Quarkonium results: introduction for non-believers and lessons from LHC run-1

E. Scomparin (INFN-Torino)

INCONTRO SULLA FISICA CON IONI PESANTI A LHC

Bologna, sala Ulisse, Accademia delle Scienze 26 - 27 maggio, 2015

Short introduction (color screening, regeneration...)
 Flashing results from LHC run-1
 Open points and prospects for run-2

Quarkonia: from color screening...

Screening of strong interactions in a QGP

T. Matsui and H. Satz, PLB178 (1986) 416

- Screening stronger at high T
- $\lambda_D \rightarrow$ maximum size of a bound state, decreases when T increases
- Different states, different sizes

Resonance melting

A. Adare et al. (PHENIX), arXiv:1404.2246

...to regeneration (for charmonium!)

At sufficiently high energy, the cc pair multiplicity becomes large

In most	SPS	RHIC	LHC
central A-A	20	200	2.76
collisions	GeV	Gev	TeV
N _{ccbar} /event	~0.2	~10	~60

Statistical approach:

- Charmonium fully melted in QGP
- Charmonium produced, together with all other hadrons, at chemical freeze-out, according to statistical weights

Kinetic recombination:

Continuous dissociation/regeneration over QGP lifetime

Contrary to the color screening scenario this mechanism can lead to a charmonium enhancement

if supported by data, charmonium looses status as "thermometer" of QGP ...and gains status as a powerful observable for the phase boundary

Energy Density

P. Braun-Munzinger and J. Stachel, PLB490 (2000) 196

Low energy results: J/ψ from SPS & RHIC

SPS (NA38, NA50, NA60) $\sqrt{s_{NN}} = 17 \text{ GeV}$

R.Arnaldi et al.(NA60) NPA830 (2009) 345c

First evidence of anomalous suppression (i.e. beyond CNM expectations) in Pb-Pb collisions

 ${\sim}30\%$ suppression compatible with $\psi(\text{2S})$ and χ_c decays

A. Adare et al. (PHENIX) PRC84(2011) 054912

RHIC (PHENIX, STAR)

 $\sqrt{s_{NN}} = 39, 62.4, 200 \text{ GeV}$

suppression, with strong rapidity dependence, in Au-Au at \sqrt{s} = 200 GeV

Low $p_T J/\psi$: ALICE

B. Abelev et al., ALICE arXiv:1311.0214.

- □ Compare J/ ψ suppression, RHIC ($\sqrt{s_{NN}}=0.2$ TeV) vs LHC ($\sqrt{s_{NN}}=2.76$ TeV) □ Results dominated by low-p_T J/ ψ
 - Stronger centrality dependence at lower energy
 - □ Systematically larger R_{AA} values for central events in ALICE

Possible interpretation:

RHIC energy \rightarrow suppression effects dominate

LHC energy \rightarrow suppression + regeneration

How can this picture be validated?

R_{AA} vs p_T

- □ Charm-quark transverse momentum spectrum peaked at low- p_T □ Recombination processes expect to mainly enhance low- $p_T J/\psi$ → Expect smaller suppression for low- $p_T J/\psi$ → observed!
- Opposite trend with respect to lower energy experiments
- □ Fair agreement with transport and statistical models (not shown)

Non-zero v_2 for J/ψ at the LHC

E.Abbas et al. (ALICE), PRL111(2013) 162301

The contribution of J/ψ from (re)combination should lead to a significant elliptic flow signal at LHC energy

- A significant v₂ signal is observed by BOTH ALICE and CMS
 The signal remains visible even in the region where the
- contribution of (re)generation should be negligible
- Due to path length dependence of energy loss ?
- □ In contrast to these observations STAR measures $v_2=0$

CNM effects are not negligible!

- Suppression at backward + central rapidity
- No suppression (enhancement?) at forward rapidity
- □ Fair agreement with models (shadowing + energy loss)
- □ (Rough) extrapolation of CNM effects to Pb-Pb → evidence for hot matter effects!

Υ suppression: CMS results

S. Chatrchyan et al.(CMS), PRL 109 (2012) 222301

□ More weakly bound states (Y(2S), Y(3S)) show strong suppression in Pb-Pb, compared to Y(1S)

Expected signature for QGP-related suppression

Regeneration effects expected to be negligible for bottomonia

First accurate determination of Y suppression

Suppression increases with centrality

□ First determination of Y(2S) R_{AA}: already suppressed in peripheral collisions

r(1S) (see also ALICE) compatible with suppression of bottomonium states decaying to r(1S)

→ Probably yes, also taking into account the normalization uncertainty

S. Chatrchyan et al.(CMS), PRL 109 (2012) 222301 B. Abelev et al. (ALICE), arXiv:1405.4493

Is $\Upsilon(1S)$ dissoc. threshold still beyond LHC reach ? \rightarrow Run-II

Υ (1S) vs y and p_T from CMS+ALICE

 Start to investigate the kinematic dependence of the suppression
 Suppression concentrated at low p_T (opposite than for J/ψ, no recombination here!)
 Suppression extends to large rapidity (puzzling y-dependence?)

From run-1 ro run-2

□ Charmonium highlight → evidence for a new mechanism which enhances the J/ψ yield, in particular at low p_T , with respect to low-energy experiments

□ In addition

- \Box Indications for J/ ψ azimuthal anisotropy (non-zero v₂)
- □ Significant final state effects on ψ(2S) in p-Pb (not discussed here!), likely related to the (hadronic) medium created in the collision
- Bottomonium highlight → evidence for a stronger suppression of 2S and 3S states compared to 1S. Effect not related to CNM (not discussed here!) and compatible with sequential suppression of "bottomonium" states

□ In addition

- □ 1S is also suppressed (~50%). Feed-down effect only? □ v_{-} dopondonce of 1S suppression to be understood
- □ y-dependence of 1S suppression to be understood

From run-1 to run-2

Prospects for run-2

→ Collect a ~1 order of magnitude larger integrated luminosity

 \Box High-statistics J/ψ sample

 → Comparison with run-1 AND with theoretical predictions crucial to confirm/quantify our understanding in terms of regeneration
 → more precise v₂ results also needed

□ Significant ψ (2S) sample

 \rightarrow Crucial: run-1 results "exploratory" (and interpretation not clear)

 \Box High-statistics $\Upsilon(1S)$ sample

→ A significant increase in 1S suppression with respect to run-1 might imply that a high-T QGP is formed ("threshold" scenario)

□ Differential Y(2S) and Y(3S) results from run-1 are limited by statistics
 → Centrality and p_T-dependent studies important to assess details of sequential suppression

A couple of more specific issues

 \Box Open charm as a normalization for J/ ψ suppression/enhancement

$\rm R_{pPb}{}^{D} = 0.85 \pm 0.05 \pm 0.11$

(weighted average of p_T differential points using FONLL cross section (no FONLL unc.) and $R_{pPb}(0-1)=R_{pPb}(1-2)$) Assuming $R_{pPb}(0-1) = 0.4$

 $R_{pPb}^{D} = 0.82 \pm 0.05 \pm 0.11$

$R_{pPb}^{J/\psi} = 0.73 \pm 0.08 \pm 0.15$

Within uncertainties (and with reasonable extrapolations to $p_T=0$), CNM effects on integrated J/ ψ and D-mesons production have the same size

□ Can we go beyond this relevant but somewhat limited statement ?

Bottomonium at the LHC: open issues

 \Box Is the y-distribution of $\Upsilon(1S)$ understood ?

 □ Data show evidence for larger suppression at forward-y
 → In contrast with sequential suppression interpretation

- New LHC results on feed-down fractions may imply lower values wrt to the older CDF result (50.9 ± 8.2 ± 9.0 % from Υ(2S)+Υ(3S)+χ_b(1P)+χ_b(2P))
- → may question the interpretation of observed Y(1S) suppression coming purely from feed-down

More info

Charmonium vs open charm

□ In p-Pb

Are we so far from exploring the integrated cross section ?
 Data are now available down to 1 GeV/c for D⁰, D⁺, D^{*}

- \rightarrow Extrapolation is not so large here
- \rightarrow Situation "worse" for single-lepton studies

 \Box Uncertainties are not negligible though (~15% now)

- □ Is there a reasonable hope for a significant improvement ? Run-2 ?
- □ Now dominated by
 - □ Signal extraction
 - \Box \sqrt{s} -rescaling of reference (from 7 to 5.02 TeV, not too large)
 - □ Contribution from B-decays

□ Qualitative agreement between integrated R_{AA}^{D} and $R_{AA}^{J/\psi}$ is reassuring, but is there (will there be) a recipe for a differential comparison ?

□ In Pb-Pb

□ Most p-Pb considerations apply, plus
 □ The contribution of D_s and Λ_c may have a significant impact ?
 □ √s-rescaling of reference → more important uncertainty

Other ingredients/caveats to the "puzzle"

 $J p_T$ dependence of R_{AA} from CMS exhibits features different from J/ψ with maximal suppression at low p_T (No equivalent plot from ALICE)

□ Caveat: ALICE takes reference data from LHCb measurements Contrary to J/ψ , these exhibit a \sqrt{s} -dependence which disagrees with FONLL expectations, and even with (usual) empirical shapes

2

3

5

8

√s (TeV)

On feed-down fractions

□ Usually they are not supposed to vary strongly with √s (or y)
 □ New LHCb pp results could alter the picture inherited by CDF (relative to p_Y>8 GeV/c)

	$p_{\rm T}^{\Upsilon}~({\rm GeV}/c)$	$\mathcal{R}^{\chi_b(1P)}_{\Upsilon(nS)}$	$\mathcal{R}_{\Upsilon(nS)}^{\chi_b(2P)}$	
Υ(1S)	6-8	$14.8 \pm 1.2 \pm 1.3$	$3.3\pm0.6\pm0.2$	
	8-10	$17.2 \pm 1.0 \pm 1.4$	$5.2 \pm 0.6 \pm 0.3$	
	10-14	$21.3 \pm 0.8 \pm 1.4$	$4.0 \pm 0.5 \pm 0.3$	LHC
	14-18	$24.4 \pm 1.3 \pm 1.2$	$5.2 \pm 0.8 \pm 0.4$	
	18-22	$27.2 \pm 2.1 \pm 2.1$	$5.5 \pm 1.0 + 0.4 - 1.0$	
	22-40	$29.2 \pm 2.5 \pm 1.7$	$6.0 \pm 1.2 \stackrel{+}{_{-}} \stackrel{0.4}{_{-}}$	
			0.1	

We have reconstructed the radiative decays $\chi_b(1P) \rightarrow \Upsilon(1S)\gamma$ and $\chi_b(2P) \rightarrow \Upsilon(1S)\gamma$ in $p\overline{p}$ collisions at $\sqrt{s} = 1.8$ TeV, and measured the fraction of $\Upsilon(1S)$ mesons that originate from these decays. For $\Upsilon(1S)$ mesons with $p_T^{\Upsilon} > 8.0$ GeV/c, the fractions that come from $\chi_b(1P)$ and $\chi_b(2P)$ decays are $[27.1 \pm 6.9(\text{stat}) \pm 4.4(\text{syst})]\%$ and $[10.5 \pm 4.4(\text{stat}) \pm 1.4(\text{syst})]\%$ respectively. We have derived the fraction of directly produced $\Upsilon(1S)$ mesons to be $[50.9 \pm 8.2(\text{stat}) \pm 9.0(\text{syst})]\%$.

At the limit of uncertainties or do we have a problem here ?
 Difficult to reach 50% including 2S and 3S

Can we take CNM into account ?

□ Apply the simple $R_{pPb} \times R_{Pbp}$ recipe on ALICE pPb □ Would give $0.78 \times 0.86 = 0.67$ for 3.25 < y < 4 $0.91 \times 0.66 = 0.60$ for 2.5 < y < 3.25(but see also LHCb result)

~0.5 "anomalous" suppression at forward-y

0.8-0.9 "anomalous"

suppression at

central-y

No results from CMS (for the moment ?)
 Assuming a "smooth" y-interpolation of CNM

 \rightarrow Need new/better pPb data ?

Charmonium: the $\psi(2S)$ puzzle

□ At the end of run-1 results are still limited by statistics

□ From enhancement at intermediate p_T to suppression at large p_T
 □ Is there a discrepancy with ALICE at intermediate p_T?
 □ First recent proposals (Rapp, arXiv:1504.00670) on how interpreting the result

Charmonium: the $\psi(2S)$ puzzle

The regeneration of ψ' mesons occurs significantly later than for J/ψ's
 Despite a smaller total number of regenerated ψ', the stronger radial flow at their time of production induces a marked enhancement of their R_{AA} relative to J/ψ's in a momentum range pt ~ 3-6 GeV/c.

J/ψ in Pb-Pb: from run-1 to run-2

□ Evidence for smaller suppression compared to RHIC
 → Occurrence of recombination is at present the only explanation
 □ p_T-dependence of R_{PhPh} also compatible with recombination

Although qualitative interpretation looks unambiguous, the quantitative assessment of the effects at play needs refinement

- \Box Values for $d\sigma_{cc}/dy$ evolved. At present, in the forw.-y ALICE domain:
 - □ SHM \rightarrow 0.15 0.25 mb (y=4 and y=2.5) no shadowing
 - □ Zhao and Rapp \rightarrow 0.5 mb "empirical" shad. vs no shad.
 - \Box Zhuang et al. \rightarrow 0.4 0.5 mb EKS98 shadowing
 - □ Ferreiro et al. \rightarrow 0.4 0.6 mb + Glauber-Gribov shad. ~ nDSG(min.) > EKS98

□ LHC run-2 \rightarrow (almost) a factor 2 gain in \sqrt{s}

→ would it be possible to extract $d\sigma_{cc}/dy$ which gives the best fit to run-1 results, extrapolate to run-2 energy (FONLL?) and give predictions ?

□ Suppression persists up to the largest investigated p_T □ Higher p_T reach in run-2 → increase of R_{PbPb} ? Predictions ?

□ Interesting indication for azimuthal anisotropies. Run-2 needs
 □ Experiment → (much) larger statistics
 □ Theory → solid predictions

J/ψ in p-Pb: run-1 summary

p-Pb data: characterization of CNM effects in terms of shadowing plus coherent energy loss (no break-up) looks satisfactory

Uncertainties on shadowing calculations are large, could one use the LHC data to better constrain shadowing ?

□ Effects are strong, R_{pPb}~ 0.6 at low p_T and central to forward rapidity
 → Strong influence of CNM effects in Pb-Pb in the corresponding kinematic region

□ The simple estimate $R_{PbPb}^{CNM} = R_{pPb} \times R_{Pbp}$ (inspired to a shadowing scenario) leads, once this effect is factorized out, to an even steeper p_{T} -dependence of R_{PbPb}

□ Also for p-Pb, run-2 energy predictions (√s~8 TeV), with parameters TUNED on run-1 results, would allow a crucial test of our understanding of the involved mechanisms