

System Size Evolution of Flow and Yields Michele Floris (CERN) Incontro sulla Fisica con Ioni Pesanti a LHC, May 2015

Executive Summary

- Heavy ion "standard model": works at LHC, but late and early stage?
- Similarities between pp/p-Pb/Pb-Pb
- Traditional flow observables also seen in p-Pb (& pp?)
 - Spectra "flattening" w/ mass ordering ⇔ radial flow

- Correlations & ridges ⇔ anisotropic flow
- **Particle ratios** change little from small to large systems (caveat: strangeness), small systems towards gran canonical equilibrium?
 - Tension of Pb-Pb ratios with SHM
- ... but the devil is in the details

Pb-Pb results: state of the art

Radial flow: Comparison to Hydro Models

Hydro models give a satisfactory description
 Pure hydro: not enough flow
 Hadronic interactions: too much flattening?

ÇÉRN

B/M ratios: the rise and the fall

Radial Flow explains rise **Recombination** describes some features of the data Realistic models: "bulk" **flow** and hard **fragmentation**

B/M ratios: the rise and the fall

Radial Flow explains rise **Recombination** describes some features of the data Realistic models: "bulk" **flow** and hard **fragmentation**

- Splitting of R_{CP} at RHIC of **baryons and mesons** was used as argument in favor of reco
 - but R_{CP} is influenced by reference

CERN

- Splitting of R_{CP} at RHIC of **baryons and mesons** was used as argument in favor of reco
 - but R_{CP} is influenced by reference
- The φ meson has the same shape as p: mass ordering (radial flow)?
 - (in a more realistic reco model p ~ φ, but fragmentation?)

- Do we need recombination?
- Is there a unique signature of recombination?

Elliptic flow at the LHC

Mass dependence of v₂ ~ in line with hydro Not enough flow with pure hydro
Too much flow with hadronic phase for p wrt hyperons inverted mass-ordering (Λ-Ξ-p, instead of p-Λ-Ξ) Unknown cross sections in UrQMD?

Elliptic flow at the LHC

Mass dependence of v₂ ~ in line with hydro Not enough flow with pure hydro
Too much flow with hadronic phase for p wrt hyperons inverted mass-ordering (Λ-Ξ-p, instead of p-Λ-Ξ) Unknown cross sections in UrQMD?

Sub-nucleonic fluctuations

Pre-equilibrium dynamics and sub-nucleonic fluctuations crucial to reproduce E-by-E results

ALI-PREL-74463

ALI-PREL-74463

ALI-PREL-74463

ALI-PREL-74463

ALI-PREL-74463

ALI-PREL-74463

M. Floris

Origin of the "Proton anomaly"

CERN

- Too few protons relative to pions: hadronic phase?
 - Supported by centrality dependence (uncertainties?)
 - Problem with nuclei?
 - Unknown cross sections?
 - How can we validate (or falsify) this hypothesis?
- Alternative scenarios
 - Non-equilibrium models → Additional measurements, nuclei?
 - Flavor hierarchy at freeze out → Fluctuations and lattice
 - Missing hadronic states → Lattice and Quark Model
- How can we get to "precision" physics?

Origin of the "Proton anomaly"

CERNY

- Too few protons relative to pions: hadronic phase?
 - Supported by centrality dependence (uncertainties?)
 - Problem with nuclei?
 - Unknown cross sections?
 - How can we validate (or falsify) this hypothesis?
- Alternative scenarios

- Non-equilibrium models → Additional measurements, nuclei?
- Flavor hierarchy at freeze out → Fluctuations and lattice
- Missing hadronic states → Lattice and Quark Model
- How can we get to "precision" physics?

pp and p-Pb

Hints for radial flow in p-Pb

Hardening of spectra (reproduced by Hydro) and mass ordering (B/M enhancement)

Flow like effects in QCD inspired models Recent developments: MPIs + improved color reconnection and color ropes

Anisotropic flow in p-Pb

Mass ordering and magnitude similar to Pb-Pb Hydro models explain this naturally CGC models provide an alternative?

Anisotropic flow in p-Pb

Mass ordering and magnitude similar to Pb-Pb Hydro models explain this naturally CGC models provide an alternative?

Elliptic flow in pA is a collective effect

Higher order Cumulants consistent: it is a collective effect

Strangeness production in p-Pb collisions

Strangeness enhancement in p-Pb collisions!

- E reaches the Pb-Pb (GC?) value
- Ω not yet

Recent developments in QCD inspired models provide also some strangeness enhancement

ALI-PREL-74510

Fit quality not good Note:

- Ω and Ξ pull in opposite directions
- γ_s compatible with
 1 if free
- Low mult: γ_S < 1 (not shown)

Fit quality not good Note:

- Ω and Ξ pull in opposite directions
- γ_s compatible with
 1 if free
- Low mult: γ_S < 1 (not shown)

Fit quality not good Note:

- Ω and Ξ pull in opposite directions
- γ_s compatible with
 1 if free
- Low mult: γ_S < 1 (not shown)

Pb-Pb wrap up

Hydro + chemical equilibrium describes data at first order, but indications of additional effects

Initial conditions & late stages to be further constrained/understood

p-Pb (& pp?) wrap up

Hydro does a good job, but QCD-inspired models and CGC provide plausible alternatives

What is the mechanism at the origin of the results seen in pp, pA?

- How does the system evolve from string fragmentation to hydro?
- Is there life after "freeze out" (dynamics in the hadronic phase)?
- Do we need recombination? How it evolves from pp to PbPb? Relation with string melting/color ropes?

Backup

all the states

Observable Consequences: Flow

Isotropic (radial) flow

hep-ph/0407360

 π^+ (all)

π⁺

р

d

к⁰s

T = 150 MeV

3

m_T - m₀ (GeV)

4

 $\beta = 0.9$

2

1

0

Observable Consequences: Flow

0.5

0

1.5

m_T - m₀ (GeV)

1

CERN

Observable Consequences: Flow

CERN

Observable Consequences: Flow

What about the p/d?

Does the p/d constrain annihilation? The idea:

 $d/p \propto S/p \rightarrow$ once the proton number and entropy is fixed so is the d/p Of course we can have annihilation before 'chemical freeze out'!

Scenario 1

- Both are fixed at a specific T_{CH} , then also d/p is fixed at that T_{CH}
- Consistency! Therefore: No annihilation
- But that of course has to be the case since we have defined T_{CH} that way: A tautology

Scenario 2

- There is no single T_{CH}
- Then d/p should be fixed whenever the proton number and entropy are fixed.
- d/p is consistent with the 'effective' T_{CH} of protons.

identified hadron p_T -spectra Data: ALICE. VISH2+1 pre-diction: PRC 84 (2011) 044903)

A purely hydrodynamic description does not produce quite enough radial flow in central collisions (although it qualitatively reproduces the much larger mass splitting of $v_2(p_T)$ due to stronger radial flow at LHC compared to RHIC)

PRL 105, 252302 (2010)

Average in line with expectations

Transverse momentum distributions

- Clear evolution of spectra with centrality.
- Central collisions: flat at low p_T , nearly exponential at high p_T
 - Indication for collective radial expansion

ÇÉRN

Strangeness enhancement

Strangeness enhancement

K* suppression

Strangeness enhancement

Deuteron enhancement

K* suppression

Strangeness enhancement

Deuteron enhancement

K* suppression

Baryon suppression?

Strangeness enhancement

Deuteron enhancement

K* suppression

Baryon suppression?

pp ratios, from RHIC to LHC

* • •

STAR:

 $\Lambda + \overline{\Lambda}$

× 3

П

GC ensemble applicable in pp at the LHC? See, e.g. Becattini SQM13 Becattini et al, JPG 025002 (2011)

 $\times 1$

 $\times 2$

0.2

0

L⊟ <mark>€€</mark>€

× 1

 $\times 0.5 \times 80 \times 1.10^3 \times 50 \times 100 \times 4.10^5$

Lift of canonical suppression in pp collisions at the LHC?

pp ratios, from RHIC to LHC

GC ensemble applicable in pp at the LHC?

See, e.g. Becattini SQM13 Becattini et al, JPG 025002 (2011)

Recombination and anisotropic flow

ALI-PUB-85239

Recombination and v_2 \Rightarrow B/M ordering + NCQ scaling

φ central: mass ordering at all p_T (close to p) **φ semi-central**: mass ord. low p_T , follows π high p_T

Recombination and anisotropic flow

ALICE, arXiv:1405.4632

ALI-PUB-82622

Recombination and $v_2 \Rightarrow$ B/M ordering + NCQ scaling

φ central: mass ordering at all p_T (close to p) **φ semi-central**: mass ord. low p_T , follows π high p_T Violation of constituent quark scaling ~ ±20%

GC fits at the LHC (pp collisions)

Poor fit with Grand Canonical ensemble in pp collisions

GC fits at the LHC (pp collisions)

Poor fit with Grand Canonical ensemble in pp collisions

GC fits at the LHC (pp collisions)

Poor fit with Grand Canonical ensemble in pp collisions

MC-Glauber

Net Baryon Density

0

Nuclei

Observable consequences:

Radial flow (p⊤ distributions) Elliptic flow (azimuthal asymmetry) Chemical equilibrium (particle abundances) Hadronization mechanism / recombination

