Laser Electron Accelerator

T. Tajima and J. M. Dawson

Department of Physics, University of California, Los Angeles, California 90024
(Received 9 March 1979)

An intense electromagnetic pulse can create a weak of plasma oscillations through the action of the nonlinear ponderomotive force. Electrons trapped in the wake can be accelerated to high energy. Existing glass lasers of power density 10^{18}W/cm^2 shine on plasmas of densities 10^{18}cm^{-3} can yield gigaelectronvolts of electron energy per centimeter of acceleration distance. This acceleration mechanism is demonstrated through computer simulation. Applications to accelerators and pulser are examined.

Collective plasma accelerators have recently received considerable theoretical and experimental investigation. Earlier Fermi and McMillan considered cosmic-ray particle acceleration by moving magnetic fields or electromagnetic waves. In terms of the realizable laboratory technology for collective accelerators, present-day electron beams yield electric fields of $\sim 10^7 \text{V/cm}$ and power densities of 10^{13}W/cm^2. On the other hand, the glass laser technology is capable of delivering a power density of 10^{18}W/cm^2, and as we shall see, an electric field of the wavelength of the plasma waves in the wake:

$$L_t = \lambda_w / 2 = \pi c / \omega_p.$$ (2)

An alternative way of exciting the plasmon is to inject two laser beams with slightly different frequencies (with frequency difference $\Delta \omega \sim \omega_p$) so that the beat distance of the packet becomes $2\pi c / \omega_p$. The mechanism for generating the wakes can be simply seen by the following approximate treatment. Consider the light wave propagating in the x direction with the electric field in the y direction. The light wave sets the electrons