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The magnetic moment of the lepton: al

Intrinsic magnetic moment of any spinning particle

~µ = gl
e~

2mlc
~S

For leptons, s = 1
2 , the giromagnetic from Dirac theory: gl = 2

Essentials of the Muon g − 2 3

where µB is the Bohr magneton which has the value

µB =
e!

2mec
= 5.788381804(39)× 10−11 MeVT−1 . (5)

Formally, the anomalous magnetic moment is given by a form factor, de-
fined by the matrix element

〈!−(p′)|jµ
em(0)|!−(p)〉

where |!−(p)〉 is a lepton state of momentum p. The relativistically covariant
decomposition of the matrix element reads

γ(q)
µ(p′)

µ(p)

= (−ie) ū(p′)
[
γµFE(q2) + iσµν qν

2mµ
FM(q2)

]
u(p)

with q = p′ − p and where u(p) denotes a Dirac spinor, the relativistic wave
function of a free lepton, a classical solution of the Dirac equation (γµpµ −
m) u(p) = 0. FE(q2) is the electric charge or Dirac form factor and FM(q2)
is the magnetic or Pauli form factor. Note that the matrix σµν = i

2 [γµ, γν ]
represents the spin 1/2 angular momentum tensor. In the static (classical)
limit q2 → 0 we have

FE(0) = 1 ; FM(0) = aµ (6)

where the first relation is the charge normalization condition, which must be
satisfied by the electrical form factor, while the second relation defines the
anomalous magnetic moment. aµ is a finite prediction in any renormalizable
QFT: QED, the Standard Model (SM) or any renormalizable extension of it.

By end of the 1940’s the breakthrough in understanding and handling
renormalization of QED (Tomonaga, Schwinger, Feynman, and others) had
made unambiguous predictions of higher order effects possible, and in particu-
lar of the leading (one-loop diagram) contribution to the anomalous magnetic
moment

a
QED(1)
# =

α

2π
, (! = e, µ, τ) (7)

by Schwinger in 1948 [3]. This contribution is due to quantum fluctuations
via virtual photon-lepton interactions and in QED is universal for all leptons.
At higher orders, in the perturbative expansion1, other effects come into play:
strong interaction, weak interaction, both included in the SM, as well as yet
unknown physics which would contribute to the anomalous magnetic moment.

In fact, shortly before Schwinger’s QED prediction, Kusch and Foley in
1948 established the existence of the electron “anomaly” ge = 2 (1.00119 ±
0.00005), a 1.2 per mill deviation from the value 2 predicted by Dirac in 1928.

1 which is equivalent to the loop-expansion, referring to the number of closed loops
in corresponding Feynman diagrams.

= (−ie)ū(p′)
[
γµFE (q2) + σµνqν

2ml
FM(q2)

]
u(p)

q = p′ − p q2 = 0: FE (0) = 1,FM(0) = al = gl−2
2 , l = e, µ, τ

quantum fluctuations due to heavier particles or contributions from
higher energy scales

δal
al
∝ m2

l
M2

M - mass of heavier SM/BSM particle, or scale of new physics . . .
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aµ as a stringent test of the SM

quantum fluctuations due to heavier particles or contributions from higher energy
scales

δal
al
∝ m2

l
M2 ; (mµ/me)2 ∼ 4× 104

M - mass of heavier SM/BSM particle, or scale of new physics . . .
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aµ as a stringent test of the SM

quantum fluctuations due to heavier particles or contributions from higher energy
scales

δal
al
∝ m2

l
M2 ; (mµ/me)2 ∼ 4× 104

M - mass of heavier SM/BSM particle, or scale of new physics . . .

aexpµ = 11659208.0(6.3)× 10−10 (0.54ppm) [BNL, 2006-2008 ]

Current theoretical and experimental estimates:

2.9σ/3.6σ discrepancy (e+e−/τ data)
aexpµ − ath,SMµ = 287(63)(51)× 10−11

New experiments (J-PARC, Fermilab) expected to perform 4× more precise
measurement

Improved precision of the theoretical estimates with dominating uncertainty
required
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aµ as a stringent test of the SM

Evolution of the (th − exp) tension [Jegerlehner, Nyffeler 0902.3360 ]
The two uncertainties given are the statistical and the systematic ones. The total error in square brackets
follows by adding in quadrature the statistical and systematic errors. In Table 1 all results from CERN
and E821 are collected. The new average is completely dominated by the BNL results. The individual
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Fig. 7. Results for the individual E821 measurements, together with the new world average and the theoretical prediction. The
CERN result is shown together with the theoretical prediction by Kinoshita et al. 1985, at about the time when the E821
project was proposed.The dotted vertical bars indicate the theory values quoted by the experiments.

measurements are shown also in Fig. 7. The comparison with the theoretical result including predictions
from SM extensions will be discussed later in Sect. 7. In the following sections we first review the SM
prediction of aµ.

3. QED Prediction of g − 2

Any precise theoretical prediction requires a precise knowledge of the fundamental parameters. In QED
these are the fine structure constant α and the lepton masses. As the leading order result is α

2π and since
we want to determine a# with very high precision, the most important basic parameter for calculating aµ is
the fine structure constant. Its most precise value is determined using of the electron anomalous magnetic
moment

aexp
e = 0.001 159 652 180 73(28)[0.24 ppb] , (42)

which very recently [105,106] has been obtained with extreme precision. Confronting the experimental value
with the theoretical prediction as a series in α (see Sect. 3.2 below) determines [107,108,106]

α−1(ae) = 137.035999084(51)[0.37 ppb] . (43)

This new value has an uncertainty 20 times smaller than any preceding independent determination of α and
we will use it throughout in the calculation of aµ.

Starting at 2–loops, higher order corrections include contributions from lepton loops in which different
leptons can circulate and results depend on the corresponding mass ratios. Whenever needed, we will use
the following values for the muon–electron and muon–tau mass ratios, and lepton masses [37,38,103,104]

mµ/me = 206.768 2838 (54) , mµ/mτ = 0.059 4592 (97) ,

me = 0.510 9989 918(44)MeV , mµ = 105.658 3692 (94)MeV , mτ = 1776.99 (29)MeV .
(44)

19
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aµ as a stringent test of the SM

Sensitivity of different g-2 experiments to various contributions [Jegerlehner arxiv:0703125 ]
”New Physics”: δaµ = aexpµ − ath,SMµ = 287(91)× 10−11 → 3.2σ

32 The Muon g − 2
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Fig. 15. Sensitivity of g-2 experiments to various contributions. The increase in
precision with the BNL g − 2 experiment is shown as a gray vertical band. New
Physics is illustrated by the deviation (aexp

µ − athe
µ )/aexp

µ

6 Prospects

The BNL muon g−2 experiment has determined aµ as given by (53), reaching
the impressive precision of 0.54 ppm, a 14–fold improvement over the CERN
experiment from 1976. Herewith, a new quality has been achieved in test-
ing the SM and in limiting physics beyond it. The main achievements and
problems are

• a substantial improvement in testing CPT for muons,
• a first confirmation of the fairly small weak contribution at the 2 − 3 σ

level,
• the hadronic vacuum polarization contribution, obtained via experimental

e+e− annihilation data, limits the theoretical precision at the 1 σ level,
• now and for the future the hadronic light-by-light scattering contribution,

which amounts to about 2σ, is not far from being as important as the weak
contribution; present calculations are model-dependent, and may become
the limiting factor for future progress.

At present a 3.2σ deviation between theory and experiment is observed12

and the “missing piece” (55) could hint to new physics, but at the same time
rules out big effects predicted by many possible extensions of the SM.

12 It is the largest established deviation between theory and experiment in elec-
troweak precision physics at present.

Theoretical uncertainties:

HVP (O(10−10))

HLbL (O(10−10))

other contributions
(unceirt. O(10−11)
or less)

Lattice provides the model-independent setup for the computation of hadronic
contribution(s)
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Lattice QCD computation

Quarks

a {
Gluon

Quarks ∼ ψ(x), ψ(x)

Gluons ∼ Uµ(x) = e iagAµ
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Lattice QCD computation

Generate ensembles of field configurations using Monte Carlo

Average over a set of gauge configurations

Typically compute correlation function of fields, extract Euclidean
matrix element or amplitude

Computational cost is dominated by quarks: inverse of large, sparse
matrix

Extrapolate to continuum, infinite volume, physical quark masses
(now directly accessible)
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Hadronic vacuum polarisation

Can be computed in Euclidean space-time [Lautrup, de Rafael ’69, Blum ’02 ]

We seek to compute the e↵ect of hadronic vacuum polarisation contributions to aµ which
are obtained by calculating contributions to the graph in (2.3) of the form

q, µ

p p0
had

. (2.5)

As described in [10] the contribution to aµ from the one-loop diagram equivalent to the
graph (2.5) with the hadronic blob removed can be expressed as

�! a(1)
µ =

↵

⇡

Z 1

0

dQ2 f(Q2) (2.6)

where the kernel function f(Q2) is divergent as Q2 ! 0 and can be expressed

f(Q2) =
m2

µQ
2Z(Q2)3(1�Q2Z(Q2))

1 + m2
µQ

2Z(Q2)2
Z(Q2) = �Q2 �

p
Q4 + 4m2

µQ
2

2m2
µQ

2
. (2.7)

From this, the expression for the hadronic vacuum polarisation contribution can be
obtained with the insertions:

had
�! a(2)had

µ =
⇣↵
⇡

⌘2
Z 1

0

dQ2 f(Q2)⇥ ⇧̂(Q2) (2.8)

where ⇧̂(Q2) is the infra-red subtracted transverse part of the hadronic vacuum polari-
sation

⇧̂(Q2) = ⇧(Q2)� ⇧(0) ⇧µ⌫(q) = (q2gµ⌫ � qµq⌫)⇧(q2) (2.9)

q, µ q, ⌫had ⌘ i⇧µ⌫(q) (2.10)

at Euclidean momentum Q2 = �q2. The hadronic vacuum polarisation function ⇧µ⌫(q)
can be computed as the Fourier-transformed two-point correlator

⇧µ⌫(q) =

Z
d4x eiq·(x�y)hJµ(x)J⌫(y)i (2.11)

involving the electromagnetic current

Jµ(x) =
X

i

Qi ̄
i�µ 

i (2.12)

where  i is the quark field of flavour i and Qi is its charge. The path-integral used in the
expectation value in (2.11) will involve only hadronic fields, i.e. quarks and gluons.

3

aHLOµ = (α
π

)2
∫∞

0
dQ2f (Q2)×Π̂(Q2)

f (Q2) = mµ2Q2Z 3(Q2) 1−Q2Z(Q2)

1+m2
µQ

2Z2(Q2)

Z(Q2) = (
√

(Q2)2 + 4m2
µQ2)− Q2)/(2m2

µQ
2)
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3

aHLOµ = (α
π

)2
∫∞

0
dQ2f (Q2)× Π̂(Q2)

f (Q2) = mµ2Q2Z 3(Q2) 1−Q2Z(Q2)

1+m2
µQ

2Z2(Q2)

Z(Q2) = (
√

(Q2)2 + 4m2
µQ2)− Q2)/(2m2

µQ
2)
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Π
(Q

2
)

Q2[GeV2]

Π̂(Q2) = Π(Q2)− Π(0)

Πµν(Q) = a4 ∑
x e

iQx〈Jem
µ (x)Jem

ν (0)〉

Πµν(Q) = (Q2δµν − QµQν)Π(Q2)
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Hadronic vacuum polarisation

Connected and disconnected contribution to the HVP
The leading disconnected contribution to the anomalous magnetic moment of the muon Vera Gülpers

Figure 1: The connected and the disconnected contribution to the hadronic vacuum polarization.

1. Introduction

The anomalous magnetic moment of the muon aµ is one of the most precisely measured quan-
tities in particle physics. A deviation of ⇡ 3s between the experimental and the theoretical value
has persisted for many years. From the theory side, the largest fraction of the error comes from the
hadronic vacuum contribution (hvp), which is the leading order QCD contribution to aµ . Currently,
the best estimate of the hvp relies on a semi-phenomenological approach using the cross section
of e+ e� ! hadrons. In the past few years, a lot of effort has been undertaken to calculate the hvp
from first principles using lattice techniques [1, 2, 3, 4]. However, the quark-disconnected contri-
bution to the hvp is generally neglected. This may be a significant source of systematic error, since
in partially quenched chiral perturbation theory, it was estimated that the disconnected contribution
could be as large as �10% of the connected one [5].

We explicitly compute the disconnected contribution to the hvp with O(a)-improved Wilson
fermions using the mixed-representation method [6, 7], where the hadronic vacuum polarization is
calculated using the vector correlator

Ggg(x0) = �1
3

Z
d3x

⌦
jg
k(x) jg

k(0)
↵

with jg
k =

2
3

ugku� 1
3

dgkd + . . . (1.1)

as follows:

P̂(Q2) = 4p2
•Z

0

dx0 Ggg(x0)


x2

0 �
4

Q2 sin2
✓

1
2

Qx0

◆�
. (1.2)

The vector correlator Ggg(x0) receives a connected and a disconnected contribution as shown in
figure 1. We calculate the required disconnected quark loops using stochastic sources and a hopping
parameter expansion as described in [8].

2. Results for the vector correlator

In the following we will concentrate on the vector correlator for light and strange quarks
combined. The corresponding electromagnetic current

j`sµ = j`µ + js
µ =

1
2

(ugµu�dgµd)
| {z }

I=1, jr
µ

+
1
6

(ugµu+dgµd �2sgµs)
| {z }

I=0

(2.1)

can be split into an isovector part corresponding to the r-current and an isoscalar part. Performing
the Wick contractions one finds for the light and strange vector current

G`s(t) =
5
9

G`
con(t)+

1
9

Gs
con(t)+

1
9

G`s
disc(t) with G`

con(t) = 2Grr(t) (2.2)

2
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fermions using the mixed-representation method [6, 7], where the hadronic vacuum polarization is
calculated using the vector correlator

Ggg(x0) = �1
3
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k(x) jg
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↵

with jg
k =

2
3

ugku� 1
3

dgkd + . . . (1.1)

as follows:

P̂(Q2) = 4p2
•Z

0

dx0 Ggg(x0)


x2

0 �
4

Q2 sin2
✓

1
2

Qx0

◆�
. (1.2)

The vector correlator Ggg(x0) receives a connected and a disconnected contribution as shown in
figure 1. We calculate the required disconnected quark loops using stochastic sources and a hopping
parameter expansion as described in [8].

2. Results for the vector correlator

In the following we will concentrate on the vector correlator for light and strange quarks
combined. The corresponding electromagnetic current

j`sµ = j`µ + js
µ =

1
2

(ugµu�dgµd)
| {z }

I=1, jr
µ

+
1
6

(ugµu+dgµd �2sgµs)
| {z }

I=0

(2.1)

can be split into an isovector part corresponding to the r-current and an isoscalar part. Performing
the Wick contractions one finds for the light and strange vector current

G`s(t) =
5
9

G`
con(t)+

1
9

Gs
con(t)+

1
9

G`s
disc(t) with G`

con(t) = 2Grr(t) (2.2)

2

Disconnected:

Computationaly very demanding

ChPT estimate ∝ 10% [Della Morte, Juettner ’10 ]

Direct estimates from the lattice in progress [Guelpers et al. ’14 ]
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Hadronic vacuum polarisation
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The anomalous magnetic moment of the muon aµ is one of the most precisely measured quan-
tities in particle physics. A deviation of ⇡ 3s between the experimental and the theoretical value
has persisted for many years. From the theory side, the largest fraction of the error comes from the
hadronic vacuum contribution (hvp), which is the leading order QCD contribution to aµ . Currently,
the best estimate of the hvp relies on a semi-phenomenological approach using the cross section
of e+ e� ! hadrons. In the past few years, a lot of effort has been undertaken to calculate the hvp
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bution to the hvp is generally neglected. This may be a significant source of systematic error, since
in partially quenched chiral perturbation theory, it was estimated that the disconnected contribution
could be as large as �10% of the connected one [5].

We explicitly compute the disconnected contribution to the hvp with O(a)-improved Wilson
fermions using the mixed-representation method [6, 7], where the hadronic vacuum polarization is
calculated using the vector correlator
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The vector correlator Ggg(x0) receives a connected and a disconnected contribution as shown in
figure 1. We calculate the required disconnected quark loops using stochastic sources and a hopping
parameter expansion as described in [8].

2. Results for the vector correlator

In the following we will concentrate on the vector correlator for light and strange quarks
combined. The corresponding electromagnetic current

j`sµ = j`µ + js
µ =

1
2

(ugµu�dgµd)
| {z }

I=1, jr
µ

+
1
6

(ugµu+dgµd �2sgµs)
| {z }

I=0

(2.1)

can be split into an isovector part corresponding to the r-current and an isoscalar part. Performing
the Wick contractions one finds for the light and strange vector current

G`s(t) =
5
9

G`
con(t)+

1
9

Gs
con(t)+

1
9

G`s
disc(t) with G`

con(t) = 2Grr(t) (2.2)

2

Disconnected:

Computationaly very demanding

ChPT estimate ∝ 10% [Della Morte, Juettner ’10 ]

Direct estimates from the lattice in progress [Guelpers et al. ’14 ]

In the following we will discuss only the connected part
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Hadronic vacuum polarisation

Can be computed in Euclidean space-time [Lautrup, de Rafael ’69, Blum ’02 ]

We seek to compute the e↵ect of hadronic vacuum polarisation contributions to aµ which
are obtained by calculating contributions to the graph in (2.3) of the form

q, µ

p p0
had

. (2.5)

As described in [10] the contribution to aµ from the one-loop diagram equivalent to the
graph (2.5) with the hadronic blob removed can be expressed as

�! a(1)
µ =

↵

⇡

Z 1

0

dQ2 f(Q2) (2.6)

where the kernel function f(Q2) is divergent as Q2 ! 0 and can be expressed

f(Q2) =
m2

µQ
2Z(Q2)3(1�Q2Z(Q2))

1 + m2
µQ

2Z(Q2)2
Z(Q2) = �Q2 �

p
Q4 + 4m2

µQ
2

2m2
µQ

2
. (2.7)

From this, the expression for the hadronic vacuum polarisation contribution can be
obtained with the insertions:

had
�! a(2)had

µ =
⇣↵
⇡

⌘2
Z 1

0

dQ2 f(Q2)⇥ ⇧̂(Q2) (2.8)

where ⇧̂(Q2) is the infra-red subtracted transverse part of the hadronic vacuum polari-
sation

⇧̂(Q2) = ⇧(Q2)� ⇧(0) ⇧µ⌫(q) = (q2gµ⌫ � qµq⌫)⇧(q2) (2.9)

q, µ q, ⌫had ⌘ i⇧µ⌫(q) (2.10)

at Euclidean momentum Q2 = �q2. The hadronic vacuum polarisation function ⇧µ⌫(q)
can be computed as the Fourier-transformed two-point correlator

⇧µ⌫(q) =

Z
d4x eiq·(x�y)hJµ(x)J⌫(y)i (2.11)

involving the electromagnetic current

Jµ(x) =
X

i

Qi ̄
i�µ 

i (2.12)

where  i is the quark field of flavour i and Qi is its charge. The path-integral used in the
expectation value in (2.11) will involve only hadronic fields, i.e. quarks and gluons.

3

aHLOµ = (α
π

)2
∫∞

0
dQ2f (Q2)× Π̂(Q2)

f (Q2) = mµ2Q2Z 3(Q2) 1−Q2Z(Q2)

1+m2
µQ

2Z2(Q2)

Z(Q2) = (
√

(Q2)2 + 4m2
µQ2)− Q2)/(2m2

µQ
2)

-0.12

-0.1

-0.08

-0.06

 0  0.2  0.4  0.6  0.8  1

Π
(Q

2
)

Q2[GeV2]

Π̂(Q2) = Π(Q2)− Π(0)

Πµν(Q) = a4 ∑
x e

iQx〈Jem
µ (x)Jem

ν (0)〉

Πµν(Q) = (Q2δµν − QµQν)Π(Q2)
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Hadronic vacuum polarisation on the lattice

-0.12

-0.1

-0.08
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Π
(Q

2
)

Q2[GeV2]

aHLOµ = (α
π

)2
∫∞

0
dQ2f (Q2)× (Π(Q2)− Π(0))

Πµν(Q) = a4 ∑
x e

iQx〈Jem
µ (x)Jem

ν (0)〉

Πµν(Q) = (Q2δµν − QµQν)Π(Q2)

0 5 10 15 20
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2
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0.3

0.35

0.4

0.45

am
1

m1 free
m1 fixed

Figure 4: Value of the fit parameter am1 in fits using the ansatz (3.4) on the � = 2.25 lattice
at amu = 0.004. The vector mass amV as determined on this lattice is shown in green. Note
in the fit where m1 was fixed, it was only constrained to lie within the green band. It is clear
that for a high Q2

C , m1 will emerge at the upper limit of the band, indicating some tension
between the fit-form and the data, but as can be seen in Fig. 3, this has very little impact on
the goodness of the fit.

a precise result for this quantity, and this must be combined with the use of twisted
boundary conditions [14] in order to access data at lower values of the lattice momentum.
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Figure 5: Examples of the integrand in the rescaled integral (3.6).

10

Transverse projection: Qµ = 0

Take only diagonal components Πµµ

Π(Q2) = −Πµµ(Q2)

Q2
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Hadronic vacuum polarisation

Systematic uncertainties to be controlled - general

1 Simulations at physical mπ

2 Controlled continuum limit, FV effects

3 Disconnected diagrams

4 Obtaining a real world result: charm quark, isospin effects . . .

Systematic uncertainties to be controlled - HVP related

Conventional simulations do not allow access to sufficiently low Fourier momenta

Integral is dominated in the region where relative errors are enhanced

Structure of HVP tensor is such that Π(0) is not directly accessible

Systematic uncertainty introduced by extrapolation
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Choosing the appropriate fit functions

First attempts to obtain aHLO
µ from the lattice:

asumed functional forms for Π(Q2) based on VMD

model-dependent, not physicaly motivated, introduces bias ...

[Aubin,Blum,Golterman,Peris 1205.3695 ] recently proposed:

use a series of Padé approximants

Π(Q2) = Π(0) + Q2(a2
0 +

N∑
n=1

a2
n

b2
n+Q2 + . . . )

A convergence theorem for N →∞ exists:

Π(Q2)−Π(0)
Q2 bound by [N,N] and [N + 1,N] PA’s

[N+1,N]: a0 6= 0, [N,N]: a0 6= 0
∗ different from the notation in the ref.
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Phenomenological model of HVP [Bernecker, Meyer, 1107.4388 ]

Phenomenological R ratio (e+e− → hadrons)

Π(Q2)− Π(0) = Q2
∫∞

0
ds ρ(s)

s(s+Q2)

Convergence and residual errors of Padé’s

Test idea on phenomenological model of HVP:

⇧̂(Q2) =

Z 1

4M2
⇡

dt
Q2

t(t + Q2)

1
⇡

Im⇧(t)

w/ spectral function adapted from Bernecker et al ’11 “fit” of e+e� ! hadrons

0.0 0.5 1.0 1.5 2.0
0

5

10

15

20

t @GeV2 D

1 p
Im
P
HtL

�!

0 1 2 3 4 5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Q 2 @GeV2 D

P`
HQ

2
L

�! a HVP,LO
µ = 694. ⇥ 10�10

Laurent Lellouch MITP gµ � 2 workshop, April 1-5, 2014

[L.Lellouch, Talk at MITP gµ − 2 workshop, Mainz, 1-5 April 2014 ]
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Phenomenological model of HVP [Bernecker, Meyer, 1107.4388 ]

Phenomenological R ratio (e+e− → hadrons)

Π(Q2)− Π(0) = Q2
∫∞

0
ds ρ(s)

s(s+Q2)

Convergence and residual errors of Padé’s (cont’d)
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0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Q 2 @GeV2 D

P`
HQ
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Taylor expansions for N = 1, · · · , 10

�!

0 1 2 3 4 5
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Q 2 @GeV2 D

P`
HQ

2
L

[N, N�1] & [N, N] Padé’s: [1, 1] ! [5, 5]

0 2 4 6 8 10

- 0.02

- 0.01

0.00

0.01

0.02

N +D

D
a
m
êa m �aµ/aµ <⇠ 0.003 from ⇧̂[2,2](Q2)

Requires G10, i.e. 10th moment of ⇧µ⌫ !
) statistics and systematics?
) unphysical poles, . . . ?

Laurent Lellouch MITP gµ � 2 workshop, April 1-5, 2014

[L.Lellouch, Talk at MITP gµ − 2 workshop, Mainz, 1-5 April 2014 ]
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Phenomenological model of HVP [Golterman, Maltman, Peris 1309.2153 ]

A method to quantitatively examine the systematics of lattice computations

Dispersive τ -based I = 1 model: Π̂I=1(Q2) = Q2
∫∞

4m2
π
ds ρ

I=1(s)

s(s+Q2)

Fake lattice data for Π(Q2)− Π(0) & compared with true answer from model

 6
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[1,1]
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Outcome:

Fitting until high Q2 dangerous, unless higher order Padés used
Better focus on low-Q2 region needed
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Improving the systematics of connected HVP

A ”Hybrid strategy” [Golterman, Maltman, Peris 1405.2389 ]

LOW-Q2 CONTRIBUTIONS AND A HYBRID
STRATEGY

• Accumulation of a
LO,HV P
µ [0 ≤ Q2 ≤ Q2

max] ≡ a
LO,HV P
µ [Q2

max]
wrt Q2

max

0 0.2 0.4 0.6 0.8 1
Q2

max [GeV2]

0

0.2

0.4

0.6

0.8

1

â µLO
,H

V
P [Q

2 m
ax

] /
 â
µLO

,H
V

P

More than 80% of aHLO
µ is accumulated below Q2

max = 0.1GeV2

More than 90% below Q2
max = 0.2GeV2
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Improving the systematics of connected HVP

A ”Hybrid strategy” [Golterman, Maltman, Peris 1405.2389 ]

low-Q2 contributions by fitting low-Q2 region only [0,Q2
min]

numericaly integrate [Q2
min,Q

2
max ]

apply PT for [Q2
max ,∞]

Systematic and statistical errors on the trape-

zoid rule evaluation as fractions of a
LO,HV P
µ

0 0.2 0.4 0.6 0.8
Q2

min [GeV2]

-0.01

-0.005

0

0.005

0.01

Sc
al

ed
 e

rr
or

, Q
2 m

in
<Q

2 <2
 G

eV
2

Statistical, systematic (trapezoid rule) and errors on Π(0)

Investigated using fake data from I = 1 dispersive model
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Previous RBC-UKQCD computation of aHLOµ [Boyle et al’11 ]

Non physical mπ, a−1 ≈ 1.3, 1.7, 2.3 GeV

Domain Wall Fermion (DWF)

Fitting Q2- dependence of Π(Q2)
up to Q2

C ≈ 2.5− 9 GeV2

Local current at source, conserved at
sink

4 Results

We extract our final results from the fit using (3.4) with the first mass fixed to that of
the vector meson as measured on each ensemble. Observing the behaviour of the reduced
�2 as the fit range is varied, we choose a suitable value for Q2

C for each ensemble which
provides the most reliable result. We attempt to choose a cut which provides a low
reduced �2 preferably where the parameter m1 agrees without tension with mV. This
produces the results shown in Table 3, where we also quote the reduced �2 of the fit, and
the resulting values of the remaining associated free parameters.

These results are also shown as a function of m2
⇡ in Fig. 6, where we compare them

to previous 2+1 flavour results from [13]. Also shown is an extrapolation to the physical
point, using a quadratic chiral ansatz. This produces a final result for the leading order
hadronic vacuum polarisation contribution the anomalous magnetic moment of the muon

a(2)had
µ = 641(33)⇥ 10�10. (4.1)

0 0.1 0.2 0.3 0.4

m
π

2 (GeV2)
3e-08

4e-08

5e-08

6e-08

7e-08

8e-08

a µ
(h

)

RBC Vector fit
RBC Linear extrap.
RBC Quadratic extrap.
β=2.13
β=2.25
β=1.75 (DSDR)

Figure 6: Integrated result for a
(2)had
µ as a function of the pseudoscalar mass squared.

We have also investigated the e↵ect of modifying the kernel function in the integrand
(2.8) in the manner outlined in [15], where in an e↵ort to moderate the variation of the
outcome of the integral as a function of the quark mass, the momentum argument of the
kernel function is rescaled by a factor of the ratio of the value of a relevant observable H
(the mass of the vector meson appears to be an optimal choice) measured at the simulated
quark mass to its physical value. This e↵ectively defines the calculation of a new quantity
which approaches the desired a

(2)had
µ in the physical limit. We show the results of such

11

Strong mπ dependence

Eliminate the systematics of chiral extrapolation: computing HVP at mphys
π
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Cost of the fermions on the lattice

〈O[ψ,ψ,U]〉 = 1
Z

∫
DUDψDψe−SG [U]−Sf [U,ψ,ψ]O[ψ,ψ,U]

SG Wilson Luscher-Weisz

SF ∫
D ψD ψ e−ψ (γµDµ+mq) ψ ≈ det (γµDµ + mq)

Non-local object on the lattice → impossible to compute exactly!

Solving:
χ = (γµDµ + mq)−1 Φ

very expensive for: small quark mass m, large L
a

.
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Cost of the fermions on the lattice

〈O[U]〉 = 1
Z

∫
DU e−SG [U] [det (γµDµ + mq)]Nf O[U]

SG Wilson Luscher-Weisz

SF ∫
D ψD ψ e−ψ (γµDµ+mq) ψ ≈ det (γµDµ + mq)

Non-local object on the lattice → impossible to compute exactly!

Solving:
χ = (γµDµ + mq)−1 Φ

very expensive for: small quark mass m, large L
a

.
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Cost of the fermions on the lattice

〈O[φ, φ,U]〉 = 1
Z

∫
DUDφDφ†e−SG [U]−Sf [U,φ,φ†]O[φ, φ†,U]

SG Wilson Luscher-Weisz

SF ∫
D φD φ† e−φ

† (γµDµ+mq)−1 φ ≈ det (γµDµ + mq)

Non-local object on the lattice → impossible to compute exactly!

Solving:
χ = (γµDµ + mq)−1 Φ

very expensive for: small quark mass m, large L
a

.
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RBC-UKQCD Nf = 2 + 1 Domain Wall ensembles
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Boyle et al. ’11
m
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aHLOµ from DWF for non-physical mπ [Boyle et al ’11 ]

physical point HVP (•) recently measured → preliminary fits
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Physical point HVP from Nf = 2 + 1 DWF

Physical point data:

L/a = 483 × 94× 24, a−1 = 1.73GeV

Π(Q2) convergent sequence of PAs[Aubin et al,’13 ]

VMD is unreliable

Padé approximants [N,D]

Π[N,D](Q
2) =

∑N−1
n=0 anQ

2n

1+
∑D

m=1 bmQ2m
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Physical point HVP from Nf = 2 + 1 DWF
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L/a = 48, a−1 = 1.73 GeV, mπ = 138 MeV
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C = 1.5; 2.0; 2.5; 3.0 GeV2
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Physical point HVP from Nf = 2 + 1 DWF
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Left: Physical point data (Möbius DWF)

Right: Dispersive model study [Golterman et al. ’13 ]

Same qualitative behaviour - Padé [2,1] looks acceptable

Nevertheless, even for Padé [2,1]

Removing correlations
Results for different choice of Q2

C not compatible

Quoting the value for aHLOµ would be premature
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Physical point HVP from Nf = 2 + 1 DWF

Light and strange contributions separated
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Limited statistics with physical mπ already gives:
δastat.µ

aµ
for light contribution is O(10) larger than for strange HVP
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Promising methods I have not discussed . . .

HVP at Q2 = 0

New way for direct extraction of zero momentum form factors on
the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914 ]
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Promising methods I have not discussed . . .

HVP at Q2 = 0

New way for direct extraction of zero momentum form factors on
the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914 ]

For off-diagonal elements, µ 6= ν:

Πµν(Q) = −QµQνΠ(Q2)

∂2

∂Qµ∂Qν
Πµν(Q)|Q2=0

= − ∂2

∂Qµ∂(Qν
(QµQνΠ(Q2))|Q2=0

= −Π(0)

Works for the connected contribution
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Promising methods I have not discussed . . .

HVP at Q2 = 0

New way for direct extraction of zero momentum form factors on
the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914 ]

Π12(Q) =
∑

x〈Tr{S [y , x ;U]Γ1
V (x , ~q)S [x , y ;U, λp]Γ2

V (y ,~0)}〉.

Π(0) = −∂Π12(Q)
∂Q1∂Q2

|Qs=0

= − 1
(TL3)2

∑
x,y 〈Tr

[
SΓ1

V
∂2S

∂Q1∂Q2
Γ2
V

]
− i

2Tr
[
SΓ1

T
∂S
∂Q2

Γ2
V

]

− i
2Tr
[
SΓ1

V
∂S
∂Q1

Γ2
T

]
− 1

4Tr
[
SΓ1

TSΓ2
T

]
〉

9

anyway, on limited statistics, that the gauge Ward iden-
tities

P
µ p̂µĈµ⌫ =

P
⌫ p̂⌫Ĉ

µ⌫(p) = 0 are satisfied.

First, fixed µ = 1 and ⌫ = 2, we have computed the
integrated correlation at p1 > 0 and p2 > 0 and divided
it by the momenta,

⇧(p2 > 0) = � Ĉ12(p)

p̂1p̂2
=

1

(TL3)2

X

x,y

h

Tr
�
S[y, x; U ]�1

V (x, ~p/2)S[x, y; U, �p]�2
V (y, ~p/2)

 
i.

(47)

Then we have applied the rules discussed in the previous
sections to define the second mixed derivative, acting on
propagators and vertices and evaluated at zero momen-
tum, according to

⇧(0) = � @2Ĉ12(p)

@p1@p2

�����
p2=0

=
1

(TL3)2

X

x,y

h

Tr


S�1

V

@2S

@p1@p2
�2

V

�
� 1

4
Tr

⇥
S�1

T S�2
T

⇤

� i

2
Tr


S�1

T

@S

@p2
�2

V

�
� i

2
Tr


S�1

V

@S

@p1
�2

T

�
i ,

(48)

where, for sake of brevity, we have dropped position ar-
guments and we have used the relations

@�k
V (x, ~p/2)

@pk
= � i

2
�k

T (x, ~p/2) ,

@�k
T (x, ~p/2)

@pk
= � i

2
�k

V (x, ~p/2) , (49)

to obtain the derivative of the vertices (see section IV
above). Note that in the previous expressions the factor
1/2 appears because the currents here depend upon ~p/2
and not upon ~p.

To the lattice definition of ⇧(0), eq. (48), it can be
given the following graphical representation (see also
eq. (18))

⇧(0) = � @2Ĉ12(p)
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(50)

In FIG. 4 we show our results. The black points corre-
spond to ⇧(p2) obtained from eq. (47) and, as expected,
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FIG. 4: Black points correspond to the calculation of
⇧(p2) performed by using standard techniques (according to
eq. (47)) on two lattice volumes, 243 ⇥ 48 for the D2 ensem-
ble and 323 ⇥ 64 for the E2 ensemble. The red points corre-
spond to ⇧(0) calculated directly on the lattice (according to
eq. (48)) for the two volumes. Data are in lattice units.

tend to be noisy for small values of p2. The red points
correspond to ⇧(0) calculated directly on the lattice ac-
cording to eq. (48). The data, obtained with limited
statistics (150 gauge configurations for the D2 ensemble
and 138 gauge configurations for the E2 ensemble), cor-
respond to two di↵erent lattice volumes (VD2 = 243 ⇥ 48
and VE2 = 323 ⇥ 64) and di↵er at small momenta for
finite volume e↵ects.

For each data set, the error on ⇧(0) is comparable
to the error that can be obtained at (ap)2 ⇠ 0.05 but,
coming from a direct calculation, it does not need to be
corrected for systematic errors due to extrapolations and,
important to note, it scales with the statistics. Further-
more, the error on ⇧(0) scales favorably with the lattice
volume.

VI. CONCLUSIONS

The method discussed in this letter allows the direct
calculation on the lattice of the derivatives of correlators
with respect to external momenta. We have described
the method and checked its validity for several correlation
functions.

In particular, we have derived expressions to be used
in order to compute both form factors parametrizing
semileptonic decays of pseudoscalar mesons into other
pseudoscalar mesons, directly at zero recoil. These rela-
tions, checked numerically in this paper, may have many
important phenomenological applications, for example in
the calculation of B ! D`⌫ di↵erential decay rate with-
out excluding the ` = ⌧ case, etc. Similar relations can
be easily derived along the lines discussed in this paper
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anyway, on limited statistics, that the gauge Ward iden-
tities

P
µ p̂µĈµ⌫ =

P
⌫ p̂⌫Ĉ

µ⌫(p) = 0 are satisfied.

First, fixed µ = 1 and ⌫ = 2, we have computed the
integrated correlation at p1 > 0 and p2 > 0 and divided
it by the momenta,
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Then we have applied the rules discussed in the previous
sections to define the second mixed derivative, acting on
propagators and vertices and evaluated at zero momen-
tum, according to
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where, for sake of brevity, we have dropped position ar-
guments and we have used the relations
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2
�k
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to obtain the derivative of the vertices (see section IV
above). Note that in the previous expressions the factor
1/2 appears because the currents here depend upon ~p/2
and not upon ~p.

To the lattice definition of ⇧(0), eq. (48), it can be
given the following graphical representation (see also
eq. (18))
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In FIG. 4 we show our results. The black points corre-
spond to ⇧(p2) obtained from eq. (47) and, as expected,
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FIG. 4: Black points correspond to the calculation of
⇧(p2) performed by using standard techniques (according to
eq. (47)) on two lattice volumes, 243 ⇥ 48 for the D2 ensem-
ble and 323 ⇥ 64 for the E2 ensemble. The red points corre-
spond to ⇧(0) calculated directly on the lattice (according to
eq. (48)) for the two volumes. Data are in lattice units.

tend to be noisy for small values of p2. The red points
correspond to ⇧(0) calculated directly on the lattice ac-
cording to eq. (48). The data, obtained with limited
statistics (150 gauge configurations for the D2 ensemble
and 138 gauge configurations for the E2 ensemble), cor-
respond to two di↵erent lattice volumes (VD2 = 243 ⇥ 48
and VE2 = 323 ⇥ 64) and di↵er at small momenta for
finite volume e↵ects.

For each data set, the error on ⇧(0) is comparable
to the error that can be obtained at (ap)2 ⇠ 0.05 but,
coming from a direct calculation, it does not need to be
corrected for systematic errors due to extrapolations and,
important to note, it scales with the statistics. Further-
more, the error on ⇧(0) scales favorably with the lattice
volume.

VI. CONCLUSIONS

The method discussed in this letter allows the direct
calculation on the lattice of the derivatives of correlators
with respect to external momenta. We have described
the method and checked its validity for several correlation
functions.

In particular, we have derived expressions to be used
in order to compute both form factors parametrizing
semileptonic decays of pseudoscalar mesons into other
pseudoscalar mesons, directly at zero recoil. These rela-
tions, checked numerically in this paper, may have many
important phenomenological applications, for example in
the calculation of B ! D`⌫ di↵erential decay rate with-
out excluding the ` = ⌧ case, etc. Similar relations can
be easily derived along the lines discussed in this paper
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Promising methods I have not discussed . . .

HVP at Q2 = 0

New way for direct extraction of zero momentum form factors on
the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914 ]

Gain in statistics and stabilizing the fits at the cost of the
evaluation of 3pt and 4pt functions
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anyway, on limited statistics, that the gauge Ward iden-
tities

P
µ p̂µĈµ⌫ =

P
⌫ p̂⌫Ĉ

µ⌫(p) = 0 are satisfied.

First, fixed µ = 1 and ⌫ = 2, we have computed the
integrated correlation at p1 > 0 and p2 > 0 and divided
it by the momenta,

⇧(p2 > 0) = � Ĉ12(p)
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Then we have applied the rules discussed in the previous
sections to define the second mixed derivative, acting on
propagators and vertices and evaluated at zero momen-
tum, according to
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where, for sake of brevity, we have dropped position ar-
guments and we have used the relations
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@�k
T (x, ~p/2)

@pk
= � i

2
�k

V (x, ~p/2) , (49)

to obtain the derivative of the vertices (see section IV
above). Note that in the previous expressions the factor
1/2 appears because the currents here depend upon ~p/2
and not upon ~p.

To the lattice definition of ⇧(0), eq. (48), it can be
given the following graphical representation (see also
eq. (18))
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In FIG. 4 we show our results. The black points corre-
spond to ⇧(p2) obtained from eq. (47) and, as expected,
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FIG. 4: Black points correspond to the calculation of
⇧(p2) performed by using standard techniques (according to
eq. (47)) on two lattice volumes, 243 ⇥ 48 for the D2 ensem-
ble and 323 ⇥ 64 for the E2 ensemble. The red points corre-
spond to ⇧(0) calculated directly on the lattice (according to
eq. (48)) for the two volumes. Data are in lattice units.

tend to be noisy for small values of p2. The red points
correspond to ⇧(0) calculated directly on the lattice ac-
cording to eq. (48). The data, obtained with limited
statistics (150 gauge configurations for the D2 ensemble
and 138 gauge configurations for the E2 ensemble), cor-
respond to two di↵erent lattice volumes (VD2 = 243 ⇥ 48
and VE2 = 323 ⇥ 64) and di↵er at small momenta for
finite volume e↵ects.

For each data set, the error on ⇧(0) is comparable
to the error that can be obtained at (ap)2 ⇠ 0.05 but,
coming from a direct calculation, it does not need to be
corrected for systematic errors due to extrapolations and,
important to note, it scales with the statistics. Further-
more, the error on ⇧(0) scales favorably with the lattice
volume.

VI. CONCLUSIONS

The method discussed in this letter allows the direct
calculation on the lattice of the derivatives of correlators
with respect to external momenta. We have described
the method and checked its validity for several correlation
functions.

In particular, we have derived expressions to be used
in order to compute both form factors parametrizing
semileptonic decays of pseudoscalar mesons into other
pseudoscalar mesons, directly at zero recoil. These rela-
tions, checked numerically in this paper, may have many
important phenomenological applications, for example in
the calculation of B ! D`⌫ di↵erential decay rate with-
out excluding the ` = ⌧ case, etc. Similar relations can
be easily derived along the lines discussed in this paper
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Promising methods I have not discussed . . .

HVP at Q2 = 0

New way for direct extraction of zero momentum form factors on
the lattice [de Divitiis, R. Petronzio, N. Tantalo 1208.5914 ]

HPQCD time moments

Strange and charm quark contributions to the anomalous magnetic
moment of the muon
[Chakraborty, Davies, Donald, Dowdall, Koponen, Lepage, Teubner 1403.1778 ]

Its extensions involving different definitions of discrete moments

We are looking into it
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Summary

aµ good for constraining new physics

Exp. precision 0.54p.p.m. −→ improvement 4× expected (J-PARC, Fermilab)

Lattice gives an independent theory prediction of HVP

Significant increase signal/noise ratio near Q2 = 0 coming from the light sector

Large systematics with conventional procedure anticipated

Current status with DWF

Refinements in progress

(higher statistics, hybrid strategy, moments methods, . . . )

Ultimate goal: aHLOµ with full control over syst. and stat. uncertainties (< 1%)

Still un(not enough)tackled challenges: isospin breaking effects, disconnected
contribution, HLbL . . .
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Thank you !
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Physical point HVP
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[2, 2] Padé fits for different Q2
C

Take correlations into account

Reference aHLOµ (Q2
C ref ) subtracted under bootstrap [Q2

C ref = 1.5GeV 2]

Results for different choice of Q2
C not combatible → uncontrolled systematics

Marina Marinkovic Computing HVP from first principles Rome, 13 Apr, 2015 31 / 33



Point vs. stochastic source

Point source, 12 source positions

Z(2) wall source, 48 source positions

(one-end trick) [McNeile et al. ’06 ]
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Point vs. stochastic source

Point source, 12 source positions

Z(2) wall source, 48 source positions

(one-end trick) [McNeile et al. ’06 ]

Comparison (12 src. positions each, log scale on y-axis)

Point src. better in low-Q2 region (Q2 <∼ 0.2 GeV 2)
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Hadronic Light by Light

The hadronic light-by-light amplitude

+ + ...
Blobs: all possible hadronic states

Model estimates: about (10�12) ⇥10�10 with a 25-40%
uncertainty (di�cult to quantify)

Lattice calculation: model independent, approximations
(non-zero a, finite V , . . . ) systematically improvable

Compute directly on lattice, using QCD and QED

Tom Blum (UConn / RIKEN BNL Research Center) Lattice calculation of hadronic light-by-light scattering contribution to the muon g-2

Subtraction of lowest order piece

Subtraction term is product of
separate averages of the loop
and line

Gauge configurations identical
in both, so two are highly cor-
related

In PT, correlation function and
subtraction have same contri-
butions except the light-by-
light term which is absent in the
subtraction

Tom Blum (UConn / RIKEN BNL Research Center) Lattice calculation of hadronic light-by-light scattering contribution to the muon g-2

[Blum, Chowdhury, Hayakawa, Izubuchi, 1407.2923 ]
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