## Ab Initio Calculations of Light Hypernuclei

# Daniel Gazda ECT\* Trento. NPI Řež

Strangeness in Nuclei and in Neutron Stars, Pisa, May 20-21 2015

#### **Collaborators:**

P. Navrátil (TRIUMF Vancouver) R. Roth, R. Wirth (TU Darmstadt) J. Mareš (NPI Řež)

| Motivation | Methodology | Results |  |
|------------|-------------|---------|--|
| ●0000      | 000000      | 0000000 |  |
|            |             |         |  |

### Strangeness in nuclear many-body systems

Interdisciplinary subject connecting particle physics, nuclear physics and astrophysics.

Related topical questions include:

- interaction of (anti)kaons with the nuclear medium
  - possible existence of deeply-bound  $K^-$ -nuclear states?
  - antikaons in dense matter?
- interaction of hyperons with the nuclear medium
  - S=-1  $\Lambda$  hypernuclei,  $\Sigma$ -hypernuclei?
  - S=-2  $\Lambda\Lambda$ -hypernuclei,  $\Xi$  hypernuclei
  - hyperons in dense nuclear matter and neutron stars?

| Motivation | Methodology | Summary |
|------------|-------------|---------|
| 00000      |             |         |
|            |             |         |

### Role of strangeness in dense nuclear matter?

- admixtures of  $\Lambda$  and  $\Sigma$  hyperons in dense baryonic matter in neutron stars?
- at baryon densities  $\rho\gtrsim (2-3)\rho_0$ ,
  - $\Lambda$  hyperons can take role of neutrons if energetically favourable



(Hell, Weise, arXiv:1402:4098 [nucl-th])

- $\blacksquare$  presence of hyperons results in considerable softening of EOS incompatible with recent astrophysical constraints by reducing the maximum neutron star mass much below  $2M_{\odot}$
- additional repulsive interactions are needed

| Motivation | Methodology | Results |  |
|------------|-------------|---------|--|
| 00●00      | 000000      | 0000000 |  |
|            |             |         |  |

### Role of strangeness in dense nuclear matter?

#### repulsive NNY forces?



Figure: Hypernuclear binding energies (left) and neutron star mass-radius relations (right). (Taken from D. Lonardoni *et al.*)



## Role of strangeness in dense nuclear matter?

#### NLO chiral NY interactions

 $\rightarrow$  strong **repulsion** at higher energies



Figure:  ${}^1S_0 \Lambda N$  phase shifts (left) and  $\Lambda$  single-particle potential in matter (right). (Haidenbauer, Meißner, NPA 936, 29 (2015))

| Motivation       | Methodology | Results |  |
|------------------|-------------|---------|--|
| 0000●            | 000000      | 0000000 |  |
| Study of hypernu | clei        |         |  |

- improve understanding of YN interaction
  - provide important constraints on YN interaction
  - precise experimental data on hypernuclear spectroscopy
  - supplement (very sparse) hyperon-nucleon scattering data base
- new precision experiments at J-PARC, J-Lab, FAIR, ....
- modern developments of YN interaction
  - based on SU(3) chiral EFT
  - require advanced many-body computational methods to confront with hypernuclear structure measurements

| Motivation | Methodology | Results |  |
|------------|-------------|---------|--|
| 00000      | ●00000      | 0000000 |  |
| A          |             |         |  |

## Ab initio calculations of light hypernuclei

- given microscopic NN (+NNN) and YN interactions, calculate the energy spectra of A-body hypernuclear system with controllable approximations
- calculations so far limited to A=3,4 hypernuclear systems (Faddeev, Faddeev–Yakubovsky equations)
- recent developments in computational many-body methods

### Our aim:

- develop a method applicable to heavier A $\geq$ 5 hypernuclei
- study available boson-exchange and chiral YN interaction models

| Motivation | Methodology | Summary |
|------------|-------------|---------|
|            | 00000       |         |
|            |             |         |

## No-core shell model for hypernuclei

#### Ab initio

- all particles are active (no rigid core)
- exact Pauli principle
- realistic 2- and 3-body interactions (accurate description of NN and YN data)
- controllable approximations
- Hamiltonian is diagonalized in a *finite* A-particle harmonic oscillator basis
- NCSM results converge to exact results

| Motivation | Methodology | Summary |
|------------|-------------|---------|
|            | 00000       |         |
|            |             |         |

### No-core shell model for hypernuclei

• two independent NCSM formulations developed:

#### Slater-determinant HO basis

- + starting with atisymmetrized basis
- + second quantization methods
- c.m. degree of freedom present  $\Rightarrow$  huge basis

#### relative Jacobi-coordinate HO basis

- + c.m. d.o.f. removed
  - $\Rightarrow$  smaller basis
  - $\Rightarrow$  larger model space possible
- the basis has to be antisymmetrized

| Motivation       | Methodology                | Results    |  |
|------------------|----------------------------|------------|--|
| 00000            | 000●00                     | 0000000    |  |
| Input $V_{NN}$ , | $V_{NNN}$ , and $V_{NY}$ . | potentials |  |

#### NN+NNN interaction

- chiral N3LO NN potential (Entem, Machleidt, PRC 68 (2003) 041001)
- chiral N2LO NNN potential (Navrátil, FBS 41 (2007) 14)

#### YN interaction

- phenomenological meson-exchange Jülich04 potential (Haidenbauer, Meißner, PRC 72 (2006) 044005)
- chiral LO potential

NLO version recently developed (Haidenbauer et al., NPA 915 (2013) 24)

 $\Lambda N - \Sigma N$  mixing explicitly taken into account:

$$V_{NY} = \begin{pmatrix} V_{\Lambda N - \Lambda N} & V_{\Lambda N - \Sigma N} \\ V_{\Sigma N - \Lambda N} & V_{\Sigma N - \Sigma N} \end{pmatrix} + \begin{pmatrix} 0 & 0 \\ 0 & m_{\Sigma} - m_{\Lambda} \end{pmatrix}$$

| Motivation | Methodology | Summary |
|------------|-------------|---------|
|            | 000000      |         |
|            |             |         |

### Similarity renormalization group effective interaction

- "bare" interactions require large model spaces for reasonable convergence
- $\blacksquare$   $\rightarrow$  series of unitary transformations of the original Hamiltonian H:

$$H_{\lambda} = U_{\lambda} H U_{\lambda}^{\dagger}, \ H = H_{\infty}$$

implemented as a flow equation in  $\lambda$ :

$$\frac{\mathrm{d}H_{\lambda}}{\mathrm{d}\lambda} = -4/\lambda^5[[T,H_{\lambda}],H_{\lambda}]$$

• low- and high-momentum parts of  $H_{\lambda}$  being decoupled:



D. Gazda (ECT\* Trento, NPI Řež)

| Motivation<br>00000 | Methodology<br>00000●        | Results<br>0000000 | Summary<br>O |
|---------------------|------------------------------|--------------------|--------------|
| Lee–Suzuki e        | ffective interaction         |                    |              |
|                     | ave at he mant of the Hamilt | tonion on other    |              |

preserves exactly part of the Hamiltonian spectrum  $\sigma(H) = \{E_1, E_2, E_3, \dots, E_P, \dots, E_\infty\}$  $\sigma(H_{\text{eff}}) = \{E_1, E_2, E_3, \dots, E_P\}$ decoupling condition  $QXHX^{-1}P = 0 \rightarrow H_{\text{eff}} = PXHX^{-1}P$  $H_{\rm eff}^{(n)}$ Р 0  $0 \quad \overline{Q_n X_n H^{(n)}} \overline{X_n^{-1} Q_n}$ Q ■ *n*-body cluster approximation  $(2 \le n \le A)$ :  $H_{\text{eff}}^{(n)}$  *n*-body operator

■ n-body cluster approximation (2 ≤ n ≤ A): H<sup>(n)</sup><sub>eff</sub> n-body operator n = 2: takes into account 2-body correlations from outside of the model space (← repulsive core)

| Motivation      | Methodology                | Results |  |
|-----------------|----------------------------|---------|--|
| 00000           | 000000                     | ●000000 |  |
| s-shell hypernu | Iclei: ${}^{3}_{\Lambda}H$ |         |  |



Figure: Ground state energy of  $^3_\Lambda \text{H}$  as a function of the size of the model space, with bare chiral LO @ 600 MeV interactions.

| Motivation<br>00000 | Methodology<br>000000                     | Results<br>0●00000 |  |
|---------------------|-------------------------------------------|--------------------|--|
| s-shell hypernuclei | : ${}^4_{\Lambda}$ H, ${}^4_{\Lambda}$ He |                    |  |



Figure: Ground state (blue) and excited state (red) energy of  ${}^4_{\Lambda}H$  and  ${}^4_{\Lambda}He$  as a function of the size of the model space, with chiral LO @ 600 MeV interactions.

| Motivation          | Methodology                          | Results    |  |
|---------------------|--------------------------------------|------------|--|
| s-shell hypernuclei | $\cdot \stackrel{4}{}$ H with SRG in | teractions |  |

Λ



Figure: Ground state and excited state energies of  ${}^{4}_{\Lambda}$ H with bare and SRG effective interctions as a function of the size of the model space, with chiral LO @ 600 MeV interactions.

| Motivation | Methodology | Results |  |
|------------|-------------|---------|--|
| 00000      | 000000      | 000●000 |  |
|            |             |         |  |

### s-shell hypernuclei: ${}^{5}_{\Lambda}$ He with Lee–Suzuki eff. interaction



Figure: Ground state energy and  $\Lambda$  binding energy in  $^5_\Lambda He$  with bare and Lee–Suzuki effective interctions as a function of the size of the model space, with chiral LO @ 600 MeV interactions.

| Motivation         | Methodology        | Results |  |
|--------------------|--------------------|---------|--|
| 00000              | 000000             | 0000●00 |  |
| p-shell hypernucle | i: <sup>7</sup> Li |         |  |



Figure: Calculations of  $\frac{1}{\Lambda}$ Li with chiral LO @ 600@MeV (solid lines) and 700 MeV (dashed lines) and Jülich04 YN interactions.

| Motivation         | Methodology            | Results |  |
|--------------------|------------------------|---------|--|
| 00000              | 000000                 | 00000●0 |  |
| p-shell hypernucle | i: ${}^9_{\Lambda}$ Be |         |  |



Figure: Calculations of  $^9_\Lambda Be$  with chiral LO @ 600@MeV (solid lines) and 700 MeV (dashed lines) and Jülich04 YN interactions.

| Motivation         | Methodology                     | Results |  |
|--------------------|---------------------------------|---------|--|
| 00000              | 000000                          | 000000● |  |
| p-shell hypernucle | i: <sup>13</sup> <sub>A</sub> C |         |  |



Figure: Calculations of  $^{13}_{\Lambda}\text{C}$  with chiral LO @ 600@MeV (solid lines) and 700 MeV (dashed lines) and Jülich04 YN interactions.

| Motivation | Methodology | Results | Summary |
|------------|-------------|---------|---------|
| 00000      | 000000      | 0000000 | •       |
|            |             |         |         |

## Summary

#### Calculations of light hypernuclei within NCSM

- reliable *ab initio* calculations of *p*-shell hypernuclei with microscopic interactions are now possible
- systematic study of *p*-shell hypernuclei improves understanding of YN interactions
- LO chiral YN interactions are consistent with measured low-lying energy levels of light hypernuclei
- indication of deficiencies for higher relative partial waves of LO chiral YN interactions

Gazda, Mareš, Navrátil, Roth, Wirth, Few-Body Syst. 55, 857 (2014). Wirth, Gazda, Navrátil, Calci, Langhammer, Phys. Rev. Lett. 113, 192502 (2014).

#### Outlook

- benchmark calculations
- study chiral NLO NY interaction
- lattice NY interactions, S = -2 systems, ...