}} \sin \delta_{CP} \\ &+ (\text{CP even term, solar term, matter effect term}) \end{split}$$

The T2K main physics goals

•
$$v_e$$
 appearance $(v_\mu \rightarrow v_e)$

appearance probability also depends to θ_{23} !

$$P(\nu_{\mu} \to \nu_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E_{\nu}} -\frac{\sin 2\theta_{12} \sin 2\theta_{23}}{2\sin \theta_{13}} \sin \frac{\Delta m_{21}^{2} L}{4E_{\nu}} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{31}^{2} L}{4E_{\nu}} \sin \delta_{CP} + (CP \text{ even term, solar term, matter effect term})$$

Neutrino beam production

- 30 GeV protons from the main ring collides over a graphite target
- from proton collisions pions and kaons are produced
- 3 electromagnetic horns focus and select in charge the produced hadrons
- ν_{μ} are produced from the hadron decay (i.e. $\pi \rightarrow \mu \; \nu_{\mu})$

Stefania Bordoni (IFAE)

Neutrino beam production

Beam composition :

- \bullet mainly ν_{μ} : primarily from π decay, high energy tail from K decay
- contamination on v_e (~1%): primarily from μ decay and high energy tail from K decay

Off-axis technique

T2K runs 2.5° off-axis with respect to the initial proton beam First experiment using the off-axis technique

- ${}^{\bullet}\nu$ beam is picked at the maximum of oscillations
- ν interactions are dominated by QE processes \rightarrow reduction of the backgrounds

Signal and Background @T2K

- \bullet At 100 MeV< E_{ν} < few GeV , neutrino nucleon Quasi Elastic interaction dominate
- Resonance pion production is the second main contribution to the total cross section

Stefania Bordoni (IFAE)

ND280 facilities

Two detectors located at 280 m from the target

- **INGRID** : on axis detector → monitor the stability of the neutrino flux
- ND280 : off-axis detector → measure the neutrino flux and cross section

INGRID: the on-axis near detector

- 14 identical modules arranged as a cross, composed by iron (target) and scintillators (active region)
 - monitor of the **beam stability** in intensity (total rate)
 - monitor the beam **stability in direction** (rate per module)

ND280: the off-axis near detector

- Composite detector embedded in a 0.2T magnet field
- Measure the ν_{μ} and ν_{e} spectrum before oscillations
- Neutrino cross-section measurements

- FGD: active target for ν interaction in carbon and water
- TPCs : measure of momentum, charge and high PID capabilities measuring dEdx IFAE9
- Ecal: electron/gamma identification
- **SMRD**: measure of high angle muons

ND280 detector events gallery

Super Kamiokande

- Cylindrical detector located at ~IKm underground in the Kamioka mine (295 Km from the proton target)
- Filled with 50 kton of ultra pure water (22,5 kton FV)
 - Inner detector (ID) : ~I I 000 inward facing PMTs
 - Outer detector (OD): ~2 000 outward facing PMTs to veto external background
- Detection based on **Cherenkov technique**

Particle identification with SK

- Angular distribution of the Cherenkov photons along the primary particle direction provide a key to identify particles
- Signatures electron and muons are quite different at SK
 - muons: sharp and clear ring
 - electrons: fuzzy ring due to multiple scattering and showering

= μ⁻, e⁻

Ve ·

W⁺

SK Neutral Current background

- π^0 are the main background source for appearance analysis
- gammas from π^0 decay shower as electrons
- multiple fuzzy rings that can be mis-identified as electrons

Mis-identification:

- If reconstructed as I-ring event
 - photon rings overlap
 - I ring is faint and loss in the Cherenkov light of the other
- If both rings are reconstructed but poor invariant mass resolution

by F. Sánchez

SK Neutral Current background

- Very performing method to disentangle electrons from π^0
- Based on the *new* reconstruction algorithm
 - use of the charge and time information of each PMT
 - •determination the kinematics of all final state particles
- look like • For every event, maximization of a likelihood assuming different particle hypothesiselectrons

V_{e,µ}►

• Discrimination e- π based on $M_{inv}(\gamma\gamma)$ and the ratio of the e- π best-fit likelihoods (L_{π}^{0}/L_{e})

not detected

Collected data

Collected data

- Proton on target (POT) for physics :
 - $1.02 |x| | 0^{21} (tot) = 7.0 x | 0^{20} (v) + 3.12 x | 0^{20} (anti-v)$
- In the following slides analyses for only 6.6x10^{20 POT :} 8.3% of the total approved POT
Towards the oscillation analyses

- Flux constraints from beam-line and external sources
- Flux and cross-section constraints from ND280

Towards the oscillation analyses

v flux prediction

Simulation of the neutrino flux :

- I. simulation of the proton interactions inside the carbon target (FLUKA2008.3d)
- 2. simulation of the particle passage through horn fields and decay volume (GEANT3+GCALOR)
 - propagation and decays of secondary pions and kaons
 - estimation of the flux at ND280 and SK

v flux prediction

Improvement the MC simulation by re-weighting of the pion and kaon production using external data (NA61/SHINE)

NA61/SHINE

- Independent experiment issues
 Study of the hadron production (π, K) from the interaction in carbon target
 - momentum dependency
 - •angle dependency

T2KCollaboration, PRD 87,012001 (2013

v flux prediction

- Flux error below 15% in the relevant energy range (< 1 GeV)
- Flux error dominated by the hadron production uncertainties
- Strong correlation between ND280 and SK fluxes

T2K Run1-4 Flux at Super-K Flux (/cm²/50MeV/10²¹p.o.t) 10^{6} 10^{-10} *ψ*_e $\#\overline{v}_{e}$ 104 10^{3} 10^{2} 2 0 8 10 4 6 E_{v} (GeV) Fractional Error Total Hadronic Interactions Proton Beam, Alignment and Off-axis Angle Horn Current & Field ----- MC Stat. 0.1 10-1 $E_{v} (GeV)$ 1

ND280 constraints

vµ CC interactions @ ND280

• Constraints to the flux and cross-section parameters for both the oscillation analyses

DIS

- Identification of the 3 main contributions to the total cross section
- Classification in 3 categories based on the reconstruction of pions in the events
 - •**CC0π** : for Quasi Elastic (QE)

QE

 W^+

p

n

 \mathcal{V}_{μ}

n

- •**CCI** π ⁺: Resonant π production (Res)
- •CCOthers : Deep Inelastic Scattering (DIS)

RES

 W^+

 Δ^{++}

 π

p,n

vµ CC interactions @ ND280

- Simple selection done using information coming from the tracker (FGD and TPCs)
- Muon as highest momentum negative track with energy deposition consistent with TPC muon hypothesis
- Momentum and identity of the secondary particles by TPC and FGD

Stefania Bordoni (IFAE)

vµ CC interactions @ ND280

- Simple selection done using information coming from the tracker (FGD and TPCs)
- Muon as highest momentum negative track with energy deposition consistent with TPC muon hypothesis
- Momentum and identity of the secondary particles by TPC and FGD

45

Constraining the ν flux and cross section (output)

• Strong reduction of the systematic uncertainties to the event rate at Super-Kamiokande thanks to the ND280 data

• Current systematics already < 10%

		v_{μ} sample	v_{e} sample
ν flux and cross section	w/o ND measurement	21.8%	26.0%
	w/ ND measurement	2.7%	3.1%
ν cross section due to difference of nuclear target btw. near and far		5.0%	4.7%
Final or Secondary Hadronic Interaction		3.0%	2.4%
Super-K detector		4.0%	2.7%
total	w/o ND measurement	23.5%	26.8%
	w/ ND measurement	7.7%	6.8%

Fractional error on number-of-event prediction

Note: Systematics error updated for joint analyses

Oscillation analyses: V_{μ} disappearance

v_{μ} disappearance

CCQE candidates at SK selected looking for "one-muon-only" events

- Fully contained single muon-like ring
- $p_{\mu} > 200$ MeV and no more than one decay e⁻
- \bullet E_{ν} reconstructed using the QE approximation

v_{μ} disappearance

120 events observed

446.0 ± 22.5 (syst) expected if No oscillation

Phys. Rev. D. 91, 072010 (2015)

v_{μ} disappearance

- Fit to data performed with the three flavours framework
- Maximal mixing is favored

Phys. Rev. D. 91, 072010 (2015)

vµ disappearance

World's best measurement in 9_{23} !

Oscillation analyses: V_e appearance

v_{e} selection @ SK

CCQE candidates at SK selected looking for "one-electron-only" events

- fully contained single electron-like ring
- $p_e > 100$ MeV and no decay e^- (Michel electrons)
- \bullet E_{ν} reconstructed using the QE approximation
- π^0 background rejection

ve oscillation analyses review

T2K ve appearance results

	N_{ve}^{Obs}	N_{bkg}^{exp}	collected data
2011: first indication	7	1.5 ± 0.3	1.43×10 ²⁰ POT
2013: further evidence		3.3 ± 0.4	3.01×10 ²⁰ POT
2013: firmly established	28	4.9 ± 0.6	6.57×10 ²⁰ POT

V_e appearance

- ullet Maximum likelihood fit in $\{p_e, oldsymbol{9}_e\}$
- \bullet Consistent with independent analysis based on E_{reco}

Parameter fixed in the analysis: $\delta_{CP}=0$, Normal Hierarchy, $|\Delta m_{32}^2|=2.4 \times 10^{-3} \text{ eV}^2$, $\sin^2 2\theta_{23}=1$

V_e appearance

- Dependence of the appearance measurements on the $m g_{23}$
- \bullet Motivation for a joint $\nu_{\mu}\text{+}\nu_{e}$ fit

Joint $V_{\mu} + V_{e}$ analysis

- Two analyses: **frequentist** (w/ Feldman-Cousins) and **bayesian** (Markov Chain MC) approach
- The 4 oscillation parameters Δm^{2}_{32} , $\boldsymbol{9}_{23}, \boldsymbol{9}_{13}, \boldsymbol{\delta}_{CP}$ are determined through a simultaneous fit of the reconstructed energy spectra of both ν_{μ} and ν_{e} samples (and ND280)

20|3)

First look to anti-neutrino data

Anti-neutrino analyses

- Sensitivity studies have shown that running with 50% ν 50% anti- ν mode will further enhance the T2K physics potential
- 3.12 x10²⁰ POT already recored in anti- ν mode!
- Same strategy as for the neutrino mode: use of ND280 data to constrain systematics
- Oscillation analysis are ready but still not public 😔

 μ + event in ND280

First anti-v in SK

Anti-neutrino analysis at ND280

- The analysis performed at ND280 will perform a key role to reduce the systematics uncertainties also for anti-neutrino oscillation analyses
- For 4.3x10¹⁹ POT (Run5 only) we observe 571 anti-νµ CC interaction candidates
- Simple selection: highest momentum positive track with mu-like PID
 - CC-I-Track sample : sensitive to T2K signal
 - CC-N-Tracks sample: sensitive to T_2K, background

Anti-neutrino analysis at ND280

- The analysis performed at ND280 will perform a key role to reduce the systematics uncertainties also for anti-neutrino oscillation analyses
- For 4.3x10¹⁹ POT (Run5 only) we observe 571 anti-νµ CC interaction candidates
- Simple selection: highest momentum positive track with mu-like PID
 - **CC-I-Track sample** : sensitive to T2K signal
 - CC-N-Tracks sample: sensitive to T2K background

Stefania Bordoni (IFAE)

Anti-neutrino analysis at ND280

- The analysis performed at ND280 will perform a key role to reduce the systematics uncertainties also for anti-neutrino oscillation analyses
- For 4.3x10¹⁹ POT (Run5 only) we observe 571 anti-νµ CC interaction candidates
- Simple selection: highest momentum positive track with mu-like PID
 - **CC-I-Track sample** : sensitive to T2K signal
 - CC-N-Tracks sample: sensitive to T2K background

Conclusions

Conclusions

- World leading results with only 8% of the total expected statistics
 - \bullet First observation of the ν_{e} appearance
 - Best world measurement of sin² θ_{23} (10% uncertainties) through ν_{μ} disappearance
 - First hints of $\delta_{CP} \neq 0$ by joint ν_{μ} - ν_{e} analyses combined with reactor constraints
- A lot of interesting measurements are performed at the near detectors
 - $\bullet \, \nu_{\text{e}} \,$ and $\nu_{\mu} \, \text{cross sections}$
 - Search for Short Baseline oscillations (sterile neutrinos)
- T2K is collecting now also data in anti-neutrino mode
 - \bullet Sensitivity studies has shown an enhancement of the physics potential of T2K if we collect 50% ν 50% anti- ν
 - anti- v_{μ} disappearance results will be presented next week!
 - \bullet Other measurement (anti- $\nu_{\rm e}$ appearance, joint analyses..) will be ready soon. Stay tuned!

Supplementary

Flux prediction Run I-4

Flux prediction Run5c

NA61 data

Stefania Bordoni (IFAE)

Flux prediction error

New NA61 data release:

- Reduction of the error in n-mode at ~10% (15% with 2007 data release)
- Flux error in anti-nu mode < 15%

ND280 constraints

Phys. Rev. D. 91, 072010 (2015)
$NC\pi^0$ rejection

With the new method:

- reduction of about 9x of the remaining NC background (after ''I-ring" selection)
- reduction of 69% of the remaining background wrt to the previous method

Phys. Rev. D. 91, 072010 (2015)

Stefania Bordoni (IFAE)

$\sin^2 \theta_{13}$ - δ_{CP} credible region

Phys. Rev. D. 91, 072010 (2015)

Reactor constraints from PDG 2013 $sin 29_{13} = 0.095 \pm 0.010$

Joint v_{μ} + v_{e} analysis :

Bayesian approach

Phys. Rev. D. 91, 072010 (2015)

- Markov Chain Monte Carlo method
- Simultaneous inclusion of ND280 and SK data
- Marginalize over the mass hierarchy
- Assuming flat prior of sin2 θ_{23} | Δm^2_{23} | and P_{NH}= P_{IH}=0.5

Future sensitivity studies

 7.8×10^{21} POT sin²2 θ_{13} = 0.1, δ CP = 0°, sin²2 θ_{23} = 0.5, Δ m² = 2.4 × 10⁻³ eV² + 2012 systematics

Stefania Bordoni (IFAE)

T2K + NoVa

Region where δ_{CP} can be discovered at 90% CL

Sensitivity to $\sin \delta = 0$

 7.8×10^{21} POT sin²2 θ_{13} = 0.1, δ CP = 0°, sin²2 θ_{23} = 0.5, Δ m² = 2.4 × 10⁻³ eV² + with δ (sin²2 θ_{13}) = 0.005

Stefania Bordoni (IFAE)