

UNIVERSITÀ DEGLI STUDI DI CATANIA INFN-LNS

Correlazioni tra flussi collettivi ed eccentricità iniziali in collisioni ultra centrali

S. Plumari, G.L. Guardo, A. Puglisi,

F. Scardina, M. Ruggieri, V. Greco

Outline

- Transport approach at fixed η/s:
 - fix locally $\eta/s \Leftrightarrow \sigma(\theta)$, M, T -> Chapman-Enkog approach.
- Initial state fluctuations:
 - η/s and generation of v_n(pT): from RHIC to LHC
 - Correlations between ε and ν
- Conclusions

Parton Cascade model

$$p^{\mu}\partial_{\mu}f(X,p) = C = C_{22} + C_{23} + \dots$$
 Collisions \longrightarrow
 $n \neq 0$

$$C_{22} = \frac{1}{2E_1} \int \frac{d^3p_2}{(2\pi)^3 2E_2} \frac{1}{\nu} \int \frac{d^3p'_1}{(2\pi)^3 2E'_1} \frac{d^3p'_2}{(2\pi)^3 2E'_1} f'_1 f'_2 |\mathbf{M}_{1'2' \rightarrow 12}|^2 (2\pi)^4 \delta^{(4)} (p'_1 + p'_2 - p_1 - p_2)$$

For the numerical implementation of the collision integral we use the stochastic algorithm. (Z. Xu and C. Greiner, PRC 71 064901 (2005))

Simulating a constant η/s

For the general case of anisotropic cross section and massless particles:

m_D [GeV]

m_D [GeV]

for small pT equivalent viscous hydro

Applying kinetic theory to A+A Collisions....

Impact of η/s(T) on the build-up of v_n(p_T) vs. beam energy.
To include the Initial state fluctuations.

Initial State Fluctuations

Initial State Fluctuations: time evolution of $\langle v_n \rangle$ and ε_n

- The time evolution for ε_n is faster for large n. At very early times ε_n (t)= ε_n (t₀)- α_n tⁿ⁻².
- <v_n> shows an opposite behaviour: <v_n> develops later for large n. At very early times <v_n>∝tⁿ⁺¹.
- Different v_n can probes different value of η/s(T) during the expansion of the fireball.

Initial State Fluctuations: $v_n(p_T)$ and η/s

- $v_n(p_T)$ at RHIC is more sensitive to the value of the η /s at low temperature. $v_4(p_T)$ and $v_3(p_T)$ are more sensitive to the value of η /s than the $v_2(p_T)$.
- At LHC energies v_n(p_τ) is more sensitive to the value of η/s in the QGP phase (compare solid and dot-dashed lines).

Initial State Fluctuations: $v_n(p_T)$ and η/s

- $v_n(p_T)$ at RHIC is more sensitive to the value of the η /s at low temperature. $v_a(p_T)$ and $v_3(p_T)$ are more sensitive to the value of η /s than the $v_2(p_T)$.
- At LHC energies v_n(p_τ) is more sensitive to the value of η/s in the QGP phase (compare solid and dot-dashed lines).

Initial State Fluctuations: $v_n(p_T)$ for central collisions

- At low $p_{\tau} v_n(p_{\tau}) \propto p_{\tau}^n \cdot v_2$ for higher p_{τ} saturates while v_n for n>3 increase linearly with p_{τ} .
- For central collisions viscous effect are more relevant. For n>2 the v_n(p_T) are more sensitive to the η/s ratio in the QGP phase.

Initial State Fluctuations: $v_n(p_T)$ for central collisions

Initial State Fluctuations: v_n vs ε_n

$$C(n,m) = \left\langle \frac{(v_n - \langle v_n \rangle)(\epsilon_m - \langle \epsilon_m \rangle)}{\sigma_{v_n} \sigma_{\epsilon_m}} \right\rangle$$

B.H. Alver, C. Gombeaud, M. Luzum and J.-Y. Ollitrault, Phys.Rev. C82 (2010) 034913.

H. Petersen, G.-Y. Qin, S.A. Bass and B. Muller, Phys.Rev. C82 (2010) 041901.

Z. Qiu and U. W. Heinz, Phys.Rev. C84 (2011) 024911.

H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen, Phys.Rev. C87 (2013) 5, 054901.

- At LHC v_n are more correlated correlated to ε_n than at RHIC.
- v₂ and v₃ linearly correlated to the corresponding eccentricities ε₂ and ε₃ rispectively.
- C(4,4) < C(2,2) for all centralities. v_4 and ε_4 weak correlated similar to hydro calculations:

F.G. Gardim, F. Grassi, M. Luzum and J.Y. Ollitrault NPA904 (2013) 503. H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen PRC87(2013) 054901.

• For central collisions v_n are strongly correlated to ε_n : $v_n \propto \varepsilon_n$ for n=2,3,4.

Initial State Fluctuations: ν_n vs ε_n

• At LHC v_n are more correlated to ε_n than at RHIC.

• v_2 and v_3 linearly correlated to the corresponding eccentricities ε_2 and ε_3 rispectively.

• C(4,4) < C(2,2) for all centralities. v_4 and ε_4 weak correlated similar to hydro calculations:

F.G. Gardim, F. Grassi, M. Luzum and J.Y. Ollitrault NPA904 (2013) 503.

H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen PRC87(2013) 054901.

• For central collisions v_n are strongly correlated to ε_n : $v_n \propto \varepsilon_n$ for n=2,3,4.

Correlations v_n and ε_n with the collision energy

- For central collisions v_n are strongly correlated to ε_n : $v_n \propto \varepsilon_n$ for n=2,3,4 and 5.
- The correlation increase with $\sqrt{s_{NN}}$

Correlations: (ϵ_n, ϵ_m) vs (v_n, v_m) in (0-0.2)%

Correlations: (ϵ_n, ϵ_m) vs (v_n, v_m) in (0-0.2)%

Conclusions

Transport at fixed \eta/s:

- Enhancement of η/s(T) in the cross-over region affect differently the expanding QGP from RHIC to LHC. LHC nearly all the v_n from the QGP phase.
- At LHC there is a stronger correlation between v_n and ϵ_n than at RHIC for all n.
- Ultra central collisions:
 - v_n∝ ε_n for n=2,3,4 strong correlation C(n,n)≈1
 - v_n(p_T) much more sensitive to η/s(T)
 - degree of correlation increase with the collision energy
 - correlations in (v_n, v_m) reflect the initial correlations in (ϵ_n, ϵ_m)

Initial State Fluctuations: $v_n(p_T)$ for central collisions

- At low $p_{\tau} v_n(p_{\tau}) \propto p_{\tau}^n \cdot v_2$ for higher p_{τ} saturates while v_n for n>3 increase linearly with p_{τ} .
- For central collisions viscous effect are more relevant. For n>2 the v_n(p_T) are more sensitive to the η/s ratio in the QGP phase.

Initial State Fluctuations: $v_n(p_T)$ and η/s

- The initial state fluctuations reduce the $v_2(p_T)$.
- v₄(p_T) increase by the initial state fluctuations and it becomes more sensitive to the viscosity of the QGP. Larger ε₄ gives larger v₄.

From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)

$$f(x,p) = f^{(0)}(x,p) + \delta f(x,p)$$
$$T^{\mu\nu} = T^{(0)\mu\nu} + \delta T^{\mu\nu} \leftarrow f^{(0)} + \delta$$

A common choice for δf – the Grad ansatz $\delta f \propto \Gamma_s f^{(0)} p^{\alpha} p^{\beta} \langle \nabla_{\alpha} u_{\beta} \rangle \propto p_T^2$

BUT it doesn't care about the microscopic dynamics

In general in the limit $\sigma \rightarrow \infty$, f(σ) can be expanded in power of 1/ σ .

$$f(\sigma)_{\sigma \stackrel{\approx}{\rightarrow} \infty} f^{(0)} + \frac{1}{\sigma} \delta f + O\left(\frac{1}{\sigma^2}\right) \xrightarrow{\sim} v_n(p_T)_{\sigma \stackrel{\approx}{\rightarrow} \infty} v_n^{(0)}(p_T) + \frac{1}{\sigma} \delta v_n + O\left(\frac{1}{\sigma^2}\right)$$

PURPOSE: evaluate the ideal hydrodynamics limit $f^{(0)}$, $v_n^{(0)}$ and the viscous corrections δf and δv_n solving the Relativistic Boltzmann eq for large values of the cross section σ

From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)

For $\sigma \rightarrow \infty$ we find the ideal Hydro limit:

- f⁽⁰⁾ is an exponential decreasing function.
- f⁽⁰⁾ doesn't depends on microscopical details (i.e. mD).
- Universal behavior of v_n⁽⁰⁾(p_T)
- $v_n^{(0)}(p_T)/\epsilon_n$ is approximatively the same for all n and p_T .

From Transport to Hydro: extraction of viscous corrections to f(x,p) and $v_n(p_T)$. (work in collaboration with J.Y. Ollitrault)

In δf and δv_n it is encoded the information about the microscopical details

- $\delta f(p_T)/f^{(0)} \propto p_T^{\alpha}$ with $\alpha = 1. 2.$ and $\alpha(m_D)$. For isotropic σ similar to R.S. Bhalerao et al. PRC 89, 054903 (2014)
- Larger is n larger is the viscous correction to v_n(p_T)
- Scaling: for $p_T > 1.5 \text{ GeV} \rightarrow -\delta v_n(p_T)/v_n^{(0)} \propto n$