Hyperonic three-body forces in hadronic matter

Domenico Logoteta

Collaborators: I. Vidaña, I. Bombaci and C. da Providencia

Pisa

20 maggio 2015

- Neutron stars
- The problem of the maximum mass of neutron stars with microscopic approaches
- A possible solution: inclusion of Hyperonic three-body forces

Neutron stars

- Neutron stars have a very strong gravitational field ⇒ their structure is described by General theory of relativity.
- Equations of hydrostatic equilibrium in general relativity of Tolman-Oppenheimer-Volkoff (TOV):

$$\begin{aligned} \frac{dP}{dr} &= -\frac{G\rho m}{r^2} \left(1 + \frac{P}{\rho c^2}\right) \left(1 + \frac{4\pi P r^3}{m c^2}\right) \left(1 - \frac{2Gm}{r c^2}\right)^{-1},\\ \frac{dm(r)}{dr} &= 4\pi r^2 \rho. \end{aligned}$$

- Fixed an EOS (P(ρ)) and a value of the central pressure value P_c TOV equations are solved numerically.
- Output $\implies M_G(R), M_G(\rho_c)$

- $n + n \rightarrow n + \Lambda$
- $n + n \rightarrow p + \Sigma^-$

•
$$p$$
 + $e^- \rightarrow \Lambda$ + ν_{e^-}

•
$$n$$
 + $e^- \rightarrow \Sigma^-$ + ν_{e^-}

 Appearance of Hyperons ⇒ Fermi pressure relieves

•
$$M_{max} < 1.44 \ M_{\odot}$$

Domenico Logoteta

Domenico Logoteta

Hyperonic three-body forces in hadronic matter

The Brueckner-Hartree-Fock approach

• Starting point: the Bethe-Goldstone equation

$$G(\omega)_{B_1B_2,B_3B_4} = V_{B_1B_2,B_3B_4} + \sum_{B_iB_j} V_{B_1B_2,B_iB_j} imes rac{Q_{B_iB_j}}{\omega - E_{B_i} - E_{B_j} + i\eta} G(\omega)_{B_iB_j,B_3B_4}$$

$$U_{B_i}(k) = \sum_{B_j} \sum_{\vec{k'}} n_{B_j}(|\vec{k'}|) \times \langle \vec{k}\vec{k'}| G(E_{B_i}(\vec{k}) + E_{B_j}(\vec{k'}))_{B_i B_j, B_i B_j} |\vec{k}\vec{k'}\rangle_{\mathcal{A}}$$

$$E_{B_i}(k) = M_{B_i} + rac{\hbar^2 k^2}{2M_{B_i}} + \operatorname{Re}[U_{B_i}(k)]$$

$$\epsilon_{BHF} = \frac{1}{V} \sum_{B_i} \sum_{k \le k_{F_i}} \left[M_{B_i} + \frac{\hbar^2 k^2}{2M_{B_i}} + \frac{1}{2} U_{B_i}(k) \right]$$

• We included the Λ , Σ hyperons in our calculations.

Phenomenonenological study of NNY and NYY three-body forces

 Fully two-body BHF calculation AV18+NSC89 + contact terms (CT) corrections from NNN+NNY+NYY forces

$$\epsilon_{CT} = \epsilon_{CT}^{NN} + \epsilon_{CT}^{N\Lambda} + \epsilon_{CT}^{N\Sigma}$$

Nucleonic contribution

$$\epsilon_{CT}^{NN} = a_{NN}\rho_N^2 + b_{NN}\rho_N^{\gamma_{NN}+1} \Rightarrow NNN, NNY$$

Hyperonic contribution

$$\epsilon_{CT}^{N\Lambda} = \mathbf{a}_{N\Lambda}\rho_{\Lambda}\rho_{N} + \mathbf{b}_{N\Lambda}\rho_{\Lambda}\rho_{N} \left(\frac{\rho_{\Lambda}^{\gamma_{N\Lambda}} + \rho_{N}^{\gamma_{N\Lambda}}}{\rho_{\Lambda} + \rho_{N}}\right) \Rightarrow NNY, NYY$$
$$\epsilon_{CT}^{N\Sigma} = \mathbf{a}_{N\Sigma}\rho_{\Sigma}\rho_{N} + \mathbf{b}_{N\Sigma}\rho_{\Sigma}\rho_{N} \left(\frac{\rho_{\Sigma}^{\gamma_{N\Sigma}} + \rho_{N}^{\gamma_{N\Sigma}}}{\rho_{\Sigma} + \rho_{N}}\right) \Rightarrow NNY, NYY$$

• where $\rho_N = \rho_n + \rho_p$, $\rho_{\Sigma} = \rho_{\Sigma^0} + \rho_{\Sigma^+} + \rho_{\Sigma^-}$

3

Choice of parameters

• We fixed a_{NN} , b_{NN} and γ_{NN} in order to fit E/A=-16 MeV at $\rho=0.16$ fm⁻³ and to produce $K_{\infty}=211-285$ MeV

• For semplicity we have chosen: $a_{N\Lambda} = a_{N\Sigma}$, $b_{N\Lambda} = b_{N\Sigma}$ and $\gamma_{N\Lambda} = \gamma_{N\Sigma}$

• We rescaled: $a_{N\Lambda} = x a_{NN}, b_{N\Lambda} = x b_{NN}, x=0, \frac{1}{3}, \frac{2}{3}, 1$

 The last parameter γ_{NΛ} has been fixed using the value of -28 MeV of the binding energy of the Λ particle in nuclear matter:

$$\left(\frac{B}{A}\right)_{\Lambda} = -28 \ MeV = U_{\Lambda}(k=0) + a_{NY}\rho_0 + b_{NY}\rho_0^{\gamma_{NY}}$$

• where
$$U_{\Lambda}(k=0) = -30.8$$
 MeV

γ_{NN}	X	γ_{YN}	M _{max}	
	0	-	1.27 (2.22)	
	1/3	1.49	1.33	
2	2/3	1.69	1.38	
	1	1.77	1.41	
	0	-	1.29 (2.46)	
	1/3	1.84	1.38	
2.5	2/3	2.08	1.44	
	1	2.19	1.48	
	0	-	1.34 (2.72)	
	1/3	2.23	1.45	
3	2/3	2.49	1.50	
	1	2.62	1.54	
3.5	0	-	1.38 (2.97)	
	1/3	2.63	1.51	
	2/3	2.91	1.56	
	1	3.05	1.60	

 $1.27 \ M_{\odot} < M_{max} < 1.6 \ M_{\odot}$

I. Vidana, D. Logoteta, C. Providencia, A. Polls, I. Bombaci EPL 94, 11002 (2011)

Repulsive value for $\left(\frac{B}{A}\right)_{\Sigma^{-}}$

$$\left(\frac{B}{A}\right)_{\Sigma^{-}} = +30 \text{ MeV} = U_{\Sigma^{-}}(k=0) + a_{NY}\rho_{0} + b_{NY}\rho_{0}^{\gamma_{N\Sigma}}$$

γ_{NN}	X	$\gamma_{N\Lambda}$	$\gamma_{N\Sigma}$	M _{max}	$ ho_{c}$
2	1/3	1.49	0.20	1.38	1.00
	2/3	1.69	0.56	1.44	0.99
	1	1.77	0.76	1.48	0.98
2.5	1/3	1.84	0.48	1.46	0.85
	2/3	2.08	0.85	1.52	0.84
	1	2.19	1.05	1.57	0.83
3	1/3	2.23	0.83	1.55	0.77
	2/3	2.49	1.20	1.61	0.76
	1	2.62	1.41	1.66	0.75
3.5	1/3	2.63	1.21	1.63	0.72
	2/3	2.91	1.58	1.70	0.71
	1	3.05	1.79	1.75	0.70

$1.38 \ M_{\odot} < M_{max} < 1.75 \ M_{\odot}$

The Brueckner-Hartree-Fock approach

• Starting point: the Bethe-Goldstone equation

$$G(\omega)_{B_1B_2,B_3B_4} = V_{B_1B_2,B_3B_4} + \sum_{B_iB_j} V_{B_1B_2,B_iB_j} imes rac{Q_{B_iB_j}}{\omega - E_{B_j} - E_{B_j} + i\eta} G(\omega)_{B_iB_j,B_3B_4}$$

$$U_{B_i}(k) = \sum_{B_j} \sum_{\vec{k'}} n_{B_j}(|\vec{k'}|) \times \langle \vec{k}\vec{k'}| G(E_{B_i}(\vec{k}) + E_{B_j}(\vec{k'}))_{B_iB_j,B_iB_j} | \vec{k}\vec{k'} \rangle_{\mathcal{A}}$$

$$E_{B_i}(k) = M_{B_i} + \frac{\hbar^2 k^2}{2M_{B_i}} + \operatorname{Re}[U_{B_i}(k)]$$

$$\epsilon_{BHF} = rac{1}{V}\sum_{B_i}\sum_{k\leq k_{F_i}}\left[M_{B_i}+rac{\hbar^2k^2}{2M_{B_i}}+rac{1}{2}U_{B_i}(k)
ight]$$

- We included the Λ , Σ hyperons in our calculations.
- We used AV18 NN potential + TM' NNN force and Ju04 NY potential + NNY.

The NNY three-body forces

• $B_i = N, \Lambda, \Sigma$. • $(M_1, M_2) = \pi, K, \sigma, \omega$. • $B = N, \bar{N}, \Lambda, \bar{\Lambda}, \Sigma, \bar{\Sigma}, \Delta, \Sigma^*$.

The NNY three-body forces

Effective NNA forces at $\rho_0 = 0.17 \text{ fm}^{-3}$

Single particle potentials of Λ and Σ^{-} at k = 0 in pure nuclear matter

Domenico Logoteta Hyperonic three-body forces in hadronic matter

Single particle potentials of Λ and Σ^{-} at k = 0 in pure nuclear matter

Domenico Logoteta Hyperonic three-body forces in hadronic matter

M(R) and $M(\rho_c)$ curves

M(R) and $M(\rho_c)$ curves

- We have calculated a hyperonic NNY force consistent with Ju04 NY interaction including Λ and Σ hyperons.
- The Ju04 NY potential is too attractive ⇒ need to be replaced by some other interaction.
- The total effect of our NNY potential on the EOS is repulsive but...
- ...is not enough to solve the problem of maximum mass of neutron stars.

Thank you

イロト イヨト イヨト イヨト

크