EFFECTS OF MAGNETIC FIELDS ON HEAVY FLAVOURS

Andrea Rucci Dipartimento di Fisica dell'Università di Pisa, Pisa

Incontro sulla fisica con ioni pesanti ad LHC 26-27 May 2015, Bologna Intro, physical conditions

Magnetic field are expected to be created in non-central heavy-ion collsions:

 $\rightarrow |e|B \sim 0.2 - 0.3 \text{ GeV}^2 \text{ in Pb+Pb}$ at LHC (Skokov,2009)

 \rightarrow timescales for B decay are still debated, depending on the thermal medium properties (most pessimistic case: 0.1 - 0.5 fm) Heavy flavoured mesons → Low-momentum: produced during initial stage, strong interaction with the thermal-medium → High-momentum: produced during initial stage, only slight interaction with the thermal-medium

HIGH-MOMENTUM QUARKONIUM MAY BE USED TO PROBE THE INITIAL MAGNETIC FIELD

 $\begin{array}{l} \mbox{collision} (t_0=0) \longrightarrow \begin{cases} \mbox{quarkonium formation} (t_f \sim 0.5 \mbox{fm/c}) \\ \mbox{magnetic field} (\mbox{worst case} t_B \sim 0.1 - 0.5 \mbox{fm/c}) \end{cases}$

Intro, the $q\bar{q}$ interaction

The interaction of a heavy quark-antiquark pair in the confining phase is well described by the so-called **Cornell form** of the **static potential**

$$V_C(r) = -\frac{\alpha}{r} + \sigma r + \mathcal{O}(m^{-2})$$

with $\sigma \simeq (420 \text{ MeV})^2$ and $\alpha \sim 0.2 - 0.3$

The confining behaviour is due to the linear term given by the string tension σ .

The LQCD framework is suitable for the study of the static potential

WHAT ABOUT THE POTENTIAL IF WE TURN ON A MAGNETIC FIELD?

Static potential in the presence of magnetic field (Bonati et al., 2014)

Some infos:

1. Constant and uniform external magnetic field.

2. Results at T=0 and potential evaluated only on the coordinate axes

Recent lattice results (Bonati et al., 2014) show that an external **magnetic field affects** the static potential.

Possible parametrization for $V_C(r)$

$$V_C(r,\theta,B) = -\frac{\alpha(\theta,B)}{r} + \sigma(\theta,B)r$$

with

$$\alpha(\theta, B) = \frac{\alpha_0}{\epsilon_1^{\alpha} \sqrt{1 + \epsilon_2^{\alpha} \sin^2 \theta}}$$
$$\sigma(\theta, B) = \sigma_0 \epsilon_1^{\sigma} \sqrt{1 + \epsilon_2^{\sigma} \sin^2 \theta}$$

CAN WE EXPECT PHENOMENOLOGICAL AND MEASURABLE EFFECTS?

Dynamics of heavy quarks bound states may be described in a non-relativistic framework \rightarrow using a (static) potential model \rightarrow inserting a magnetic field in the system (also coupled to spins) \rightarrow using parameters to reproduce lattice and experimental data

It is possible to study the mass spectrum and other relevant observables of the lower part of the **charmonium** and **bottomonium** spectra

Masses of the 1S states with magnetic field (Bonati et al., in preparation)

Effects on the Heavy-Flavours, mass spectrum II

The presence of a magnetic field affects the meson spectrum in several ways

- → modification of the masses (up to ~ 60 - 70 MeV for $c\bar{c}$ and 5 - 10 MeV for $b\bar{b}$ at $|e|B \sim 0.3$ GeV²)
- \rightarrow particle spin components splitting
- \rightarrow mixing between meson states

Expected phenomenological effects \rightarrow mass differences may allow to open new decay channels \rightarrow decay rates contamination due to mixings

OPEN QUESTION: ARE THESE EFFECTS EXPERIMENTALLY OBSERVABLE?

Mixing between 1S triplet and singlet for $c\bar{c}$ and $b\bar{b}$ (Bonati et al., in preparation)

Effects on the Heavy-Flavours, mass spectrum III

Possible experimental signatures of decay channels contamination due to mixing in the 1S states (Alford, 2014) \rightarrow dilepton decays: reduction of Υ decays and increase of η_b ones ($\Delta M \simeq 63$ MeV at B=0) \rightarrow the same for J/ψ with η_c ($\Delta M \simeq 115$ MeV at B=0)

It is possible to extend the study to the first excited states 1*P*: the *h* and χ s mesons of $c\bar{c}$ and $b\bar{b}$ \rightarrow New mixings and decay contaminations? \rightarrow Crossing between energy levels?

Mass spectrum of 1P states of $c\bar{c}$ and $b\bar{b}$ (Bonati et al., in preparation)

Effects on the Heavy-Flavours, production I

Attempt to solve dynamical equations for the meson production fraction (Guo et al., 2015)

 \rightarrow still in a non-relativistic framework

 \rightarrow study of the time-evolution of $c\bar{c}$ wave-packages

 \rightarrow using parameters able to reproduce

B = 0 data (p + p)

Some infos:

 \rightarrow physical conditions of Pb + Pb collisions $(b \simeq 8 \text{ fm})$

 \rightarrow charmonium formation time $t_f \simeq 0.5 \text{ fm/c}$

 \rightarrow (assumed) *B* orthogonal to the beam

direction and with life time $t_B \simeq 0.1 - 0.2 \text{ fm/c}$

 \rightarrow focus on J/Ψ , χ_c and Ψ'

Effects on the Heavy-Flavours, production II

(Guo et al., 2015).

Looking forward for measurable effects \rightarrow prompt J/Ψ enhancement and χ_c suppression

 \rightarrow greater for high p_T 's (saturation due to a competition between Lorentz force and time of interaction)

Another experimental signature could be seen in the event anisotropy $v_2(\eta, p_T)$

$$v_{2}(\eta, p_{T}) = \frac{\int_{0}^{2\pi} d\varphi N_{J/\Psi}(\eta, p_{T}, \varphi) \cos(2\phi)}{\int_{0}^{2\pi} d\varphi N_{J/\Psi}(\eta, p_{T}, \varphi)}$$

	B=0	<i>B</i> ≠ 0
hydro	"as usual"	???
no hydro	$v_2 = 0$ (trivial)	Guo et al., 2015

RELIABILITY OF THE RESULTS: DEPENDENCE ON THE *B* DETAILS?

THANK YOU

Backup, anisotropy in the static potential

The magnetic-induced anisotropy of the static potential (Bonati et al., 2014) is observed at the level of the potential parameters α and σ

Static potential parameters (Bonati et al., 2014).

Behaviour in a magnetic field *B* and along the coordinate axes *d*

$$\frac{O_d(|e|B)}{O(|e|B=0)} = 1 + A^{O_d}(|e|B)^{C^{O_d}} \quad \text{with } O = \sigma, \alpha \text{ and } d = x, y, z$$

Backup, non-relativistic $q\bar{q}$ bound state model

A quark-antiquark bound state is described by the hamiltonian

$$\hat{H} = \sum_{i=1}^{2} \frac{1}{2m} \left[\hat{\vec{p}}_{i} - q_{i} \vec{A}(\vec{x}_{i}) \right]^{2} + V(\vec{x}_{1}, \vec{x}_{2}) - (\vec{\mu}_{1} + \vec{\mu}_{2}) \cdot \vec{B}$$

where $-(\vec{\mu}_1 + \vec{\mu}_2) \cdot \vec{B} = -\frac{gq}{4m} (\vec{\sigma}_1 - \vec{\sigma}_2) \cdot \vec{B}$ acts mixing triplet and singlet states.

Magnetic field *B* breaks the rotational symmetry and hence neither the kinetic nor the canonical momentum are conserved. Using COM coordinates, symmetric gauge and introducing the pseudomomentum operator \hat{K} , the hamiltonian takes the form

$$\hat{H} = \frac{\vec{K}^2}{2M} - \frac{q}{M}(\vec{K} \times \vec{B}) \cdot \vec{r} - \frac{\nabla^2}{2\mu} + \frac{q^2}{2\mu}(\vec{B} \times \vec{r})^2 + V(\vec{r}) - (\vec{\mu}_1 + \vec{\mu}_2) \cdot \vec{B}$$

where

$$M = 2m_q \qquad \mu = \frac{m_q}{2} \qquad \vec{r} = \vec{x}_1 - \vec{x}_2 \qquad \hat{K} = \sum_{i=1}^2 \left(\hat{\vec{p}}_i + \frac{1}{2} q_i \vec{B} \times \vec{x}_i \right)$$

Backup, static potential parametrization

Supported by lattice results (Kawanai et al., 2012) and previous studies (Alford et al., 2014), the static potential parametrization we adopted is

$$V_C(r,\theta,B) = -\frac{\alpha(\theta,B)}{r} + \sigma(\theta,B)r + (\vec{\sigma_1} \cdot \vec{\sigma_2})\gamma e^{-\beta r}$$

where the spin-spin term is responsable for the singlet and triplet mass splitting (for example, J/Ψ and η_c)

Potential parameters $\sigma(\theta, B)$ and $\alpha(\theta, B)$ depends both on the magnitude of the magnetic field and its direction. Their form is based on the ansatz

$$\frac{\alpha}{r} \to \frac{\alpha}{\sqrt{\epsilon_{xy}^{\alpha}(x^2 + y^2) + \epsilon_z^{\alpha} z^2}}$$
$$\sigma r \to \sigma \sqrt{\epsilon_{xy}^{\sigma}(x^2 + y^2) + \epsilon_z^{\sigma} z^2}$$

where the ϵ_s are related to the coefficients *A*, *C* in (Bonati et al., 2014).

Anisotropic static potential (Bonati et al., in preparation).

Backup, solving the non-relativistic $q\bar{q}$ model

Bound-state model solved numerically \rightarrow physical system enclosed in a Euclidean discretized volume \rightarrow eigenstates are obtained by studying the evolution of test wavefunctions $\psi_T(\vec{r}, \tau)$ through

$$\left(\frac{\partial}{\partial\tau}+\hat{H}\right)\psi_{t}(\vec{r},\tau)=0$$

and extracting the large time behaviour from

$$\psi_t(\vec{r},\tau) = \sum_a c_a \Phi_a e^{-E_a \tau}$$

 \rightarrow spin part is taken into account by costructing the hamiltonian matrix \rightarrow eigenstate and observables are finally obtained by diagonalizing the hamiltonian The procedure is performed for various spatial spacings \rightarrow physical results obtained through a continuum limit

Some details

- \rightarrow physical volume V ~(6 fm)³
- \rightarrow spacings from 0.250 GeV $^{-1}$ to 0.625 GeV $^{-1}$
- \rightarrow simulations performed both in the presence and absence of the magnetic anisotropy in the static potential

Backup, some results from (Bonati et al., in preparation) Because of B in the $q\bar{q}$ hamiltonian, the COM motion is not decoupled \rightarrow the total momentum P_{kin} contributes to the masses

Charmonium and Bottomonium 1S states (Bonati et al., in preparation).

Backup, some details from (Guo, 2015)

Some details

 \rightarrow Hamiltonian of a $q\bar{q}$ system interacting through the potential

 $V_C(r,\theta,B) = -\frac{\alpha(\theta,B)}{r} + \sigma(\theta,B)r + (\vec{\sigma_1} \cdot \vec{\sigma_2})\gamma e^{-\beta r}$

 \rightarrow Magnetic field with distribution (t < t_b = 0.2 fm/c)

$$\vec{B} = \begin{cases} B\hat{y}, & \frac{x^2}{(R_A - b/2)^2} + \frac{y^2}{(b/2)^2} + \frac{\gamma^2 z^2}{(b/2)^2} < 1\\ 0, & \text{others} \end{cases}$$

→ for Pb + Pb collisions with centrality 40% at energy $\sqrt{s_{NN}} = 2.76$ TeV: $R_A = 6.6$ fm, b = 8 fm and $\gamma = 1400$ The relative motion of a $c\bar{c}$ pair is initially described by an Gaussian wave package. Then the package is evolved

$$\begin{split} \psi_r(0) \; e^{-\frac{(\vec{r}-\vec{r_0})^2}{\sigma_0^2}} \to \psi_r(t) \; e^{-\frac{(\vec{r}-\vec{r_0})^2}{\sigma_t^2}} \\ \text{with } \sigma_t^2 &= \sigma_0^2 + v^2 t^2. \end{split}$$

Parameters are fixed by p + pdata at charmonium formation time $t_f = 0.5$ fm/c $\rightarrow r_0 = 0.68$ fm $\rightarrow \sigma_0 = 0.02$ fm \rightarrow expansion velocity v = 0.72c $\rightarrow \sigma_{t_f} = 0.38$ fm