Computing hadronic vacuum polarisation from first principles

Marina Marinković
Università degli Studi di Roma "La Sapienza"
13. 4. 2015

Southâmptor

Computing HVP from first principles
Rome, 13 Apr, 2015

The magnetic moment of the lepton: a_{l}

- Intrinsic magnetic moment of any spinning particle

$$
\vec{\mu}=g_{l} \frac{e \hbar}{2 m_{l} c} \vec{S}
$$

- For leptons, $s=\frac{1}{2}$, the giromagnetic from Dirac theory: $g_{l}=2$

- $q=p^{\prime}-p \quad q^{2}=0: F_{E}(0)=1, F_{M}(0)=a_{I}=\frac{g_{I}-2}{2}, I=e, \mu, \tau$
- quantum fluctuations due to heavier particles or contributions from higher energy scales

$$
\frac{\delta a_{l}}{a_{l}} \propto \frac{m_{l}^{2}}{M^{2}}
$$

M - mass of heavier SM/BSM particle, or scale of new physics ...

a_{μ} as a stringent test of the SM

- quantum fluctuations due to heavier particles or contributions from higher energy scales

$$
\frac{\delta a_{l}}{a_{l}} \propto \frac{m_{l}^{2}}{M^{2}} ; \quad\left(m_{\mu} / m_{e}\right)^{2} \sim 4 \times 10^{4}
$$

M - mass of heavier SM/BSM particle, or scale of new physics ...

a_{μ} as a stringent test of the SM

- quantum fluctuations due to heavier particles or contributions from higher energy scales

$$
\frac{\delta a_{l}}{a_{l}} \propto \frac{m_{l}^{2}}{M^{2}} ; \quad\left(m_{\mu} / m_{e}\right)^{2} \sim 4 \times 10^{4}
$$

M - mass of heavier SM/BSM particle, or scale of new physics ...

a_{μ} as a stringent test of the SM

- quantum fluctuations due to heavier particles or contributions from higher energy scales

$$
\frac{\delta a_{l}}{a_{l}} \propto \frac{m_{l}^{2}}{M^{2}} ; \quad\left(m_{\mu} / m_{e}\right)^{2} \sim 4 \times 10^{4}
$$

M - mass of heavier SM/BSM particle, or scale of new physics ...

- $a_{\mu}^{\exp }=11659208.0(6.3) \times 10^{-10}(0.54 \mathrm{ppm})$ [BNL, 2006-2008]
- Current theoretical and experimental estimates:
- $2.9 \sigma / 3.6 \sigma$ discrepancy $\left(e^{+} e-/ \tau\right.$ data)
- $a_{\mu}^{e x p}-a_{\mu}^{t h, S M}=287(63)(51) \times 10^{-11}$
- New experiments (J-PARC, Fermilab) expected to perform $4 \times$ more precise measurement
- Improved precision of the theoretical estimates with dominating uncertainty required

a_{μ} as a stringent test of the SM

- Evolution of the ($t h-\exp$) tension [Jegerlehner, Nyffeler 0902.3360]

a_{μ} as a stringent test of the SM

- Sensitivity of different g-2 experiments to various contributions [Jegerlehner arxiv:0703125] "New Physics" : $\delta a_{\mu}=a_{\mu}^{e x p}-a_{\mu}^{t h, S M}=287(91) \times 10^{-11} \rightarrow 3.2 \sigma$

Theoretical uncertainties:

- $\operatorname{HVP}\left(O\left(10^{-10}\right)\right)$
- $\operatorname{HLbL}\left(O\left(10^{-10}\right)\right)$
- other contributions (unceirt. $O\left(10^{-11}\right)$ or less)
- Lattice provides the model-independent setup for the computation of hadronic contribution(s)

Lattice QCD computation

Quarks $\sim \bar{\psi}(x), \psi(x)$
Gluons $\sim U_{\mu}(x)=e^{\operatorname{igg} A_{\mu}}$

Lattice QCD computation

- Generate ensembles of field configurations using Monte Carlo
- Average over a set of gauge configurations
- Typically compute correlation function of fields, extract Euclidean matrix element or amplitude
- Computational cost is dominated by quarks: inverse of large, sparse matrix
- Extrapolate to continuum, infinite volume, physical quark masses (now directly accessible)

Hadronic vacuum polarisation

Can be computed in Euclidean space-time [Lautrup, de Rafael '69, Blum '02]

- $a_{\mu}^{H L O}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right)$
- $f\left(Q^{2}\right)=m_{\mu^{2}} Q^{2} Z^{3}\left(Q^{2}\right) \frac{1-Q^{2} Z\left(Q^{2}\right)}{1+m_{\mu}^{2} Q^{2} Z^{2}\left(Q^{2}\right)}$
- $Z\left(Q^{2}\right)=\left(\sqrt{\left.\left(Q^{2}\right)^{2}+4 m_{\mu}^{2} Q^{2}\right)}-Q^{2}\right) /\left(2 m_{\mu}^{2} Q^{2}\right)$

Hadronic vacuum polarisation

Can be computed in Euclidean space-time [Lautrup, de Rafael '69, Blum '02]

$$
\text { - } a_{\mu}^{H L O}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right)
$$

- $f\left(Q^{2}\right)=m_{\mu^{2}} Q^{2} Z^{3}\left(Q^{2}\right) \frac{1-Q^{2} Z\left(Q^{2}\right)}{1+m_{\mu}^{2} Q^{2} Z^{2}\left(Q^{2}\right)}$
- $Z\left(Q^{2}\right)=\left(\sqrt{\left.\left(Q^{2}\right)^{2}+4 m_{\mu}^{2} Q^{2}\right)}-Q^{2}\right) /\left(2 m_{\mu}^{2} Q^{2}\right)$

- $\hat{\Pi}\left(Q^{2}\right)=\Pi\left(Q^{2}\right)-\Pi(0)$
- $\Pi_{\mu \nu}(Q)=a^{4} \sum_{x} e^{i Q x}\left\langle J_{\mu}^{e m}(x) J_{\nu}^{e m}(0)\right\rangle$
- $\Pi_{\mu \nu}(Q)=\left(Q^{2} \delta_{\mu \nu}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)$

Hadronic vacuum polarisation

- Connected and disconnected contribution to the HVP

- Disconnected:
- Computationaly very demanding
- ChPT estimate $\propto 10 \%$ [Della Morte, Juettner '10]
- Direct estimates from the lattice in progress [Guelpers et al. '14]

Hadronic vacuum polarisation

- Connected and disconnected contribution to the HVP

- Disconnected:
- Computationaly very demanding
- ChPT estimate $\propto 10 \%$ [Della Morte, Juettner '10]
- Direct estimates from the lattice in progress [Guelpers et al. '14]
- In the following we will discuss only the connected part

Hadronic vacuum polarisation

Can be computed in Euclidean space-time [Lautrup, de Rafael '69, Blum '02]

$$
\text { - } a_{\mu}^{H L O}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right) \times \hat{\Pi}\left(Q^{2}\right)
$$

- $f\left(Q^{2}\right)=m_{\mu^{2}} Q^{2} Z^{3}\left(Q^{2}\right) \frac{1-Q^{2} Z\left(Q^{2}\right)}{1+m_{\mu}^{2} Q^{2} Z^{2}\left(Q^{2}\right)}$
- $Z\left(Q^{2}\right)=\left(\sqrt{\left.\left(Q^{2}\right)^{2}+4 m_{\mu}^{2} Q^{2}\right)}-Q^{2}\right) /\left(2 m_{\mu}^{2} Q^{2}\right)$

- $\hat{\Pi}\left(Q^{2}\right)=\Pi\left(Q^{2}\right)-\Pi(0)$
- $\Pi_{\mu \nu}(Q)=a^{4} \sum_{x} e^{i Q x}\left\langle J_{\mu}^{e m}(x) J_{\nu}^{e m}(0)\right\rangle$
- $\Pi_{\mu \nu}(Q)=\left(Q^{2} \delta_{\mu \nu}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)$

Hadronic vacuum polarisation on the lattice

- $a_{\mu}^{H L O}=\left(\frac{\alpha}{\pi}\right)^{2} \int_{0}^{\infty} d Q^{2} f\left(Q^{2}\right) \times\left(\Pi\left(Q^{2}\right)-\Pi(0)\right)$
- $\Pi_{\mu \nu}(Q)=a^{4} \sum_{x} e^{i Q x}\left\langle J_{\mu}^{e m}(x) J_{\nu}^{e m}(0)\right\rangle$
- $\Pi_{\mu \nu}(Q)=\left(Q^{2} \delta_{\mu \nu}-Q_{\mu} Q_{\nu}\right) \Pi\left(Q^{2}\right)$

- Transverse projection: $Q_{\mu}=0$
- Take only diagonal components $\Pi_{\mu \mu}$
- $\Pi\left(Q^{2}\right)=-\frac{\Pi_{\mu \mu}\left(Q^{2}\right)}{Q^{2}}$

Hadronic vacuum polarisation

Systematic uncertainties to be controlled - general
(1) Simulations at physical m_{π}
(2) Controlled continuum limit, FV effects
(3) Disconnected diagrams
(4) Obtaining a real world result: charm quark, isospin effects...

Systematic uncertainties to be controlled - HVP related

- Conventional simulations do not allow access to sufficiently low Fourier momenta
- Integral is dominated in the region where relative errors are enhanced
- Structure of HVP tensor is such that $\Pi(0)$ is not directly accessible
- Systematic uncertainty introduced by extrapolation

Choosing the appropriate fit functions

- First attempts to obtain a_{μ}^{HLO} from the lattice:
- asumed functional forms for $\Pi\left(Q^{2}\right)$ based on VMD
- model-dependent, not physicaly motivated, introduces bias ...
- [Aubin,Blum,Golterman,Peris 1205.3695] recently proposed:
- use a series of Padé approximants

$$
\Pi\left(Q^{2}\right)=\Pi(0)+Q^{2}\left(a_{0}^{2}+\sum_{n=1}^{N} \frac{a_{n}^{2}}{b_{n}^{2}+Q^{2}}+\ldots\right)
$$

- A convergence theorem for $N \rightarrow \infty$ exists:
- $\frac{\Pi\left(Q^{2}\right)-\Pi(0)}{Q^{2}}$ bound by $[N, N]$ and $[N+1, N]$ PA's
- $[\mathrm{N}+1, \mathrm{~N}]: a_{0} \neq 0,[\mathrm{~N}, \mathrm{~N}]: a_{0} \neq 0$
* different from the notation in the ref.

Phenomenological model of HVP [Bernecker, Meyer, 1107.4388]

- Phenomenological R ratio ($e^{+} e^{-} \rightarrow$ hadrons)
- $\Pi\left(Q^{2}\right)-\Pi(0)=Q^{2} \int_{0}^{\infty} d s \frac{\rho(s)}{s\left(s+Q^{2}\right)}$

Phenomenological model of HVP [Bernecker, Meyer, 1107.4388]

- Phenomenological R ratio ($e^{+} e^{-} \rightarrow$ hadrons)
- $\Pi\left(Q^{2}\right)-\Pi(0)=Q^{2} \int_{0}^{\infty} d s \frac{\rho(s)}{s\left(s+Q^{2}\right)}$

Taylor expansions for $N=1, \cdots, 10$

$[N, N-1] \&[N, N]$ Padé's: $[1,1] \rightarrow[5,5]$
[L.Lellouch, Talk at MITP $g_{\mu}-2$ workshop, Mainz, 1-5 April 2014]

Phenomenological model of HVP [Golterman, Maltman, Peris 1309.2153]

- A method to quantitatively examine the systematics of lattice computations
- Dispersive τ-based $I=1$ model: $\hat{\Pi}^{\prime=1}\left(Q^{2}\right)=Q^{2} \int_{4 m_{\pi}^{2}}^{\infty} d s \frac{\rho^{I=1}(s)}{s\left(s+Q^{2}\right)}$
- Fake lattice data for $\Pi\left(Q^{2}\right)-\Pi(0) \&$ compared with true answer from model

- Outcome:
- Fitting until high Q^{2} dangerous, unless higher order Padés used
- Better focus on low- Q^{2} region needed

Improving the systematics of connected HVP

- A "Hybrid strategy" [Golterman, Maltman, Peris 1405.2389]

- More than 80% of a_{μ}^{HLO} is accumulated below $Q_{\text {max }}^{2}=0.1 \mathrm{GeV}^{2}$
- More than 90% below $Q_{\max }^{2}=0.2 \mathrm{GeV}^{2}$

Improving the systematics of connected HVP

- A "Hybrid strategy" [Golterman, Maltman, Peris 1405.2389]
- low- Q^{2} contributions by fitting low- Q^{2} region only $\left[0, Q_{\text {min }}^{2}\right]$
- numericaly integrate $\left[Q_{\min }^{2}, Q_{\max }^{2}\right]$
- apply PT for $\left[Q_{\max }^{2}, \infty\right]$

- Statistical, systematic (trapezoid rule) and errors on $\Pi(0)$
- Investigated using fake data from $I=1$ dispersive model

Previous RBC-UKQCD computation of $a_{\mu}^{H L O}[$ [日voreatrin $]$

Non physical $m_{\pi}, a^{-1} \approx 1.3,1.7,2.3 \mathrm{GeV}$

- Domain Wall Fermion (DWF)
- Fitting Q^{2} - dependence of $\Pi\left(Q^{2}\right)$ up to $Q_{C}^{2} \approx 2.5-9 \mathrm{GeV}^{2}$
- Local current at source, conserved at sink

- Strong m_{π} dependence
- Eliminate the systematics of chiral extrapolation: computing HVP at $m_{\pi}^{\text {phys }}$

Cost of the fermions on the lattice

- $\langle O[\psi, \bar{\psi}, U]\rangle=\frac{1}{Z} \int \mathcal{D} U \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-S_{G}[U]-S_{f}[U, \psi, \bar{\psi}]} O[\psi, \bar{\psi}, U]$
- S_{G}

Wilson

Luscher-Weisz

- S_{F}

$$
\int \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-\bar{\psi}\left(\gamma_{\mu} D_{\mu}+m_{q}\right) \psi} \approx \operatorname{det}\left(\gamma_{\mu} D_{\mu}+m_{q}\right)
$$

- Non-local object on the lattice \rightarrow impossible to compute exactly!
- Solving:

$$
\chi=\left(\gamma_{\mu} D_{\mu}+m_{q}\right)^{-1} \Phi
$$

very expensive for: small quark mass m, large $\frac{L}{a}$.

Cost of the fermions on the lattice

- $\langle O[U]\rangle=\frac{1}{z} \int D U e^{-S_{G}[U]}\left[\operatorname{det}\left(\gamma_{\mu} D_{\mu}+m_{q}\right)\right]^{N_{f}} O[U]$
- S_{G}

Wilson

Luscher-Weisz

- S_{F}

$$
\int \mathcal{D} \psi \mathcal{D} \bar{\psi} e^{-\bar{\psi}\left(\gamma_{\mu} D_{\mu}+m_{q}\right) \psi} \approx \operatorname{det}\left(\gamma_{\mu} D_{\mu}+m_{q}\right)
$$

- Non-local object on the lattice \rightarrow impossible to compute exactly!
- Solving:

$$
\chi=\left(\gamma_{\mu} D_{\mu}+m_{q}\right)^{-1} \Phi
$$

very expensive for: small quark mass m, large $\frac{L}{a}$.

Cost of the fermions on the lattice

- $\langle O[\phi, \bar{\phi}, U]\rangle=\frac{1}{Z} \int \mathcal{D} U \mathcal{D} \phi \mathcal{D} \phi^{\dagger} e^{-S_{G}[U]-S_{f}\left[U, \phi, \phi^{\dagger}\right]} O\left[\phi, \phi^{\dagger}, U\right]$
- S_{G}

Wilson

Luscher-Weisz

- S_{F}

$$
\int \mathcal{D} \phi \mathcal{D} \phi^{\dagger} e^{-\phi^{\dagger}\left(\gamma_{\mu} D_{\mu}+m_{q}\right)^{-1} \phi} \quad \operatorname{det}\left(\gamma_{\mu} D_{\mu}+m_{q}\right)
$$

- Non-local object on the lattice \rightarrow impossible to compute exactly!
- Solving:

$$
\chi=\left(\gamma_{\mu} D_{\mu}+m_{q}\right)^{-1} \Phi
$$

very expensive for: small quark mass m, large $\frac{L}{a}$.

RBC-UKQCD $N_{f}=2+1$ Domain Wall ensembles

- a_{μ}^{HLO} from DWF for non-physical m_{π} [Boyle et al '11]
- physical point HVP (•) recently measured \rightarrow preliminary fits

Physical point HVP from $N_{f}=2+1$ DWF

Physical point data:

- $L / a=48^{3} \times 94 \times 24, \quad a^{-1}=1.73 \mathrm{GeV}$
- $\Pi\left(Q^{2}\right)$ convergent sequence of PAs[Aubin et al,'13]
- VMD is unreliable
- Padé approximants [N,D]

$$
\Pi_{[N, D]}\left(Q^{2}\right)=\frac{\sum_{n=0}^{N-1} a_{n} Q^{2 n}}{1+\sum_{m=1}^{D} b_{m} Q^{2 m}}
$$

Physical point HVP from $N_{f}=2+1$ DWF

- $L / a=48, a^{-1}=1.73 \mathrm{GeV}, m_{\pi}=138 \mathrm{MeV}$
- $Q_{C}^{2}=1.5 ; 2.0 ; 2.5 ; 3.0 \mathrm{GeV}^{2}$

Physical point HVP from $N_{f}=2+1$ DWF

- Left: Physical point data (Möbius DWF)
- Right: Dispersive model study [Golterman et al. '13]
- Same qualitative behaviour - Padé [2,1] looks acceptable
- Nevertheless, even for Padé $[2,1]$
- Removing correlations
- Results for different choice of Q_{C}^{2} not compatible
- Quoting the value for $a_{\mu}^{H L O}$ would be premature

Physical point HVP from $N_{f}=2+1$ DWF

Light and strange contributions separated

Limited statistics with physical m_{π} already gives:

- $\frac{\delta a_{\mu}^{\text {stat. }}}{a_{\mu}}$ for light contribution is $O(10)$ larger than for strange HVP

Promising methods I have not discussed

- HVP at $Q^{2}=0$
- New way for direct extraction of zero momentum form factors on the lattice [de Divitis, R. Petronzio, N. Tantalo 1208.5914]

Promising methods I have not discussed ...

- HVP at $Q^{2}=0$
- New way for direct extraction of zero momentum form factors on the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914]
- For off-diagonal elements, $\mu \neq \nu$:
- $\Pi_{\mu \nu}(Q)=-Q_{\mu} Q_{\nu} \Pi\left(Q^{2}\right)$
- $\left.\frac{\partial^{2}}{\partial Q_{\mu} \partial Q_{\nu}} \Pi_{\mu \nu}(Q)\right|_{Q^{2}=0}$

$$
\begin{aligned}
& =-\left.\frac{\partial^{2}}{\partial Q_{\mu} \partial\left(Q_{\nu}\right.}\left(Q_{\mu} Q_{\nu} \Pi\left(Q^{2}\right)\right)\right|_{Q^{2}=0} \\
& =-\Pi(0)
\end{aligned}
$$

- Works for the connected contribution

Promising methods I have not discussed ...

- HVP at $Q^{2}=0$
- New way for direct extraction of zero momentum form factors on the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914]
- $\Pi_{12}(Q)=\sum_{x}\left\langle\operatorname{Tr}\left\{S[y, x ; U] \Gamma_{V}^{1}(x, \vec{q}) S\left[x, y ; U, \lambda^{p}\right] \Gamma_{V}^{2}(y, \overrightarrow{0})\right\}\right\rangle$.
- $\Pi(0)=-\left.\frac{\partial \Pi_{12}(Q)}{\partial Q_{1} \partial Q_{2}}\right|_{Q s=0}$

$$
\begin{gathered}
=-\frac{1}{\left(T L^{3}\right)^{2}} \sum_{x, y}\left\langle\operatorname{Tr}\left[S \Gamma_{V}^{1} \frac{\partial^{2} S}{\partial Q_{1} \partial Q_{2}} \Gamma_{V}^{2}\right]-\frac{i}{2} \operatorname{Tr}\left[S \Gamma_{T}^{1} \frac{\partial S}{\partial Q_{2}} \Gamma_{V}^{2}\right]\right. \\
\left.-\frac{i}{2} \operatorname{Tr}\left[S \Gamma_{V}^{1} \frac{\partial S}{\partial Q_{1}} \Gamma_{T}^{2}\right]-\frac{1}{4} \operatorname{Tr}\left[S \Gamma_{T}^{1} S \Gamma_{T}^{2}\right]\right\rangle
\end{gathered}
$$

Promising methods I have not discussed ...

- HVP at $Q^{2}=0$
- New way for direct extraction of zero momentum form factors on the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914]
- Gain in statistics and stabilizing the fits at the cost of the evaluation of 3 pt and 4 pt functions

Promising methods I have not discussed ...

- HVP at $Q^{2}=0$
- New way for direct extraction of zero momentum form factors on the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914]
- HPQCD time moments
- Strange and charm quark contributions to the anomalous magnetic moment of the muon
[Chakraborty, Davies, Donald, Dowdall, Koponen, Lepage, Teubner 1403.1778]
- Its extensions involving different definitions of discrete moments
- We are looking into it

RBC-UKQCD Collaboration members

UKQCD
Rudy Arthur (Odense)
Peter Boyle (Edinburgh)
Luigi Del Debbio (Edinburgh)
Shane Drury (Southampton)
Jonathan Flynn (Southampton)
Julien Frison (Edinburgh)
Nicolas Garron (Dublin)
Jamie Hudspith (Toronto)
Tadeusz Janowski (Southampton)
Andreas Juettner (Southampton)
Ava Kamseh (Edinburgh)
Richard Kenway (Edinburgh)
Andrew Lytle (TIFR)
Marina Marinkovic (Southampton)
Brian Pendleton (Edinburgh)
Antonin Portelli (Southampton)
Thomas Rae (Mainz)
Chris Sachrajda (Southampton)
Francesco Sanfilippo (Southampton)
Matthew Spraggs (Southampton)
Tobias Tsang (Southampton)

RBC-UKQCD Collaboration members: HVP + HLbL interest

UKQCD
Rudy Arthur (Odense)
Peter Boyle (Edinburgh)
Luigi Del Debbio (Edinburgh)
Shane Drury (Southampton)
Jonathan Flynn (Southampton)
Julien Frison (Edinburgh)
Nicolas Garron (Dublin)
Jamie Hudspith (Toronto)
Tadeusz Janowski (Southampton)
Andreas Juettner (Southampton)
Ava Kamseh (Edinburgh)
Richard Kenway (Edinburgh)
Andrew Lytle (TIFR)
Marina Marinkovic (CERN)
Brian Pendleton (Edinburgh)
Antonin Portelli (Southampton)
Thomas Rae (Mainz)
Chris Sachrajda (Southampton)
Francesco Sanfilippo (Southampton)
Matthew Spraggs (Southampton)
Tobias Tsang (Southampton)

Summary

- a_{μ} good for constraining new physics
- Exp. precision 0.54 p.p.m. \longrightarrow improvement $4 \times$ expected (J-PARC, Fermilab)
- Lattice gives an independent theory prediction of HVP
- Significant increase signal/noise ratio near $Q^{2}=0$ coming from the light sector
- Large systematics with conventional procedure anticipated
- Current status with DWF
- Refinements in progress (higher statistics, hybrid strategy, moments methods, ...)
- Ultimate goal: $a_{\mu}^{H L O}$ with full control over syst. and stat. uncertainties ($<1 \%$)
- Still un(not enough)tackled challenges: isospin breaking effects, disconnected contribution, HLbL ...

Thank you!

Acknowledgements

- RBC-UKQCD collab. members \& DWF-GM2 working group, for useful discussions
- The research leading to these results has received funding from the European Research Council under the European Communitys Seventh Framework Programme (FP7/2007-2013) ERC grant agreement No 279757
- The calculations reported here have been done on DIRAC Bluegene/Q computer at the University of Edinburgh's Advanced Computing Facility

Physical point HVP

- [2, 2] Padé fits for different Q_{C}^{2}
- Take correlations into account
- Reference $a_{\mu}^{H L O}\left(Q_{C}^{2}\right.$ ref $)$ subtracted under bootstrap $\left[Q_{C}^{2}\right.$ ref $\left.=1.5 \mathrm{GeV}^{2}\right]$
- Results for different choice of Q_{C}^{2} not combatible \rightarrow uncontrolled systematics

Point vs. stochastic source

- Point source, 12 source positions
- Z(2) wall source, 48 source positions
- (one-end trick) [McNeile et al. '06]

Point vs. stochastic source

- Point source, 12 source positions
- Z(2) wall source, 48 source positions
- (one-end trick) [McNeile et al. '06]
- Comparison (12 src. positions each, log scale on y-axis)
- Point src. better in low- Q^{2} region $\left(Q^{2}<\sim 0.2 \mathrm{GeV}^{2}\right)$

Hadronic Light by Light

[Blum, Chowdhury, Hayakawa, Izubuchi, 1407.2923]

