X-rays of light kaonic atoms: SIDDHARTA and future

Michael Cargnelli, Stefan Meyer Institute, Austrian Academy of Sciences, Vienna

"Strangeness in Nuclei and in Neutron Stars" workshop Pisa 2015-05-20/21

X-ray transitions in kaonic atoms

Goal: learn about antikaon-nucleon interaction at lowest energies Technique: measure the shift and broadening of X-ray transition energies in light kaonic atoms.

The lowest states are measureably affected by the strong interaction between the kaon and the nucleus. ϵ , Γ connect to theories in low energy QCD

Theory and experiment

Kp, Kd, KHe..bound electromagnetically,binding well knownStrong interaction (mediated by QCD) \rightarrow modifies binding \rightarrow causes absorption

if ,small perturbation'

 \rightarrow energy shift and width can be related to T-matrix elements at threshold (Deser type formulas)

Decription of antikaon nucleon interaction: chiral effective field theory

scattering data atomic X ray data energy, width of resonances

.. needs input from experimental data

.. aims at accomodating all experimental evidence

Test validity of the *description of the antikaon-nucleon interaction* at low energies

Scattering lengths

Deser-type relation ¹⁾ connect the observables shift ε_{1s} and width Γ_{1s} of transitions to the ground-state with the real and imaginary part of the scattering length a $(\mu_C \text{ reduced mass of the } K^-d \text{ system}, \alpha \text{ finestructure constant, similar relation for } K^-p$):

$$\epsilon_{1s} - \frac{i}{2}\Gamma_{1s} = -2\alpha^{3}\mu_{c}^{2}a_{K^{-}d}\left(1 - 2\alpha\mu_{c}\left(\ln\alpha - 1\right)a_{K^{-}d}\right)$$
(1)

$$a_{K^-p} = \frac{1}{2}[a_0 + a_1]$$

$$a_{K^-n} = a_1$$

$$a_{K^-d} = \frac{4[m_N + m_K]}{[2m_N + m_K]}Q + C$$

$$Q = \frac{1}{2}[a_{K^-p} + a_{K^-n}] = \frac{1}{4}[a_0 + 3a_1]$$

¹⁾ U.-G. Meißner, U.Raha, A.Rusetsky, Eur. phys. J. C35 (2004) 349 next-to-leading order in isospin breaking Note: sign-reversed definition of the shift

 $\mathbf{a}_{\mathbf{K}-\mathbf{p}}$ and $\mathbf{a}_{\mathbf{K}-\mathbf{d}}$ are linear combination of the KN isospin scattering lengths \mathbf{a}_0 and \mathbf{a}_1 . To extract \mathbf{a}_0 and \mathbf{a}_1 , both scattering lengths $\mathbf{a}_{\mathbf{K}-\mathbf{p}}$ and $\mathbf{a}_{\mathbf{K}-\mathbf{d}}$ are needed (contain different combination of $\mathbf{a}_0 \mathbf{a}_1$)

$DA\Phi NE$

... "Double Annular Phi-factory for Nice Experiments"

at Laboratory Nazionali di Frascati dell'INFN

Figure 1: A schematic view of the SIDDHARTA setup installed at the e⁺e⁻ interaction region of DAΦNE.

Experimental setup SIDDHARTA 2009

SDD module, 6 x 1 cm² 24 modules => 144 detectors

Newly developed SDDs by Federatione Bruno Kessler (Trento) and Politecnico Milano for future Kd experiments at DAFNE or J-PARC

- monolithic array of 2x4 SDDs
- area single SDD = 8x8mm²
 (driven by drift time considerations)
- square shape
- 1mm dead area at chip periphery
- operating temperature = 20K-30K
- ceramic: as large as SDD chip, with only one additional strip for bonding and connector
- mounting, cooling: ceramic glued to a cupper frame (or alternative solutions under study)

Improving the timing resolution:

Measurement of the correlation between the drifttime and the risetime of the newly developed SDDs.

By using the rise-time information, the hit time at the SDDs may be determined more precisely (correcting for the varying drift times) Currently studied...

- 6,12 cm² chip area
- 5,12 cm² active area

SIDDHARTA experimental data

-energies and detector numbers of hits on SDDs (mostly overflow events from MIPS tracks)

if a kaontrigger happend: - the *time correlation* between X-ray and kaon

Data analysis tasks:

- periodically calibrate the 144 individual detectors (gain alignment), discard ,bad' ones
- determine the energy resolution (response shape) of the summed detectors
- fit the spectrum with signal-components, background lines and continous background

The radiation environment leads to **large charge** in Si (dE > 150 keV at 0.5 mm thickness)

<u>"Beam background"</u> Touschek- Babha- and *beam-gas*-scattering, stray high-energy e[±] => e.m. showers. not correlated to charged kaon pairs: (1) "accidentals"

μ, π, e from K decay; Λ, π,.. from K⁻ absorption, kaonic X rays from K⁻ wallstops synchronous background – has trigger signal
 (2) kaonic X-ray lines
 (3) continous kaon correlated background

Kaonic hydrogen X-ray data

Fit of the KH data

SIDDHARTA collaboration, "A new measurement of kaonic hydrogen X-rays", Physics Letters B 704 (2011), p. 113

SIDDHARTA results applied

Example of the impact of SIDDHARTA

Chiral SU(3) theory of antikaon-nucleon interactions with improved threshold constraints Y. Ikeda, T. Hyodo and W. Weise, Nucl. Phys. A881 (2012) 98-114.

Fig. 4. Real part (left) and imaginary part (right) of the $K^- p \rightarrow K^- p$ forward scattering amplitude obtained from the NLO calculation and extrapolated to the subthreshold region. The empirical real and imaginary parts of the $K^- p$ scattering length deduced from the recent kaonic hydrogen measurement (SIDDHARTA [15]) are indicated by the dots including statistical and systematic errors. The shaded uncertainty bands are explained in the text.

Kaonic helium spectra from SIDDHARTA

L-series lines prominently seen !

note S/B !

Kaonic helium

Summary of experimental results on the kaonic helium 4 L-series X-ray transition shift

SIDDHARTA confirmed the KEK KHe4 result and was the first maesurement of KHe3

308	SIDDHARTA Collaboratio	SIDDHARTA Collaboration / Nuclear Physics A 914 (2013) 305–309					
Table 1 Energy shifts (ΔE_{2p}) and widths (Γ_{2p}) of the kaonic helium ³ He and ⁴ He 2 <i>p</i> states.							
Target	ΔE_{2p} (eV)	Γ_{2p} (eV)	Ref.				
⁴ He ⁴ He	-41 ± 33 -35 ± 12	-30 ± 30	Wiegand et al. [1] Batty et al. [2]				
⁴ He ⁴ He	-50 ± 12 -43 ± 8	100 ± 40 55 ± 34	Baird et al. [3] Average of above [3,4]				
⁴ He	$+2 \pm 2$ (stat.) ± 2 (syst.)	-	Okada et al. [12]				
⁴ He ⁴ He	$0 \pm 6 \text{ (stat.)} \pm 2 \text{ (syst.)}$ +5 ± 3 (stat.) ± 4 (syst.)	$-14 \pm 8 \text{ (stat.)} \pm 5 \text{ (syst.)}$	SIDDHARTA [8] SIDDHARTA [9,10]				
³ He	-2 ± 2 (stat.) ± 4 (syst.)	$6 \pm 6 \text{ (stat.)} \pm 7 \text{ (syst.)}$	SIDDHARTA [9,10]				

SIDDHARTA results

Table 1. Compilation of SIDDHARTA results. The errors given in this table are the sum of the statistical and the systematic component; in case of asymmetric errors, the larger one is quoted here. The upper limits of the yields are for CL 90%. The yields for H and He are preliminary values. Gas densities: H: 14.5 ρ_{STP} , D: 13.9 ρ_{STP}), ³He: 5.38 ρ_{STP} , ⁴He: 9.24 ρ_{STP} . For kaonic carbon etc. see [6].

	shift [eV]	width [eV]	transition yields in % per stopped K^-	ref.
Н	ϵ_{1s} = -283±42	$\Gamma_{1s} = 541 \pm 111$	$Y(K_{tot}) = 4.5 \pm 1.2 Y(K_{\alpha}) = 1.2 \pm 0.4$	[7–9]
D			$Y(K_{tot}) < 1.43 Y(K_{\alpha}) < 0.39$	[10]
³ He	ϵ_{2p} = -2±6	$\Gamma_{2p}=6\pm 13$	$Y(L_{\alpha}) = 25.0 \pm 6.7$	[11, 13, 14]
⁴ He	$\epsilon_{2p} = 5 \pm 7$	$\Gamma_{2p} = 14 \pm 13$	$Y(L_{\alpha}) = 23.1 \pm 6.0$	[12–14]

- [6] (SIDDHARTA Collaboration), Nucl. Phys. A 916, 30 (2013)
- [7] (SIDDHARTA Collaboration), Phys. Lett. B 704, 113 (2011)
- [8] (SIDDHARTA Collaboration), Nucl. Phys. A 881, 88 (2012)
- [9] (SIDDHARTA Collaboration), Eur. Phys. J. Web of Conferences 66, 09016 (2014)
- [10] (SIDDHARTA Collaboration), Nucl. Phys. A 907, 69 (2013)
- [11] (SIDDHARTA Collaboration), Phys. Lett. B 697, 199 (2011)
- [12] (SIDDHARTA Collaboration), Phys. Lett. B 681, 310 (2009)
- [13] (SIDDHARTA Collaboration), Phys. Lett. B **714**, 40 (2011)
- [14] (SIDDHARTA Collaboration), Eur. Phys. J. A 50, 91 (2014)

Experimental schemes for future Kd experiments

SIDDHARTA-2 at DAFNE

for a Kd yield ~ 1/10 of Kp yield and Kd width up to 2 times Kp width we need

- \sim <u>20 times reduction</u> of background to get similar S/B as in kaonic hydrogen
- $\sim 600 \ \text{pb}^{\text{-1}}$ to get 1500 events in Kd (2-1) if efficiency of the setup is doubled

changed geometry and gas-density:

closer, doubled gas density, upper kaon trigger DIRECTLY in front of target, smaller then entry window

added *kaon livetime detector* for K⁺⁻ discrimination:

identify K⁺ by delayed secondaries (τ_{K} =12.8 ns)

added surrounding scintillators:

"active shielding", anticoincidence during SDDs time window (~500 ns), except coincidence during "gas-stop-time (~ 5 ns, K⁻ absorption secondaries), not "behind X ray hit"

SDDs operated at lower temp. to improve timing resolution, make use of drift-time/risetime correlation

SIDDHARTA-2 at DAFNE: background reduction (Monte Carlo study)

arrival times of MIPS at the vertical scintillators timeresolution of each det.: 0.5 ns FWHM

topological correlation of low energy signals. distance SDD to MIPS-veto counter

time correlation between lower triggerscintillator and last hit on kaonstopper timeresolution of each detector: 0.5 ns FWHM

16

SIDDHARTA-2 at DAFNE

600 pb⁻¹ => with 8 pb⁻¹ per day \sim 75 days

1.5e6 K[±] per pb⁻¹ => 1.5e7 K[±] per day ~ isotropically p = 127 MeV/c

Target stops: ~ 2 % per kaonpair (gas 3% dens.) due to solid angle. Intrinsic ~ 100% => 18e6 stops

SDDs: 144 cm² devices from SIDDHARTA active/module = 0.22 possibly: 246 cm² new SDDs from Milano /FBK

source

low energy kaons

tracking not necessary

preparation in advanced state

... at J-PARC

at 30 kW proton beam, 35 days

at p = 0.7 GeV/c ~ 40e7 kaons per day

Target stops for 5% dens. ~ 0.6e-3 per beam kaon => 7.8e6 stops

SDDs: 246 cm² new devices from Milano /FBK active/module = 0.84

beam

high energy kaons

>90% lost in degrader, wide energy range at entering target in the target: absorption in flight relevant

tracking fiducial volume cut

feasibility study, proposal submitted

J-PARC

Located in Tokai, Ibaraki,

from the talk of Masaharu Sato (E17 collaboration) given at ECT* Trento 2012:

K⁻ mean range in carbon (from GEANT tables):

J-PARC K1.8BR beamline Beam-spot:

Prog. Theor. Exp. Phys. 2012, 02B009 (16 pages) DOI: 10.1093/ptep/pts038

Secondary charged beam lines at the J-PARC hadron experimental hall

Keizo Agari¹, Shun Enomoto², Hiroyuki Fujioka³, Yuya Fujiwara⁴, Tadashi Hashimoto⁴, Ryugo S. Hayano⁴, Toshihiko Hiraiwa³, Erina Hirose¹, Masaharu Ieiri¹, Youichi Igarashi¹, Masahiko Iwasaki^{5,6}, Yohji Katoh¹, Shingo Kawasaki², Akio Kiyomichi⁷, Hiroshi Kou⁶, Michifumi Minakawa¹, Ryotaro Muto¹, Tomofumi Nagae³, Megumi Naruki¹, Hiroyuki Noumi⁸, Hiroaki Ohnishi⁵, Haruhiko Outa⁵, Yuta Sada³, Fuminori Sakuma⁵, Masaharu Sato⁴, Yoshinori Sato¹, Shin'ya Sawada¹, Hexi Shi⁴, Yoshihisa Shirakabe¹, Yoshihiro Suzuki¹, Hitoshi Takahashi¹, Toshiyuki Takahashi¹, Minoru Takasaki¹, Kazuhiro H. Tanaka¹, Makoto Tokuda⁶, Akihisa Toyoda¹, Kyo Tsukada⁹, Mifuyu Ukai⁹, Hiroaki Watanabe¹, Takeshi O. Yamamoto⁹, and Yutaka Yamanoi¹

Fig. 11. Beam profile at the final focus point reconstructed by the wire drift chamber.

19

Beamprofile data from a recent measurement at K1.8BR:

Measurements at K1.8BR at 0.9 GeV/c, no degrader, no target, 8 cm² SDDs

From the thesis of T. Hashimoto, 2011

Simulation of kaon stopping, degrader optimization

22

Background sources

decay in flight: $\mu^- \nu$ 63.5%, $\pi^- \pi^0$ 21.2%, $\pi^- \pi^+ \pi^-$ 5.6%, $\pi^0 e^- \nu$ 4.8% absorption: in flight or at rest

1-nucleon absorption total probability = (1 - w2N)

2-nucleon absorption: total probability = w2N

K ⁻ N reacti on	Subsequent decay mode	Finally produced particles	ratio (%)	K⁻d reaction products	Subsequent decay modes	Finally produced particles
$\Sigma^+ \pi^-$	$\Sigma^+ \rightarrow \pi^0 p; \pi^0 \rightarrow 2 \gamma$	π⁻ 2 γp	11.1	$Σ^+ π^- n$	$\Sigma^+ \rightarrow \pi^0 p; \pi^0 \rightarrow 2 \gamma$	π ⁻ 2γp n
	$\Sigma^+ \rightarrow \pi^+ n$	π⁻ π⁺ n	11.1		$\Sigma^+ \rightarrow \pi^+ n$	π ⁻ π ⁺ n n
$\Sigma^{-} \pi^{+}$	$\Sigma^{-} \rightarrow \pi^{-} n$	π⁻ π⁺ n	10.0	$\Sigma^{-} \pi^{+} n$	$\Sigma^{-} \rightarrow \pi^{-} n$	π ⁻ π ⁺ n n
$\Sigma^0 \pi^0$	$\Sigma^0 \rightarrow \Lambda \gamma; \Lambda \rightarrow \pi^- p$	π⁻ Зγр	7.6	$\Sigma^0 \pi^0 n$	$\Sigma^0 \rightarrow \Lambda \gamma; \Lambda \rightarrow \pi^- p$	π ⁻ Зγрп
	$\Sigma^0 \rightarrow \Lambda \gamma; \Lambda \rightarrow \pi^0 n; \pi^0 \rightarrow 2\gamma$	5γn	7.6		$\Lambda \rightarrow \pi^0 n ; \pi^0 \rightarrow 2 \gamma$	5γn n
$\Lambda \pi^{-}$	$\Lambda \rightarrow \pi^{-} p$	2 π ⁻ p	14.2	Λ π ⁻ p	$\Lambda \rightarrow \pi^{-} p$	2 π ⁻ p p
	$\Lambda \rightarrow \ \pi^0 \ n \ ; \ \pi^0 \rightarrow 2 \ \gamma$	π⁻ 2 γ n	14.2		$\Lambda \rightarrow \pi^0 n; \pi^0 \rightarrow 2 \gamma$	π ⁻ 2 γ n p
$\Sigma^0 \pi^-$	$\Sigma^0 \rightarrow \Lambda \gamma; \Lambda \rightarrow \pi^- p$	2 π⁻ γ p	5.4	Σ ⁰ π ⁻ p	$\Sigma^0 \rightarrow \Lambda \gamma; \Lambda \rightarrow \pi^- p$	2 π ⁻ γ p p
	$\Sigma^0 \rightarrow \Lambda \gamma$; $\Lambda \rightarrow \pi^0 n$	π⁻ 2γ n	5.4		$\Lambda \rightarrow \pi^0 n$	π ⁻ 2γ n p
$\Sigma^{-} \pi^{0}$	$\Sigma^{-} \rightarrow \pi^{-} n$	π⁻ 2γ n	10.8	$\Sigma^{-} \pi^{0} p$	$\Sigma^{-} \rightarrow \pi^{-} n; \pi^{0} \rightarrow 2 \gamma$	π ⁻ 2γ n p
				Y* N		
"vanishing kaon": Vertex from K ⁻ × 1 outgoing charged				Λ* n	$\begin{array}{ccccccc} \Lambda^{\star} \rightarrow \Sigma^{+} \ \pi^{-} & \Sigma^{+} \rightarrow & \pi^{+} & n \\ & \Sigma^{+} \rightarrow & \pi^{0} & p & \pi^{0} \rightarrow 2 \ \gamma \\ \Lambda^{\star} \rightarrow \Sigma^{-} \ \pi^{+} & \Sigma^{-} \rightarrow & \pi^{-} & n \\ \Lambda^{\star} \rightarrow \Sigma^{0} \ \pi^{0} & \Sigma^{0} \rightarrow & \Lambda \ \gamma & \Lambda \rightarrow & \pi^{-} & p \\ & \Lambda \rightarrow & \pi^{0} & n \end{array}$	π ⁻ π ⁺ nn π ⁻ 2γpn π ⁻ π ⁺ nn π ⁻ 3γpn 5γnn

Proposed Kd experiment at J-PARC

Figure 8: Sketch of the proposed setup for the kaonic deuterium measurement

Figure 11: Design of the cryogenic target and X-ray detector system. The target cell, with a diameter of 65 mm and a length of 160 mm, is closely surrounded by SDDs, about 5 mm away from the target wall.

Achievable precision

events kaonic deuterium Kα	S/B	precision of shift result (eV)	precision of width result (eV)	experiment 600 pb ⁻¹ at DAFNE resp. 100 shifts with 30 kW p-beam at J-PARC
1500	1:3	47	123	DAFNE
3000	1:3	32	83	DAFNE, new SDDs
1500	1:5	70	160	J-PARC, new SDDs
2000	10 : 3	12	24	DAFNE hydrogen (few days)

test spectrum with relative yield distribution similar to kaonic hydrogen. $y(K\alpha) = 1.e-3$ Fit with free intensities, parametrized K_{high} shape

sum(signal) / sum(bg in FWHM of signal) e.g. 1:5
ampl.(signal) / bg-level => 1:7

Summary and Outlook

SIDDHARTA: Results on shift, width and yields from measurements of kaonic He-3, He-4, C and hydrogen (K^p) published. Strong impact for K⁻N theory ! **K**'d: first experiment, exploratory measurement, signal hints, significance ~ 2σ , upper limit for K-series yield published.

Proposed extension: SIDDHARTA-2 with improved technique to measure Kd shift and width. Preparations well under way. *Timescale at DAFNE still unclear* (*might be as late as 2018*)

Kd experiment at J-PARC: Monte Carlo studies, developmet of experimental setup, **proposal submitted** (100 shifts at 30 kW p-beam, beamtime 2016/17?)

New possibilities due to microcalorimeter detectors with few eV resolution at 6 keV, Proposal for J-PARC

FШF

