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Supernovae

Explosive events that are able to release ~10* " erg in electromagnetic
energy and kinetic energy of the ejected materials.
Some events release an amount of ~10” erg.

Core Collapse / \ Thermonuclear ignition

(Types Ib/c, 1I) (Type la)
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Supernovae

Explosive events that are able to release ~10* " erg in electromagnetic
energy and kinetic energy of the ejected materials.
Some events release an amount of ~10” erg.

Core Collapse / \ Thermonuclear ignition

(Typest/C. 1) (Type 1a)
The progenitor star was detected using the C-ignition in a Zegenerate
archive sky frames as in the case of SN1987A. environment

@ The exploding star is a Carbon-Oxygen

® White Dwarf that accretes matter from

E a companion star until it reaches the
Chandrasekhar mass.

¢

Problem: There is no trace about
the companion star in the archive sky

frames.
WHO IS THE COMPANION STAR?




SNe in physics

Astrophysics. SNe induce star formation and contribute on the galaxy metal
enrichment. They are also used as a feedback Factor in the galaxies formation theory.

[Moetal, 2010]

Particle physics. CC SNe are great factory of neutinos and cosmic rays. This is
relevant in the studies about the neutrinos nature and about the discovery of some
new exothic particle.

General relativity. Asimmetric core collapse of Type Il and Ib/c SNe are relevant
gravitational waves sources and some Type la SNe progenitor systems involve close
binaries able to emit gravitational waves radiation that could be revealed by modern
gravitational interferometers. [ Nelemans, 2009]

Cosmology. Type la SNe are used as standard candles for distance measurements
at high redshift because of the reqgularity of the light curves (Phillips relationship).
SNe la are used to set cosmological parameters. [ Phillips, 1993]



Progenitors scenarios

Single Degenate:

- PRO: Evidence of
single degenerate

binary systems.

CON: No evidence
about H-lines in SN
la spectra.

PRO: The lack of H
lines in SN la spectra
are explained.

CON: Theoretical
problems affect the
accretion models.




Progenitors scenarios

In order to know the correct progenitor system it is necessary to find

observational evidence about such accreting mass systems.

Single Degenerate system

Two stars and an accretion disk
spectra. spectra.
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Catalogs of stars spectraare |
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The aim is to verify if the Double Degenerate model of SNe la progenitors
Is able to provide observational counterparts whose existence can be
observationally tested.

@ Construct spectra of the total system composed by the White
Dwarf and the disk in each phase of the accretion sequence.

@ Generate a synthetic population for the accreting mass systems
in the Milky Way according to the SN la rate.

@ Assign the position of each synthetic source to obtain the expected
Flux.

@ Evaluate the total extinction due to the dust in the Milky Way.

@ Spectral deconvolution in the bands used to construct catalogs.

@ Comparisons between the magnitudes of real sources and the
magnitudes obtained for the synthetic sources of the systems of
the DD model in the Milky Way.



Accretion disk

The disk is optically thick therefore the anulus of the disk between R and

R+dR emits as a black body at the local thermodynamical equilibrium
temperature T(R).
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Accretion disk

Continuity + Euler equations: %—?—%a%[\/ﬁa%(zv\/ﬁ)lzo v=CR"3’
, 1a whgre p, g depend on the opacity
Z(R)=20kp q2q—p+2 ( R )—q% [ 1— ( R —ﬁ regime. [Ertan et al., 2009]
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where R, and =, depend by M, and J_,.

Viscous shear energy release Stefan-Boltzmann law
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Accretion disk
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Accretion model
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[Tornambé & Piersanti, 2013]

From A to B: Constant accretion rate until the
. . . . 3 .

critical condition w=w_,=yGM,,/R}, is

reached. [Piersanti et al., 2003]

The accretion process stops.

From B to C: First self-regulated accretion
phase due to the star thermal diffusion.
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Accretion model
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[Tornambé & Piersanti, 2013]

From C to D: Second self-regulated accretion
phase due to the Gravitational Waves emission.

At the point D of the evolution sequence

the accretion process definitively stops.
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From A to B: Constant accretion rate until the
. . . . 3 .

critical condition w=w_,=yGM,,/R}, is

reached. [Piersanti et al., 2003]

The accretion process stops.

From B to C: First self-regulated accretion
phase due to the star thermal diffusion.
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Synthetic sources

The expected number of systems of the model in the Milky Way are ~22000

Synthetic sources population

|

The number of sources in each accretion
phase is given by the probability to find
a source in the range of mass of that phase.
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Synthetic sources

Galactic Disk
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Earth coordinates:
(Xg,Ye,2£)=(15,7.5,0) The position of each source has been assigned
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Galactic center coordinates: Halo and galactic disk stellar populations.
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Dust extinction

Stellar
absorption lines

E=l  Black-body g — A\
c spectrum : : - 2.51Ioge

Dust cloud —3% :

T s - The total extinction coef-
0 G B Ficient A, has been evalu-
ated according to the inter-
stellar extiction modelin
the Milky Way from
Amores & Lépine (2005).
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Expected magnitudes

GALEX (Galaxy Evolution Explorer) » Sky surveys in the Far and Near UV bands
SDSS (Sloan Digital Sky Survey) » Sky surveys in five optical bands
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Comparisons with catalogs

: : Magnitude depth: 19.9/20.8 AB mag
All-Sky Imaging Survey (AIS) S it FUV/NUY bands

. . Magnitude depth: 22.6/22.7 AB mag
Medium-depth Imaging Survey (MIS) > .- tﬁe FUV/NUV bands

| AlIS sources
| MIS sources

[Bianchi et al., 2011]
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FUV-NUV =-0.13



GALEX FUV-GALEX NUV (ABmag)

AlS catalog

AIS hot sources ¢ First result

Accretion sequence « .
The accretion sequence

is displayed in the region
where the real sources

SE Ty , . i are.

The observables obtained
for the systems of the
analyzed DD model are
compatible with those of
the real sources.

The DD model can be
3 p 1 0 1 > 3 2 s supported by observations.
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GALEX FUV-GALEX NUV (ABmag)
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Second result

The synthetic sorces for
the quoted modelin the
Milky Way cover a real

sources dense-region in
the color-color diagram.

\4

It has been defined a region
in the color-color diagram
where the sources of the
model can be founded.
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Conclusions

@ The accretion sequence for the analyzed Double Degenerate model is displayed
in the color-color diagram region populated by real sources. This means that the
Double Degenerate model should be further inquired.

@ It has been possible to define a region in the analyzed color-color diagram where
the systems of the model can be found and it overlaps the real sources region .

@ The disk spectra have been constructed from the accretion disk theory and they
can be use also to study the Single Degenerate model and to define new physical
constraints to restrict the Double Degenerate region in the analyzed color-color

diagram.
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