

Event shape fluctuations in nucleus-nucleus collisions: constrain the initial geometry

> **M. A. Tangaro** INFN Sezione di Bari

Incontro sulla fisica con ioni pesanti a LHC – Bologna 26-05-2015

- Motivation
- Event shape selection
- Correlations between flow harmonics
- p_{τ} spectra and particle identification
- Summary and outlook

At first order, measurements can be described assuming nuclei as perfectly smooth spheres and the QGP as a perfect liquid.

At first order, measurements can be described assuming nuclei as perfectly smooth spheres and the QGP as a perfect liquid.

Initial shape is not smooth but a lumpy blob of energy density Fluctuating shape affects details of final particle flow

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{i=0}^{\infty} v_n \cos[n(\phi - \psi_n)]$$

With fluctuations: odd harmonics are not zero.

At first order, measurements can be described assuming nuclei as perfectly smooth spheres and the QGP as a perfect liquid.

Λφ

Initial shape is not smooth but a lumpy blob of energy density Fluctuating shape affects details of final particle flow

$$\frac{dN}{d\phi} \propto 1 + 2\sum_{i=0}^{\infty} v_n \cos[n(\phi - \psi_n)]$$

With fluctuations: odd harmonics are not zero.

Fluctuations explain entire structure of two particle correlations

solid lines: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 term

dashed line: sum

0.05

points: correlation measurement

Event shape engineering

Each event has a different initial shape and density distribution, characterized by different set of harmonic eccentricity coefficients ϵ .

At fixed centrality: different initial shapes.

Event shape engineering

Each event has a different initial shape and density distribution, characterized by different set of harmonic eccentricity coefficients ε .

At fixed centrality: different initial shapes.

Each event develops its individual hydrodynamic flow, characterized by a set of harmonic flow coefficients v_n and flow angles ψ_n .

At fixed centrality, flow fluctuates \rightarrow event selection based on flow

We can select events corresponding to nuclear collisions with different initial geometry configuration:

EVENT SHAPE ENGINEERING

Schukraft et al, Phys.Lett. B719 (2013) 394-398

ESE in MC

Event selection based on the magnitude of the **flow vector**

$$Q_{n,x} = \sum_{i} \cos(n \phi_{i}) - Q_{n,y} = \sum_{i} \sin(n \phi_{i})$$

Schukraft et al. Phys.Lett. B719 (2013) 394-398

- q-vector and v_n^2 measured in different subevents
- Large $q_2 \rightarrow \text{larger } v_2$

 $Q_n = \{Q_{n,x}, iQ_{n,y}\}$ $q_n = |Q_n| / \sqrt{M}$

- Strong positive correlation between eccentricity and q-vector
- < ϵ_2 > value is higher in 10% large q_2 sample

The shape of the initial geometry can be selected using the q-vector in the final state

26-05-2015

Incontro sulla fisica con ioni pesanti a LHC

Event shape selection

ALICE QM 2012

- V0A (2.8<η<5.1)
- V0C (-3.7<η<-1.7)
- TPC (-0.8<η<0 or 0<η<0.8)

Different flow Different multiplicity Different non-flow contribution

Elliptic flow

- No q₂ selection
 5% high q₂ (TPC)
 5% high q₂² (VZERO-C)
 5% high q₂² (VZERO-A)
 10% low q₂ (TPC)
 10% low q₂² (VZERO-C)
 10% low q₂² (VZERO-C)
- Centrality dependence of the average v₂ variation in the large-q₂ and small-q₂ samples.

Elliptic flow

- No q_2 selection 5% high q_2 (TPC) 5% high q_2^2 (VZERO-C)
- ▼ 5% high q_2^- (VZERO-A)
- $10\% \text{ low } \tilde{q}_2 \text{ (TPC)}$ $10\% \text{ low } q_2 \text{ (VZERO-C)}$
- ∇ 10% low q_2^2 (VZERO-A)

- Centrality dependence of the average v₂ variation in the large-q₂ and small-q₂ samples.
- q₂(TPC), q₂(V0A) with q₂(V0C) with different dynamic range.
- The TPC selection has a better selectivity than the VOC and VOA in all the centrality classes.
- Method sensitivity to the event shape deteriorates for peripheral collisions.

In the 1% most central collisions $v_3 > v_2 \rightarrow$ doubly-peaked correlation structure.

Event-by-event eccentricity fluctuations dominate the anisotropic flows in the most central collisions.

ATLAS Collaboration arXiv:1504.01289v1 [hep-ex]

In the 1% most central collisions $v_3 > v_2 \rightarrow$ doubly-peaked correlation structure.

Event-by-event eccentricity fluctuations dominate the anisotropic flows in the most central collisions.

Events selected with the largest and smallest q_2 or q_3 values.

Double-peack structure for Small- q_2 or large- q_3 : dominant contribution of the triangular flow under these q_m selections.

The magnitude of the modulation strongly correlated with the q_m value \rightarrow the global ellipticity or triangularity can be selected by q_2 or q_3 .

26-05-2015

- Ratios constant up to p_{τ} = 10 Gev/c \rightarrow similar flow fluctuations
- Event-Shape selection (3.2< $|\eta|$ <4.9), v_n ($|\eta|$ <2.5)

ATLAS Collaboration arXiv:1504.01289v1 [hep-ex]

Compare (v_n, v_m) correlations to (ϵ_n, ϵ_m) correlations calculated in Glauber & CGC models.

- (v_2, v_2) Non-trivial dependence with centrality (boomerang like) \rightarrow different centrality dependence of v_n . Within one centrality the dependence is linear \rightarrow Indicates that viscous correction mostly controlled by system size, not shape!
- (v₃, v₂) Good agreement in several centralities, some deviation in (0-5)% central events.
- (v₄, v₂) Initial geometry models not reproduce data. Non-linear dynamical mode mixing produces these correlations.

ATLAS Collaboration arXiv:1504.01289v1 [hep-ex]

- Physics observables affected by the combined effect of either radial and anisotropic flow, the individual contribution can't be easily disentangled.
- Understand connection between initial condition and hydro response
- Constrain initial conditions:
 - Fix the centrality of the collision
 - Fix the shape of the collision (ESE)

Analysis of transverse momentum spectra in these events

Radial flow:

- Isotropic expansion
- Physics observable: p_{τ} spectra
- Flat p_{T} spectrum for heavier particles \rightarrow Mass ordering

Anisotropic flow:

• Anisotropic expansion

26-05-2015

- Raw spectra used for the ratios: efficiency does not depend on q₂ selection
- Modification of the p_τspectrum: large q₂ harder spectrum, opposite for small q₂

ALICE QM 2012

Incontro sulla fisica con ioni pesanti a LHC

- Raw spectra used for the ratios: efficiency does not depend on q₂ selection
- Modification of the p₇spectrum: large q₂ harder spectrum, opposite for small q₂
- same effect for all the particles
- hint of mass ordering?

Shape Fluctuation → Pressure Fluctuations (radial flow)?

ALICE QM 2012

Spectra ESE: Glauber MC

- The participant density N_{part}/area used as a proxy for the magnitude of the pressure gradients (responsible for the radial flow).
- The observed correlation between the density and eccentricity is similar the correlation between radial flow and event shape.
- Central collisions: weaker correlation between area and eccentricity.
- Glasma e CGC predictions? Can these measurements contrain initial condition models?
- Full hydro simulation needed.

Summary and outlook

- Event shape selection is sensitive to the detector selectivity
- v₂-v₂ correlations indicate viscous effects controlled by system size and not system shape.
- small anti-correlation between v_2 and $v_3 \rightarrow$ Initial geometry effect (described by CGC & Glauber).
- strong correlation between v₄-v₂ and v₅-v₂ → Indicate non-linear response to initial geometry (not described by initial geometry models)

Summary and outlook

- Event shape selection is sensitive to the detector selectivity
- v₂-v₂ correlations indicate viscous effects controlled by system size and not system shape.
- small anti-correlation between v_2 and $v_3 \rightarrow$ Initial geometry effect (described by CGC & Glauber).
- strong correlation between v₄-v₂ and v₅-v₂ → Indicate non-linear response to initial geometry (not described by initial geometry models)
- Modification of the p_{τ} spectrum in semi-central (30-40%) in the intermediate p_{τ} region (from ~1 up to ~5 GeV/c) is observed.
- Hint of mass ordering in the region between ~1 up to ~3 GeV/c.

Summary and outlook

- Event shape selection is sensitive to the detector selectivity
- v₂-v₂ correlations indicate viscous effects controlled by system size and not system shape.
- small anti-correlation between v_2 and $v_3 \rightarrow$ Initial geometry effect (described by CGC & Glauber).
- strong correlation between v₄-v₂ and v₅-v₂ → Indicate non-linear response to initial geometry (not described by initial geometry models)
- Modification of the p_{τ} spectrum in semi-central (30-40%) in the intermediate p_{τ} region (from ~1 up to ~5 GeV/c) is observed.
- Hint of mass ordering in the region between ~1 up to ~3 GeV/c.

To which extent the differential ESE measurements can constrain quantitatively the transport coefficients of the medium and the fluctuations patterns in the initial conditions?

Backup

Incontro sulla fisica con ioni pesanti a LHC

Event shape engineering

Event selection based on the magnitude of the **flow vector**

$$Q_{n,x} = \sum_{i} \cos(n \phi_{i}) \longrightarrow Q_{n} = \{Q_{n,x}, iQ_{n,y}\}$$
$$Q_{n,y} = \sum_{i} \sin(n \phi_{i}) \longrightarrow Q_{n} = |Q_{n}| / \sqrt{M}$$

Need to avoid biases from non-flow: **sub-events with large pseudo**rapidity separation

```
Measure q_2 in one independent sub-event
for the event selection (sub-event a)
```

Study observables of interest in another pseudo-rapidity window (sub-event b)

ESE in MC

Schukraft et al, Phys.Lett. B719 (2013) 394-398

- q-vector evaluated in sub-event a, v_n^2 measured in sub-event b
- Large $q_2 \rightarrow \text{larger } v_2$

Huo et al, Phys.Rev. C90 (2014) 024910

- Strong positive correlation between eccentricity and q-vector
- < ϵ_2 > value is higher in 10% large q_2 sample

The shape of the initial geometry can be selected using the q-vector in the final state

26-05-2015

The ALICE detector

Inner Tracking System (ITS)

- Primary vertex reconstruction
- Combined ITS-TPC tracking

Time Projection Chamber (TPC)

- Main tracking system
- PID from energy loss in the gas

Time Of Flight (TOF)

- Tracks extrapolated from ITS-TPC
- PID from time of flight measurement

VZERO

- VZEROA (2.8<η<5.1)
- VZEROC (-3.7<η<-1.7)
- Trigger, centrality selection, event plane calculation

~10M minimum bias Pb-Pb events at $\sqrt{s_{NN}}$ = 2.76 TeV (2010 run) used for this analyisis.

The ALICE detector

- VZEROA (2.8<η<5.1)
- VZEROC (-3.7<η<-1.7)
- Trigger, centrality selection, event plane calculation

~10M minimum bias Pb-Pb events at $\sqrt{s_{_{NN}}}$ = 2.76 TeV (2010 run) used for this analyisis.

- FCal coverage : 3.2<|η|<4.9 (determine Centrality, Event-Shape selection)
- Tracking coverage : $|\eta| < 2.5$ (Track reconstruction, vn measurement)

Non-flow contribution

Non-flow definition

contribution to v_n from azimuthal correlations between particles not due to their correlation with the reaction plane

Examples

- HBT
- Resonances
- Jets
- ...

Large gap in pseudo-rapidity between sub-events suppresses correlations not related to the azimuthal asymmetry in the initial geometry

Elliptic flow with ESE: selection

- q-vector from VZERO-A (2.8<η<5.1)
- v_2 evaluated using tracks from TPC (-0.8< η <0.8) and event-plane from VZERO-C (-3.7< η <-1.7)
- Large Δη separation between the three detectors → non-flow suppression

Elliptic flow with ESE

5% high q₂ 10% low q₂ No q₂ selection

- q-vector from V0A (2.8<η<5.1)
- v₂ from TPC
 (-0.8<η<0.8)
- Event-plane from V0C (-3.7<η<-1.7)

- Event plane method used to evaluate v₂ (see backup)
- Ratios constant up to p_{τ} = 6 Gev/c \rightarrow similar flow fluctuations
- Smaller flow fluctuations effect for $p_{\tau} > 6$ Gev/c

Elliptic flow with ESE

- q₂ from half TPC: -0.8<η<0 or 0<η<0.8
- $v_{_2}$ evaluated using tracks from the other half of TPC $\,$ (-0.8<q<0.8) and event-plane from VZERO
- Non flat ratios may be due to non-flow contributions

Elliptic flow is related with the eccentricity of the collision: $v_2 \propto \epsilon_2$

Understand connection between initial condition and hydro response

Event-shape selection: constraint initial condition (size and geometry of the collision fixed)

Analysis of transverse momentum spectra in event shaped event: correlation between radial and anisotropic flow?

ALICE Particle IDentification

Pb-Pb $s_{NN} = 2.76 \text{ TeV}$

Time Of Flight

26-05-2015

Incontro sulla fisica con ioni pesanti a LHC

-2

2

 $n\sigma_{TPC}^{p}$

3.6 < p_ < 3.8 GeV/c

nσ^p TOF

 $n\sigma_{TPC}^{K}$

Event plane method

• Flow vectors calculation: $Q_{n,x} = \sum_{i} w_i \cos(n\phi_i) \quad Q_{n,y} = \sum_{i} w_i \sin(n\phi_i)$

• Event plane angle calculation:
$$\psi_n = \left(\tan^{-1} \frac{\sum_i w_i \sin(n \phi_i)}{\sum_i w_i \cos(n \phi_i)} \right) / n$$

- Flow coefficients: $v_n^{obs} = \langle \cos[n(\phi_i \psi_n)] \rangle$
- Event plane resolution correction: $v_n = v_n^{obs} / R_n$ $R_n = \langle \cos(n(\psi_n \Psi_n)) \rangle$

Elliptic flow with ESE: selection

- q-vector from VZERO-A (2.8<η<5.1)
- v₂ evaluated using tracks from TPC (-0.8<η<0.8) and event-plane from VZERO-C (-3.7<η<-1.7)
- Large Δη separation between the three detectors → non-flow suppresion

• q-vector from TPC (-0.8< η <0 or 0< η <0.8) and v₂ from the other TPC η window

Incontro sulla fisica con ioni pesanti a LHC

Elliptic flow with ESE

- q₂ from half TPC: -0.8<η<0 or 0<η<0.8
- $v_{_2}$ evaluated using tracks from the other half of TPC $\,$ (-0.8<q<0.8) and event-plane from VZERO
- Non flat ratios may be due to non-flow contributions

Jet contamination

Background

- $P_{T,tot}$ = total pT in the event
- density = $p_{T,tot}$ / acceptance

Energy in a cone

- seed particle: ($p_T > 5 GeV/c$)
- $p_{T,sum}$ = sum of p_T in R<0.3
- area= $\pi \cdot R^2$
- $p_{T,jet} = p_{T,sum}$ (density · area)

- method reliable only above ~20 GeV/c
- ratio is flat, "jet" contribution similar

Incontro sulla fisica con ioni pesanti a LHC

Fluctuations explain entire structure of two particle correlations solid lines: v_1 , v_2 , v_3 , v_4 , v_5 , v_6 term dashed line: sum points: correlation measurement

Saw non-trivial dependence with centrality (boomerang like) \rightarrow different centrality dependence of v_n.

within one centrality the dependence is linear \rightarrow Indicates that viscous correction mostly controlled by system size, not shape!

Compare (v_3, v_2) correlations to (ϵ_3, ϵ_2) correlations calculated in Glauber & CGC models.

Good agreement in several centralities, some deviation in (0-5)% central events.

Fit un-correlated + correlated components:

$$v_4 = \sqrt{c_0^2 + c_1^2 v_2^4}$$

Initial geometry models not reproduce data. Non-linear dynamical mode mixing produces these correlations

Measurements can constrain initial geometry models

Spectra ESE: Glauber MC

Area and eccentricity are anti-correlated at fixed b_{imp} (centrality)

- Area inversely related to transverse density (N_{part}/A): positive correlation between eccentricity and density.
- Centrality 0-1 %: weaker correlation between area and eccentricity.
- Glasma e CGC predictions? Can these measurements contrain initial condition models?
- Full hydro simulation needed

26-05-2015

Incontro sulla fisica con ioni pesanti a LHC

Initial energy density

HBT with ESE

The measured azimuthal dependences of radius parameters are fitted with a function:

$$R_{\mu}^{2} = R_{\mu,0}^{2} + 2R_{\mu,2}^{2} \cos(2 \Delta \phi)$$

the extracted final eccentricity:

$$\epsilon_{final} = |2R_{\mu,2}^2 / R_{\mu,0}^2|$$