
SVD Stato, prospettive e richieste

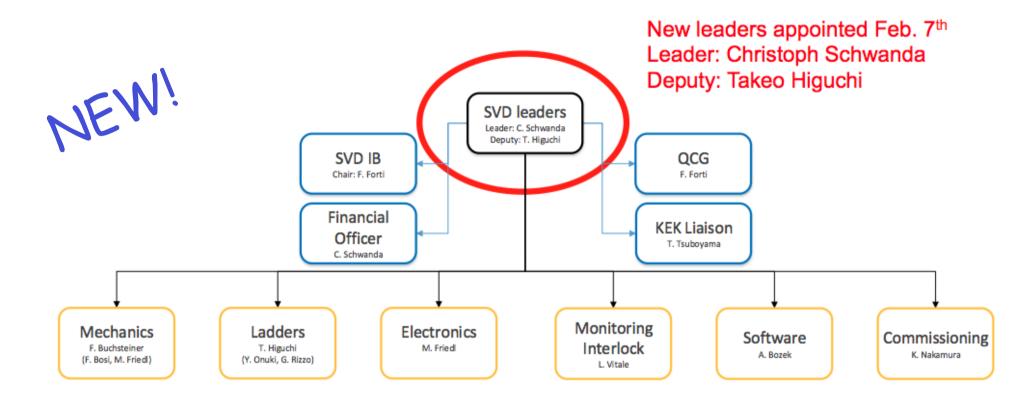
Meeting con i Referees 30 Marzo 2015

INFN

OUTLINE

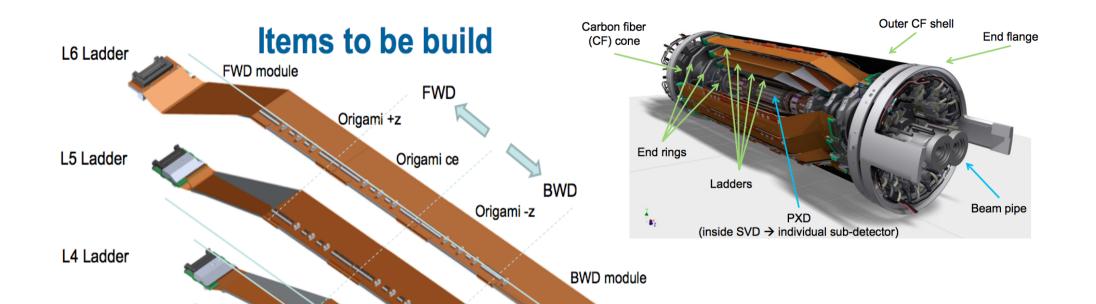
SVD general:

- SVD new organization
- · Schedule
- Pitch Adapter Issues


Pisa:

- Produzione FW/BW assemblies
- Montaggio moduli
- Nuove Richieste

Trieste:


- · Test sensori
- Radiation monitoring (BEAST)
- Monitoring/ILK temperatura/umidita'

SVD Group Organization

SVD Sub-Group Coordinators

Sub-group	Coordinator	Deputy	Advisor
Mechanics	Florian Buchsteiner	Markus Friedl	Filippo Bosi
Ladders	Takeo Higuchi	Yoshiyuki Onuki	Giuliana Rizzo
Electronics	Markus Friedl		
Monitoring & Interlocks	Lorenzo Vitale		
Software	Andrzej Bozek		
Commissioning	Katsuro Nakamura		

SVD Ladder Assembly Sites

L3 ladders: Univ. of Melbourne

L4 ladders: TIFR (@ IPMU)

BWD module

L5 ladders: HEPHY Vienna

L6 ladders: Kavli IPMU

L3 Ladder

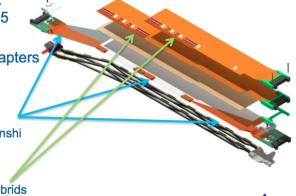
FWD module

FWD/BWD sub-assemblies: INFN Pisa

 Flex circuit to connect sensor strips to APV25 chips

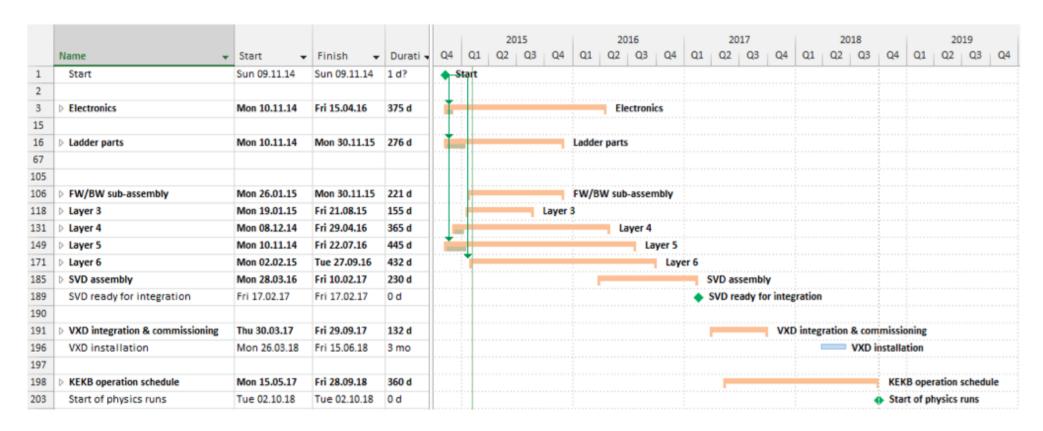
Cooling pipe

· Two types of pitch adapters


Cooling pipe

Cooling pipe

- Flexible, single-layer
- PF,PB,P3F,P3B,PA
- Produced by Tokai Denshi


• PA0

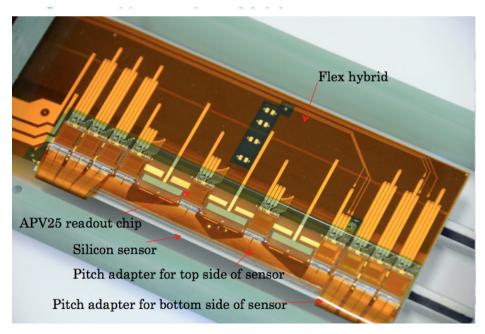
- Flat, dual-layer
- Glued onto Origami hybrids
- Produced by Taiyo

Pitch Adapters

SVD Schedule Overview (to match global Belle2 schedule)

For BW-FW subassembly, the production could start after the final Flex Circuits are received and it will take \sim 6 months.

Pitch Adapters Issues


Problem #1

- Related to FlexPA
- Arose end of 2013
- Size of pads on APV side were too small for wire bonding
- Could be solved by design change

Problem #2

- Related to PA0 only
- Disconnected lines due to cracks close to bond pads of PA0

PA task force formed to solve issues

#1:

- Tested samples of the flex new production have been delivered in mid-March
- ·Now under survey@IPMU

APV SIDE 2-row pads

APV SIDE 3-row pads

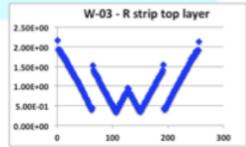
PAO

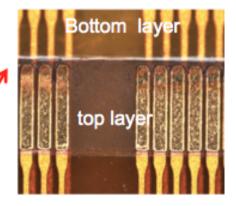
#2:

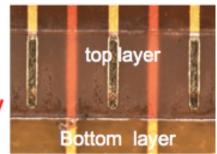
- More robust design against cracks implemented
- Alternative single-layer option (2nd vendor) to be pursued

Plan for PAO/ORIGAMI reproduction

- Sept. 2014: discovered ORIGAMI circuits cannot be used since PAO, pitch adapters, glued on them, have cracks/opens→ reproduction
- Several months of investigations/test productions to find a solution for PAO → Feb 2015 new PAO design ready for a test production.
- Original Plan PAO/ORIGAMI reproduction (Feb 2015 B2GM):
 - 1. Produce 24 PAO (2 variants) with new design, more robust against crack, + other design changes needed.
 - 2. Evaluate PAO quality (bare samples) with electrical test/visual inspection
 - ~ Mid March
- We are here
 - Assemble 12 PAO/ORIGAMI = batchO to verify:
 - no cracks develop on PAO during full assembly procedure: various electrical tests in different phases of the process foreseen.
 - verify all ORIGAMI assembly steps before mass production.
 - · ~ end April
 - 4. Start mass production for PAO/ORIGAMI assembly (if point 3 OK).
 - ~ starting mid May → Nov. 2015 + 1 month contingency


Evaluation of new PAO produced


24 PAO with new design


- No cracks found: no opens, from electrical test, no small cracks seen by visual inspection.
- A few shorts found on 6/24 pieces
- Yield 75%, acceptable

Unexpected new issues on PAO: "glue spread"

- PAO are made of 2 layers: <u>interlayer glue spreads onto edge</u>
 of the top layer, covering part of the APV pads and with a
 lot of residuals on sensor side pads. Details in next slides.
- Problem under investigation with the company; maybe due to changes in design needed to cure other problems.
- Some bonding tests done, not conclusive, but glue spread could be very nasty since the effect it's not under control.
- It may require additional changes in the PAO design or only changes in the gluing procedure among the 2 layers.
- Depending on findings in next 1-2 weeks, we can evaluate how much time is needed to solve issue or reproduce new PAO if needed.

Proposal for a new plan

Variations to the Original Plan

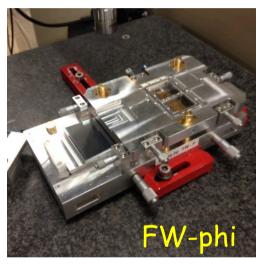
- 1. Produce 24 PAO with new design
- 2. Evaluate PAO quality (bare samples) with electrical test and visual inspection ~ Mid March

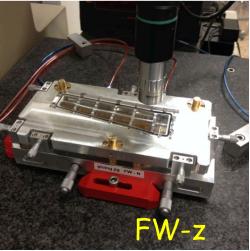
- Time to solve new PAO glue spread issue depends on what we find in next 1-2 weeks
- 3 bis Insert an additional batch0.1 PAO+ORIGAMI assembly, with final PAO reproduced, before mass production.

- While investigate/solve new PAO issue we want to
- Continue with the assembly of 12 PAO/ORIGAMI (batch0), with present PAO, to verify:
 - 3.1 no cracks until the end of stressfull assembly steps
 - 3.2 verify all the ORIGAMI
 assembly procedure up to
 SMD and reflow (all the
 stressfull steps for PAO) but
 NO APV chips will be lost. ~
 → Mid April (or ~end of April
 if we continue up to the APV
 assembly/wirebonding)
- 4. Start mass production PAO/ORIGAMI assembly
- in original plan: starting mid May → Nov. 2015 + 1 month contingency
- new schedule for mass production depends on time to solve PAO glue spread or time to switch to the plan B (single layer PAO on ORIGAMI)

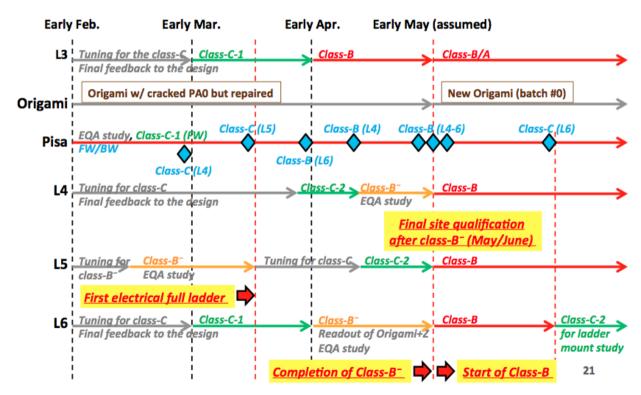
Ladder Production

 Despite the issues causing a delay in the ladder production, each site is developing the assembly procedures.

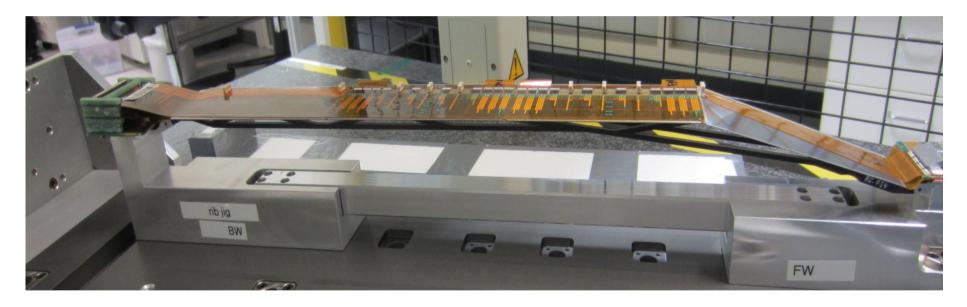

Site Qualification Reviews


- The reviews help the groups to
 - Design stable and reliable procedures
 - Document the procedures and the QC/QA
 - Communicate with other sites
 - Organize the manpower and schedule
- It should not be a one-time event, but rather a work method
- A qualification site visit of the committee is required.
- Class C qualification already completed for
 - Pisa
 - IPMU
 - HEPHY
 - TIFR

Qı	ualification	review matrix	
Site	Туре	Date	
Melbourne	Full	April 2015	
Pisa	Class C	3-4/10/2014	
Pisa	Full	TBD	
TIFR	Class C	5/2/2015	
TIFR	Full	TBD	
HEPHY	Class C	19/1/2015	
HEPHY	Full	TBD	
IPMU	Class C	31/10/2014	
IPMU	Full	TBD	


FW-BW subassembly production

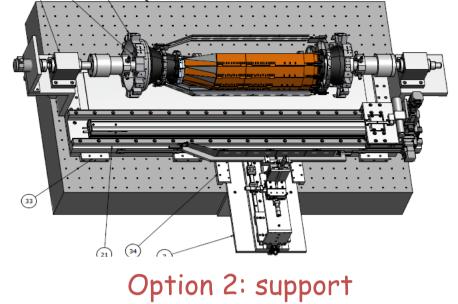
The final gluing jigs and the procedures have been tuned to produce the Class C (mechanical) and Class B (electrically working, built with low quality parts) needed by the ladder assembly sites.



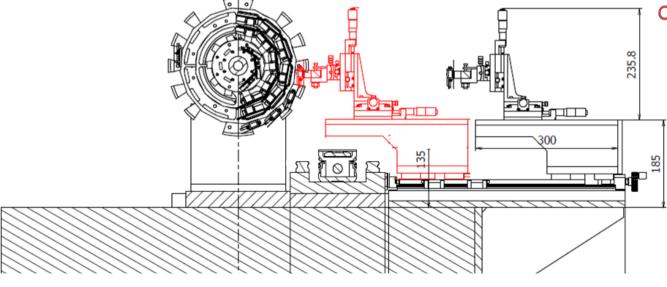
Global Schedule before June

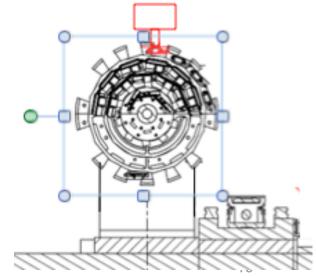
Costruito il primo ladder elettricamente funzionanate (L5)

· Vienna ha finito (24/3) di costruire il primo ladder class B:



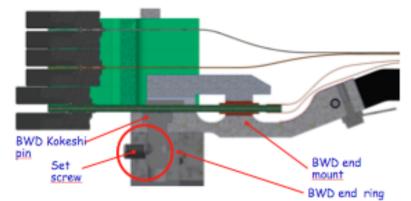
- · Usati i tools meccanici e procedure finali
- · Caratterizzazione elettrica → completamente funzionante
- · Una milestone importante!


Ladder mount


Clearance between modules:
 Less than 1 mm!

Option 1: hold ladders with arm and approach to the end rings by side, insert pins of ladders to the positioning holes.

Option 2: support ladders from top using a sliding guide in vertical direction.



Conceptual Top mounting procedure

- According to our (BaBar-SVT) experience, the whole operation can be split into 3 main phases:
- Ladder loading from the shipping box to

the "Two Arm Support", fixed to a sliding cart and equipped at each end with a thin flat pincer, hosting the K-pin.

- 2. Horizontal movement of the ladder on top of the end-rings
- 3. Guided lowering and locking of the ladder in its final position
- The system will be mechanically designed/realized/tested at home, reproducing the essential features on a mock-up and then shipped to KEK
- Now working on the design of the prototype two arm support, in order to be tested in June @KEK.

Nuove Richieste

- 1. Board addizionali per Power Supply (V separation n-side):
 - Motivazione/ Quantita'
 - Analisi nuovi tests (vedi presentazione G.R.)
- 2. Acquisto di ulteriori rivelatori o(25) (large HPK: $L4\rightarrow6$):
 - Il numero attuale non congruo per garantire la produzione dei ladders con un sufficiente # spares (prescrizione BPAC)

Richiesta Power Supply: 19kE

- Il Vsep e' la differenza di tensione che si stabilisce tra la faccia del rivelatore (N o P) e l'ingresso dell'amplificatore
- Sul P-side e' obbligatoria perche' in caso di qualche pinholes (C rotto)
 l'alta corrente in ingresso puo' non far funzionare l'intero chip
- Dai tests recenti sui moduli veri abbiamo capito che sull'N-side la Vsep puo' recuperare (far tornare a funzionare efficientemente):
 - i canali dovuti ai pinholes
 - i canali rumorosi (field-plate effect)

Prodotto	Q.ta	Prezzo unitario	Sconto %	Totale aggiudicato	Spare	CostoSpare	CostoTotale	G
SY4527	2	5700	10	10260.00	1	5130		Α
A4533	2	1450	10	2610.00	1	1305		R
A2519A	12	1950	15	19890.00	3	4972.5		Α
A1510	2	4800	18	7872.00	0	0		+
A1519B	4	4800	10	17280.00	1	4320		~30%
TOTALE				57912.00		15727.50	73639.50	spar
30% aggiudicato				17373.60]

Richiesta:

A1510	2	4800.00	18	7872.00	1	3936	11808.00
Tasse	8%		consumable tax sul totale				
TOTALE	-						18643.80

Richiesta rivelatori HPK (Large DSSD):150 kE

- Le indicazioni del BPAC:
 - Ladder complessi da costruire (necessario aumentare le parti spares durante la costruzione)
 - Finire la produzione con un congruo numero finale di ladder spares
 - Si tratta di aumentare di un 10% le parti per arrivare ad un 20% di spares
- Istituzioni di SVD si stanno impegnando sul procurement degli small DSSD, chips, PAs, hybrids, ribs, parti meccaniche.
- Il fattore limitante e' costituito dai rivelatori large DSSD: (Financial shortfall for SVD)

Туре	Number	Unit cost kYen	TOTAL (kYen)	With tax	TOTAL (Euro)
Large DSSD	25	702	17550	18954	146.25
Small DSSD	10	988	9880	10670.4	77.1875

Considerazioni

- Sono necessari 8 mesi per produrre i nuovi rivelatori: l'ordine deve essere necessariamente fatto nella II meta' del 2015, affinche' si possa costruire gli spares verso la fine della produzione dei ladders gia' previsti (entro meta' 2016).
- Il contributo finanziario italiano all'SVD si e'
 concretizzato nei PS ed nei jigs di costruzione dei FW/
 BW subassemblies, forse minore di quanto sarebbe stato
 dovuto se fossimo stati fin dall'inizio nel progetto.

Belle II – Trieste in sintesi (2015)

- Partecipanti
 - L. Bosisio 60%
 - L.Lanceri 90%
 - L.Vitale (*) 90%
 - G.Cautero (Elettra) 10%
 - D.Giuressi (Elettra) 10%
 - H.Menk (Elettra)10%
 - + Assegno ricerca biennale!
 - (*) coord. Monitor SVD
- Servizi di Sezione
 - P. Cristaudo (NTC)
 - M. Bari (FOS)
 - A. Zanetti (umidità, PLC)
 - G. Venier (commissioning...)

Responsabilità hardware

- Test sensori microstrip DSSD, da Micron e HPK
- Per VXD = PXD + SVD monitor radiazione e trigger per beam abort
- Monitor temperatura (NTC, FOS) e umidità (con "sniffing pipes"), interlock (PLC)
- Prev. Assegn. Impegni 2015
 - Missioni 49 37 4.7 kEuro
 - Consumi 17 12 2.5 kEuro
 - Apparati 107 107 0 kEuro
 - Trasporti 2 2 0.2 kEuro

Profilo di spesa previsto (Trieste)

Item	2013	2014	2015	2016	тот
Initial CORE	5	75	70	0	150
DSSD tests	2.5	0	0	0	2.5
Rad.Mon.+Abort (diamonds, cables, etc)	2	7	96	10	115
Rad.Mon.+Abort (electronics)	0	4	4	19	27
Temperature Mon. (FOS fibers, offers)	0	17.5	I	30	48.5
Temperature Mon. (NTC thermistors)	0	3	2	4	9
Humidity Mon. (very preliminary)	0	0	10	0	10
TOTAL	4,5	31.5	113	63	212

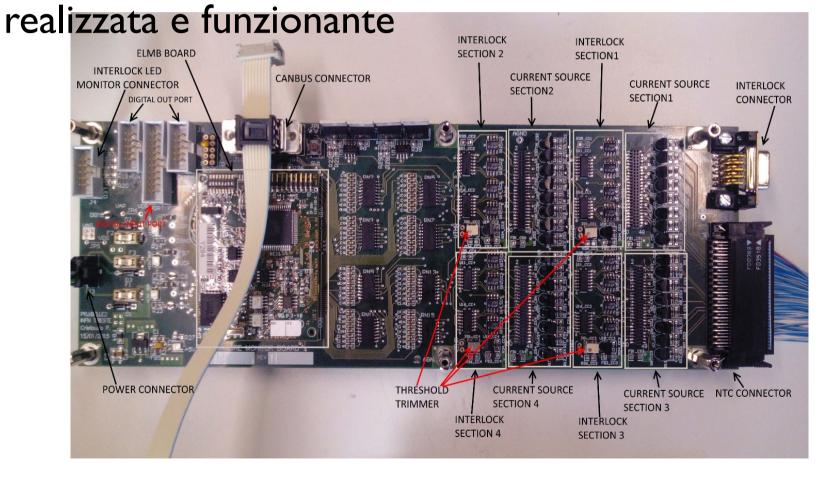
Note (nessun problema particolare in vista, per il momento):

- 1) Acquisto "FOS interrogator" (30 kE, 2016) anticipato al 2014, Pisa
- 2) Acquisto di 24 sensori diamante scCVD nel 2015:
 - siamo pronti (scelta dopo test prototipi: Cividec)!
 - L'ordine sarà spezzato in due parti
- 3) Dettagli: qualche scambio, spese 2014-2015, per rinvio acquisti finali FOS

Progressi, da Dicembre 2014 - I

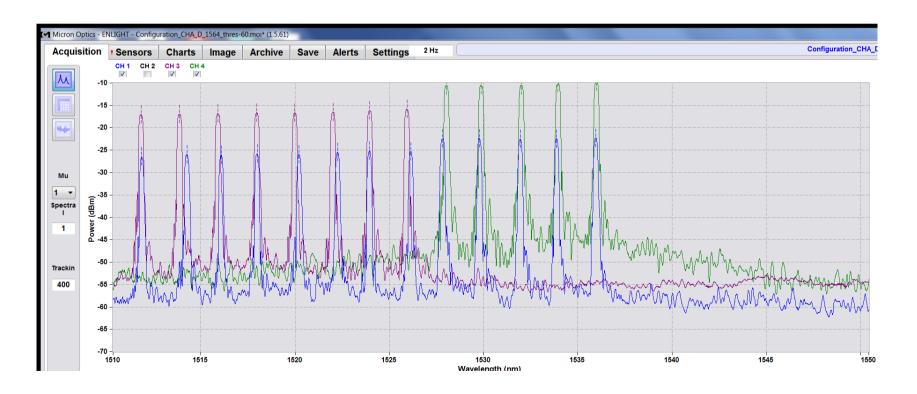
- Preparata una schedula dettagliata delle attività; la documentazione per sign-off è in preparazione
- Test DSSD Micron e HPK (L.Bosisio, I.Rashevskaya)
 - Laboratorio pulito rimesso a nuovo
 - Effettuati test completi su 12 sensori Micron e 3 HPK
 - Disponibilità a ulteriori test su sensori HPK
- Sistema monitor temperatura, NTC (P.Cristaudo)
 - Sistema di lettura: completato disegno finale
 - Montate due schede finali (su 3 +spares), testate e funzionanti
 - Procurate (CERN) e testate 10 schede ELMB (3 + 7 spares)
 - Software LabView OK (next: Epics...)

Progressi, da Dicembre 2014 - 2

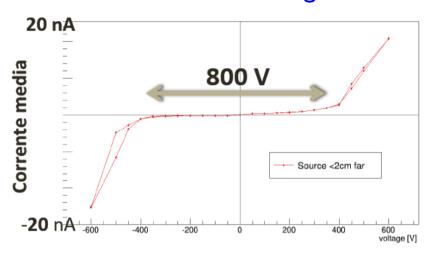

- Sistema monitor temperatura, FOS (L.Vitale, M.Bari)
 - Ricevuto "FOS interrogator" Micron Optics, software installato
 - Prototipi fibre con fino a 8 sensori, da due provider: test OK
 - Varie configurazioni, 4 x I couplers etc.: attenuazione OK
 - Da fare adesso: organizzare calibrazioni, ordini finali
- Sistema monitor umidità e interlock (L.Lanceri, A.Zanetti)
 - Ricevuti: sensori dew point Vaisala e "chilled mirror" di riferim.
 - Ricevuta PLC Schneider + starter kit, software installato
 - Ordinato un PC dedicato
 - Iniziato il disegno e l'acquisto di materiale per le interconnessioni con sniffing pipes, flussometri, pompa

Progressi, da Dicembre 2014 - 3

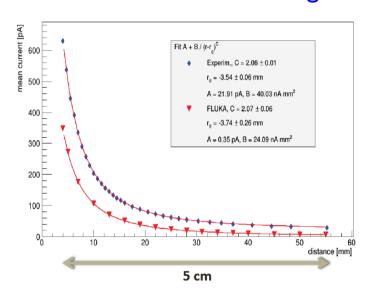
- Monitor di radiazione e beam abort (L.B., L.L., L.V., + studente M. Zuppichin, + Elettra)
 - Messe a punto le procedure di test e i programmi di analisi:
 - Caratteristiche I-V, al buio e con sorgente beta
 - MIP (sorgente beta): fit Landau, fit Charge Collection Efficiency
 - Stabilità delle correnti misurate con sorgente a diverse distanze, fit con modello di "shallow" e "deep traps"
 - TCT (sorgente alfa): misura dei tempi di transito e delle mobilità di elettroni e lacune, controllo dell' uniformità del campo elettrico
 - Prototipo scCVD E6/Cividec, montaggio e cablaggio "finale": OK
 - Pronti per iniziare gli ordini...
 - (Prosegue il disegno dell'elettronica di lettura e beam abort)


Highlights – I (NTC readout)

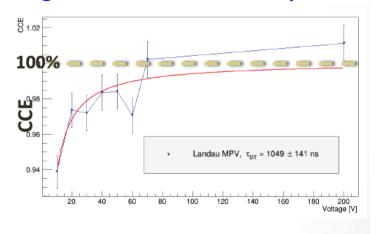
 Motherboard finale per lettura termistori NTC con scheda ELMB (processore, ADC, MPX), current sources, segnali interlock, connettore CANBUS:

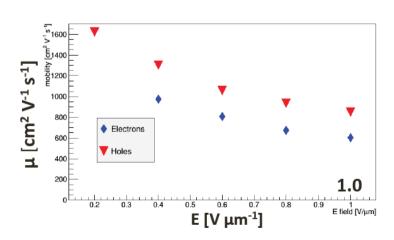

Highlights – 2 (FOS sensors)

- 5 sensors fiber direct to interrogator
- 8 sensors fiber with 1x2 splitter
- 2 fibers (8 sensors +5 sensors), Ix4 splitter, 30m fiber and all PC/APC connectors is ok, the attenuation is ~ as expected



Highlights – 3 (scCVD sensors)


Caratteristica I-V, con sorgente beta


Corrente vs distanza sorgente

Charge Collection Efficiency, dalle MIP

Mobilità di elettroni e lacune, da TCT

