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Outline

• The “hyperon puzzle” in neutron stars. 
• A non-relativistic model of the hyperon(𝛬)-nucleon 

interaction (for “normal” baryonic matter). 
• Connection to the existing experimental data: 

computation of BE in hypernuclei by QMC. 
• Infinite 𝛬-neutron matter and prediction for the NS 

structure. 
• Conclusions



Hyperons in dense matter

268 NEUTRON STARS

Figure 5.10. Threshold chemical potentials of neutral hyperons and neutron (left) and of nega-
tively charged hyperons and the sum µe+µn (right) versus baryon number density for model C of
Glendenning (1985). Vertical dotted lines mark the thresholds for the creation of new hyperons;
dashed lines show minimum enthalpies µ0

H of unstable hyperons before the thresholds.

5.14.1 Hyperonic composition
Let us consider an electrically neutral matter composed of baryons B (nucle-

ons and hyperons) and leptons ℓ (electron and muons) at a given baryon number
density nb. The baryon density is

∑

B

nB = nb , (5.111)

while the electric charge neutrality implies
∑

B

nBQB −
∑

ℓ=e,µ

nℓ = 0 , (5.112)

where QB is the electric charge of a baryon B in units of e. The energy density
depends on the number densities of baryons {nB} and leptons (ne, nµ), E =
E({nB}, ne, nµ). The equilibrium state has to be determined by minimizing E
under the constraints given by Eqs. (5.111) and (5.112). To this aim, we will
use the method of Lagrange multipliers described in §5.11.1. In analogy with
Eq. (5.91) we define the auxiliary energy density Ẽ

Ẽ = E + λb

(
∑

B

nB − nb

)
+ λq

⎛

⎝
∑

B

QBnB −
∑

ℓ=e,µ

nℓ

⎞

⎠ . (5.113)

Hyperons might appear in 
the inner core of neutron 
stars.

Chemical equilibrium conditions:

Q = �1 : µY � = µn + µe

Q = 0 : µY 0 = µn

Q = +1 : µY + = µn � µeWhen hyperons appear, energy is reduced!

EF

A simple argument based on 
the properties of the Fermi gas 
tells us that at very large 
densities it is energetically 
favourable to change neutrons 
and protons into hyperons.

P. Haensel, A.Y. Potekhin, D.G. Yakovlev, Neutron Stars 1, Springer 2007



Hyperon puzzle

The appearance of hyperons has an immediate consequence on 
the equation of state: it makes it softer, i.e. the pressure coming 
from the baryon-baryon interaction is reduced.

H. Ðapo, B.-J. Schaefer, and J. Wambach. Appearance of 
hyperons in neutron stars. Phys. Rev. C, 81(3): 035803 (2010)

based on NN (“soft” and “stiff”) EoS from M.Heiselberg, 
M.Hjort-Jensen,  Phys. Rep. 328, 237 (2000)

See also the work of the Catania group (H.-J. Schulze,
MM Baldo, F. Burgio et al.)

Until 2010 observed 
masses of NS were 

distributed around the 
Chandrashekar mass 

MS=1.4 M⊙

Use of the equation of state of a p,n,e,𝜇 
leads to a maximum mass > 2 M⊙

Soft EoS allowed: hyperons ok!

➧
Softer EoS ➠ lower star mass
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Many hyperon-nucleon 
model interactions, giving  
differen EoS and different  
predictions.



Hyperon Puzzle
Recently a few NS with a large mass were observed. by using Shapiro delay 
measurements. The first (2010) was PSRJ1614-2230 pulsar with 
M=1.97(4)M⊙.
(P. B. Demorest, T. Pennucci, S. M. Ransom, M. S. E. Roberts and J. W. T. Hessels. A two-solar-mass 
neutron star measured using Shapiro delay measurements, Nature 467, 1081 (2010). 

In a non relativistic framework  
(= pure baryonic stars) 

hyperons are problematic

Before 2010: 
Maximum mass observed: 1.6M⊙ 
Maximum mass predicted without hyperons: 
2.3⊙ (still ok in principle)
Maximum mass predicted with hyperons: 
1.4-1.6M⊙ (good!)
After 2010: 
Observed mass: 2.0M⊙ 
Maximum mass predicted without hyperons: 
2.3M⊙ (good!)
Maximum mass predicted with hyperons: 
1.4-1.6M⊙ (very bad…)



Model Hyperon-nucleon interaction
A fundamental ingredient to gain some understanding for this problem is to  
understand the structure of the baryon-baryon interaction.
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Fig. 1. Total cross section for Ap scattering as a function of c.m. kinetic energy E(MeV). The 
solid line is obtained with CSB potential of the form (2.9), while the dashed line is obtained 

with CSB potential of the form (3.16). 
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a large intrinsic range (b ~ 2.0 fm) for t he /AN = 0 in teract ion,  this Ap potent ia l  
gives rise to significant p-wave scattering, suff icient  to cause appreciable forward- 
backward asymmet ry  through interference with  the dominat ing  s-wave ampli tudes,  
at relative low c.m. energies, far in excess o f  the observed F/B ratios. As a result, 
it is necessary to allow for the possibility of  a p-wave potent ia l  weaker  than that  
required for the s-wave. Thus,  in this investigation,  we shall assume the fol lowing 
form for the Ap potent ial ,  

U P ( r ) =  [ (1-x)+xprAp ] [½( l+P'aAp)Upt(r)+½(1-P~p)Us p(r)] , (3 .15)  

where PEp is the space exchange operator ,  and U p and U p are the Ap potent ia ls  in 
tr iplet  and singlet s -s ta tes .The addit ional  parameter  x is a reduct ion  factor  ¢; the 

* This is of course not the most general possibility, even for central potentials, since the param- 
eter x could take different values for the singlet and the triplet states. The absence of data 
depending on the A and proton spins leaves only one empirical number accessible at each 
energy, namely the F/B ratio, and there is no possibility of determining more than one theo- 
retical parameter from the data available. 

R. H. Dalitz, R. C. Herndon, Y. C. Tang, 
Nucl. Phys. B47 (1972) 109-137

36 J. Haidenbauer et al. / Nuclear Physics A 915 (2013) 24–58

Fig. 2. “Total” cross section σ (as defined in Eq. (24)) as a function of plab. The experimental cross sections are taken
from Refs. [54] (filled circles), [55] (open squares), [69] (open circles), and [70] (filled squares) (Λp → Λp), from [56]
(Σ−p → Λn, Σ−p → Σ0n) and from [57] (Σ−p → Σ−p, Σ+p → Σ+p). The red/dark band shows the chiral EFT
results to NLO for variations of the cutoff in the range Λ = 500, . . . ,650 MeV, while the green/light band are results to
LO for Λ = 550, . . . ,700 MeV. The dashed curve is the result of the Jülich ’04 meson-exchange potential [37].

also for Λp the NLO results are now well in line with the data even up to the ΣN threshold.
Furthermore, one can see that the dependence on the cutoff mass is strongly reduced in the NLO
case. We also note that in some cases the LO and the NLO bands do not overlap. This is partly
due to the fact that the description at LO is not as precise as at NLO (cf. the total χ2 values in
Table 5). Also, the error bands are just given by the cutoff variation and thus can be considered
as lower limits.

A quantitative comparison with the experiments is provided in Table 5. There we list the
obtained overall χ2 but also separate values for each data set that was included in the fitting
procedure. Obviously the best results are achieved in the range Λ = 500–650 MeV. Here, in
addition, the χ2 exhibits also a fairly weak cutoff dependence so that one can really speak of
a plateau region. For larger cutoff values the χ2 increases smoothly while it grows dramatically

J. Haidenbauer et al.,  
Nucl. Phys. A 915  

(2013) 24–58
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Hyperon-nucleon interaction
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Hyperon-nucleon interaction

There are several ways of attacking the problem. 
This is our choice: 

• NON RELATIVISTIC APPROACH (should be fine if 
the central density is not too large) 

• YN INTERACTION CHOSEN TO FIT EXISTING 
SCATTERING DATA (with a hard-core) 

• PHENOMENOLOGICAL YNN THREE-BODY 
FORCES with few parameters to be adjusted to 
reproduce light hypernuclei binding energies 

• ALL THE OTHER RESULTS ARE PREDICTIONS 
WITH NO OTHER ADJUSTABLE PARAMETERS 
obtained from an accurate solution of the 
Schroedinger equation. 

 



Model Hyperon-nucleon interaction

Model interaction (Bodmer, Usmani, Carlson):
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Two-body potential: accurately fitted on p-𝛬 scattering data

A. Bodmer, Q. N. Usmani, and J. Carlson, Phys. Rev. C 29, 684 (1984).

Q. N. Usmani and A. R. Bodmer, Phys. Rev. C 60, 055215 (1999).
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Parameters to be 
determined from 
calculations

A. Bodmer, Q. N. Usmani, and J. Carlson, Phys. Rev. C 29, 684 (1984).

Q. N. Usmani and A. R. Bodmer, Phys. Rev. C 60, 055215 (1999).



Input from experiment

We need to fit the three body interaction against some experimental data. 
There are available several measurements of the binding energy of 𝛬-
hypernuclei, i.e. nuclei containing a     hyperon. The idea is to compute 
such binding energies.  We can then compute the hyperon separation 
energy:

⇤

B⇤ = Bhyp �Bnuc

where         is the total binding energy of a hypernucleus with A 
nucleons and one      , and          is the total binding energy of the 
corresponding nucleus with A nucleons. This number can be used to 
gauge the coefficients in the nucleon-    interaction.

Bhyp

Bnuc⇤

⇤

3Hypernuclei: experiments
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binding energies:

|S| = 0

|S| = 1

|S| = 2

scattering data: 

NN : ⇠ 4300

⇤N : ⇠ 52

nuc : ⇠ 3340

⇤ hyp : ⇠ 41

⇤⇤ hyp : ⇠ 5

⌃ hyp : ⇠ (1)

Hypernuclei: experiments
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S. N. Nakamura, Hypernuclear workshop, JLab, May 2014  
updated from: O. Hashimoto, H. Tamura, Prog. Part. Nucl. Phys. 57, 564 (2006)

Present Status of  
Λ Hypernuclear Spectroscopy

Updated from: O. Hashimoto and H. Tamura, Prog. Part. Nucl. Phys. 57 (2006) 564.
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Hypernuclei: experiments

• The available data are very limited.  
• There are several planned and ongoing 

systematic measurements. 
• At present no proposals for gathering 
more 𝛬-nulceon scattering data 
• Essentially no information on 𝛬𝛬 

interaction 
• (Almost) nothing on 𝛴 or 𝛯 hypernulcei



Projection Monte Carlo
We compute ground state energies of nuclei by means of projection 
Monte Carlo methods. The ground state of a many-body system is 
computed by applying an “imaginary time propagator” to an arbitrary 
state that has to be non-orthogonal to the ground state (power method):

In the limit of “short” 𝜏 (let us call it “𝜟𝜏”), the propagator can be broken 
up as follows (Trotter-Suzuki formula):

Kinetic term Potential term (“weight”)

Sample a new point from the 
Gaussian kernel

Create a number of copies 
proportional to the weight

If the weight is small, the 
points are canceled.



Many-nucleon systems

Very accurate results 
have been obtained in 
the years for the ground 
state and some excitation 
properties of nuclei with 
A≤12 by the Argonne 
based group (GFMC 
calculations by Pieper, 
Wiringa, Carlson, 
Schiavilla…). These 
calculations include two- 
and three-nucleon 
interactions. -100
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GFMC Calculations
10 January 2014

• IL7: 4 parameters fit to 23 states
• 600 keV rms error, 51 states
• ~60 isobaric analogs also computed

Courtesy of R. Wiringa, ANL

PROBLEM
for realistic many-nucleon Hamiltonians, propagators must be evaluated 
on wave functions that have a number of components exponentially 
growing with A (spin/isospin singlet/triplet state for each pair of nucleons)



Auxiliary Field Diffusion Monte Carlo 
(AFDMC)

The computational cost of GFMC can be reduced by introducing a way 
of sampling over the space of states, rather than summing explicitly 
over the full set. 
For simplicity let us consider only one of the terms in the interaction. 
We start by observing that:

Then, we can linearize the operatorial dependence in the propagator 
by means of an integral transform:

Linear combination 
of spin operators for 
different particles

Hubbard-Stratonovich transformation
K. E. Schmidt and S. Fantoni, Phys. Lett. B 446, 99 (1999).
S. Gandolfi, F. Pederiva, S. Fantoni, and K. E. Schmidt,
Phys. Rev. Lett. 99, 022507 (2007)

auxiliary fields→Auxiliary Field Diffusion Monte Carlo

Stefano Fantoni & Kevin Schmidt, 1999



The operator dependence in the exponent has become linear. 

In the Monte Carlo spirit, the integral can be performed by sampling 
values of x from the Gaussian        . For a given x the action of the 
propagator will become:

In a space of spinors, each factor corresponds to a rotation induced by 
the action of the Pauli matrices

The sum over the states  
has been replaced by rotations sampling!

Auxiliary Field Diffusion Monte Carlo 
(AFDMC)
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The crucial advantage of AFDMC is that 
the scaling of the required 
computer resources is no longer 
exponential: the cost scales as A3 (the 
scaling required by the computation of the 
determinants in the antisymmetric wave 
functions)          LARGER SYSTEMS 
ACCESSIBLE!

Problems
• The HS transformation can be used ONLY FOR THE PROPAGATOR              

Accurate wave functions require an operatorial dependence!  
“Cluster expansion” introduced and working! 

• Extra variables             larger fluctuations and autocorrelations. 
• Some problems in treating nuclear spin-orbit. 
• Three-body forces (extremely important in nuclear physics) cannot be 

implemented in all cases 
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Input from experiment

B⇤ = Bhyp �Bnuc
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Assumption: use of a simplified NN 
interaction cancel in the difference and 
therefore the  estimate of BΛ is accurate 

(verified!)

Only two parameters are 
relevant (one of them is  
essentially ineffective)

H = T +AV 40 + UIXcH = T +AV 40 + UIXc + V⇤N + V⇤NN



Hypernuclei
19Results: hypernuclei (improved )1

AV40 AV40+UIXc exp

4He -32.67(8) -26.55(7) -28.295
16O -176.8(6) -119.5(3) -127.619
40Ca -597(3) -381.9(8) -342.051
48Ca -645(3) -414(1) -416.001

Hamiltonian AFDMC GFMC

AV40 -32.67(8) -32.88(6)

AV40+UIXc -26.55(7) -26.82(8)

inclusion of the phenomenological short-range component of UIX: repulsion

pr
el

im
in

ar
y

⇠ 6%

⇠ 12%

⇠ 0.5%

reasonable single particle densities and radii

4He

The nucleon-nucleon interaction that we use in our hypernuclear calculations is not 
the full realistic one, but the simpler AV4’+ the central (repulsive) term of the Urbana 
IX 
potential (UIXc). Despite this simplification, the description of closed shell nuclei is 
at leas “not unrealistic”. Here we report some results.
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D. L., F. Pederiva, S. Gandolfi, Phys. Rev. C 89, 014314 (2014)
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Results: hypernuclei

importance of the three-body 
hyperon-nucleon potential

Diego Lonardoni, FP, Stefano Gandolfi

Original Bodmer & al.  
parametrization

Improved 
parametrization



Hypernuclei
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Calculations can ber performed also for excited states: more information available 
on the structure of the interaction (e.g. spin orbit? charge symmetry breaking?)

• AFDMC calculations by 
D. Lonardoni & al., 
unpublished. 
• Experimental data  
re-analyzed by 
J. Millener.



𝛬-neutron matter 33Results: hyper-neutron matter
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hyper-neutron matter

x⇤ ⌘ x⇤(⇢b)
equilibrium 
condition µ⇤(⇢b, x⇤) = µn(⇢b, x⇤)

chemical 
potentials:

PNM hyperon  
fraction

EHNM ⌘ EHNM(⇢b, x⇤)
energy per 

particle

energy 
density EHNM ⌘ EHNM(⇢b, x⇤)
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EHNM(⇢b, x⇤) =
h
EPNM((1� x⇤)⇢b) +mn

i
(1� x⇤)

+
h
E

F
⇤ (x⇤⇢b) +m⇤

i
x⇤ + f(⇢b, x⇤)

neutrons  
+  

lambdas

(
⇢n = (1� x⇤)⇢b

⇢⇤ = x⇤⇢b

8
<

:

⇢b = ⇢n + ⇢⇤

x⇤ =
⇢⇤

⇢b

Problem1: limitation in x⇤ due to simulation box

Problem2: finite size effects

Problem3: fitting procedure

cluster  
expansion

⇢⇤⇢n
⇢b

⇢⇤⇢n⇢n
⇢b

⇢⇤⇢n⇢n⇢n
⇢b

,f(⇢b, x⇤)
⇢⇤⇢⇤⇢n

⇢b
, ,

Results: hyper-neutron matter𝛬-neutron matter 
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Results: hyper-neutron matter𝛬-neutron matter 
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YNN repulsion pushes the 
onset of hyperons at much 
higher densities

𝛬-neutron matter 
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Neutron star structure
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hypernuclear binding energy is  
so strong that hyperons would
not be present in 2M⊙ stars!
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Results: hyper-neutron matter
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YN interaction only  
(from 𝛬N scattering data)
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(from 𝛬N scattering data)

YN + YNN interaction  
(old VMC based 
parametrization)
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(old VMC based 
parametrization)

YN +YNN interaction 
(more accurate description 
of hypernuclear  BE)



Can we really constrain 𝛬NN interaction 
from hyper nuclear data?

In hypernuclei it is possible that the 𝛬NN interaction is not well constrained, especially 
in the isospin triplet channel:

n
p

nn

𝝠 𝝠

We are doing the exercise of re-projecting the interaction in the isospin singlet and triplet 
channels and try to explore the dependence of the hypernuclei binding energy on the 
relative strength. 

⇤NN potential resolved in the NN isospin singlet and triplet

F. Pederiva

The ~⌧i · ~⌧j part of the three-body potential can be written as:

v2⇡,P = �CP
6 {Xi�, X�j}~⌧i · ~⌧j

v2⇡,S = CSO
2⇡,S
ij� ~⌧i · ~⌧j

We want to rewrite these contributions in such a way that they are splitted into
an isospin triplet and an isospin singlet channels, adding then a parameter to
control the first with respect to the second.

As always, let us notice that:

~⌧i · ~⌧j = 1� 4PT=0
ij = 4PT=1

ij � 3.

We can sum the two expressions multiplying the first by 3, and obtain the
following identity:

~⌧i · ~⌧j = �3PT=0
ij + PT=1

ij

Now, defining:

vPij� ⌘ vPij�(CS , CP ) = �CP

6
{Xi�, X�j}+ CSO

2⇡,S
ij�

the isospin-dependent three body potential then becomes:

v⌧⌧ij� = �3vPij�P
T=0
ij + vPij�P

T=1
ij .

We define a new potential by inserting a parameter A that controls the strength
of the potential projected on the isospin triplet channel:

v⌧⌧ij� = �3vPij�P
T=0
ij +AvPij�P

T=1
ij .

A = 0 is the case in which the isospin triplet channel is suppressed. A = 1 is the
present potential case. However, I think that in this context A could assume
arbitrarily large values, and even change sign. Actually, it can be inferred that
if PT=0

ij is the most contributing channel in hypernuclei as expected, the expec-

tation of vPij� should be mostly negative in order to give the observed reduction
of B(⇤). This means that under this hypothesis some repulsion might be gained
in neutron matter withouta↵ecting the results in hypernuclei by playing with
negative values of A.

This potential can be easily recast in the usual form useful for AFDMC
calculations in this way:

v⌧⌧ij� =
3

4
(A� 1)vPij� +

1

4
(3 +A)vPij�~⌧i · ~⌧j .

Notice that there is a contribution that has to be added to the isospin indepen-
dent part of the interaction as well.

Please check coe�cients, signs etc.

1

v⌧⌧ij� = �3vPij�P̂
T=0
ij + CT v

P
ij�P̂

T=1
ij

NN isospin singlet NN isospin triplet

v⌧⌧ij� =
3

4
(CT � 1)vPij� +

1

4
(3 + CT )v

P
ij�~⌧i · ~⌧j



Can we really constrain 𝛬NN interaction 
from hyper nuclear data?

In hypernuclei it is possible that the 𝛬NN interaction is not well constrained, especially 
in the isospin triplet channel:

n
p

nn

𝝠 𝝠

We are doing the exercise of re-projecting the interaction in the isospin singlet and triplet 
channels and try to explore the dependence of the hypernuclei binding energy on the 
relative strength. 

⇤NN potential resolved in the NN isospin singlet and triplet

F. Pederiva

The ~⌧i · ~⌧j part of the three-body potential can be written as:

v2⇡,P = �CP
6 {Xi�, X�j}~⌧i · ~⌧j

v2⇡,S = CSO
2⇡,S
ij� ~⌧i · ~⌧j

We want to rewrite these contributions in such a way that they are splitted into
an isospin triplet and an isospin singlet channels, adding then a parameter to
control the first with respect to the second.

As always, let us notice that:

~⌧i · ~⌧j = 1� 4PT=0
ij = 4PT=1

ij � 3.

We can sum the two expressions multiplying the first by 3, and obtain the
following identity:

~⌧i · ~⌧j = �3PT=0
ij + PT=1

ij

Now, defining:

vPij� ⌘ vPij�(CS , CP ) = �CP

6
{Xi�, X�j}+ CSO

2⇡,S
ij�

the isospin-dependent three body potential then becomes:

v⌧⌧ij� = �3vPij�P
T=0
ij + vPij�P

T=1
ij .

We define a new potential by inserting a parameter A that controls the strength
of the potential projected on the isospin triplet channel:

v⌧⌧ij� = �3vPij�P
T=0
ij +AvPij�P

T=1
ij .

A = 0 is the case in which the isospin triplet channel is suppressed. A = 1 is the
present potential case. However, I think that in this context A could assume
arbitrarily large values, and even change sign. Actually, it can be inferred that
if PT=0

ij is the most contributing channel in hypernuclei as expected, the expec-

tation of vPij� should be mostly negative in order to give the observed reduction
of B(⇤). This means that under this hypothesis some repulsion might be gained
in neutron matter withouta↵ecting the results in hypernuclei by playing with
negative values of A.

This potential can be easily recast in the usual form useful for AFDMC
calculations in this way:

v⌧⌧ij� =
3

4
(A� 1)vPij� +

1

4
(3 +A)vPij�~⌧i · ~⌧j .

Notice that there is a contribution that has to be added to the isospin indepen-
dent part of the interaction as well.

Please check coe�cients, signs etc.

1

v⌧⌧ij� = �3vPij�P̂
T=0
ij + CT v

P
ij�P̂

T=1
ij

NN isospin singlet NN isospin triplet

Pauli repulsion

v⌧⌧ij� =
3

4
(CT � 1)vPij� +

1

4
(3 + CT )v

P
ij�~⌧i · ~⌧j



Can we really constrain 𝛬NN interaction 
from hyper nuclear data?

In hypernuclei it is possible that the 𝛬NN interaction is not well constrained, especially 
in the isospin triplet channel:

n
p

nn

𝝠 𝝠

We are doing the exercise of re-projecting the interaction in the isospin singlet and triplet 
channels and try to explore the dependence of the hypernuclei binding energy on the 
relative strength. 

⇤NN potential resolved in the NN isospin singlet and triplet

F. Pederiva

The ~⌧i · ~⌧j part of the three-body potential can be written as:

v2⇡,P = �CP
6 {Xi�, X�j}~⌧i · ~⌧j

v2⇡,S = CSO
2⇡,S
ij� ~⌧i · ~⌧j

We want to rewrite these contributions in such a way that they are splitted into
an isospin triplet and an isospin singlet channels, adding then a parameter to
control the first with respect to the second.

As always, let us notice that:

~⌧i · ~⌧j = 1� 4PT=0
ij = 4PT=1

ij � 3.

We can sum the two expressions multiplying the first by 3, and obtain the
following identity:

~⌧i · ~⌧j = �3PT=0
ij + PT=1

ij

Now, defining:

vPij� ⌘ vPij�(CS , CP ) = �CP

6
{Xi�, X�j}+ CSO

2⇡,S
ij�

the isospin-dependent three body potential then becomes:

v⌧⌧ij� = �3vPij�P
T=0
ij + vPij�P

T=1
ij .

We define a new potential by inserting a parameter A that controls the strength
of the potential projected on the isospin triplet channel:

v⌧⌧ij� = �3vPij�P
T=0
ij +AvPij�P

T=1
ij .

A = 0 is the case in which the isospin triplet channel is suppressed. A = 1 is the
present potential case. However, I think that in this context A could assume
arbitrarily large values, and even change sign. Actually, it can be inferred that
if PT=0

ij is the most contributing channel in hypernuclei as expected, the expec-

tation of vPij� should be mostly negative in order to give the observed reduction
of B(⇤). This means that under this hypothesis some repulsion might be gained
in neutron matter withouta↵ecting the results in hypernuclei by playing with
negative values of A.

This potential can be easily recast in the usual form useful for AFDMC
calculations in this way:

v⌧⌧ij� =
3

4
(A� 1)vPij� +

1

4
(3 +A)vPij�~⌧i · ~⌧j .

Notice that there is a contribution that has to be added to the isospin indepen-
dent part of the interaction as well.

Please check coe�cients, signs etc.

1

v⌧⌧ij� = �3vPij�P̂
T=0
ij + CT v

P
ij�P̂

T=1
ij

CT=1 gives the original potential, but 
we can choose an arbitrary value. 
CT < 1 ⇒ more repulsion

NN isospin singlet NN isospin triplet

Pauli repulsion

v⌧⌧ij� =
3

4
(CT � 1)vPij� +

1

4
(3 + CT )v

P
ij�~⌧i · ~⌧j



Can we really constrain 𝛬NN interaction 
from hyper nuclear data?

In hypernuclei it is possible that the 𝛬NN interaction is not well constrained, especially 
in the isospin triplet channel:

n
p

nn

𝝠 𝝠

We are doing the exercise of re-projecting the interaction in the isospin singlet and triplet 
channels and try to explore the dependence of the hypernuclei binding energy on the 
relative strength. 

⇤NN potential resolved in the NN isospin singlet and triplet

F. Pederiva

The ~⌧i · ~⌧j part of the three-body potential can be written as:

v2⇡,P = �CP
6 {Xi�, X�j}~⌧i · ~⌧j

v2⇡,S = CSO
2⇡,S
ij� ~⌧i · ~⌧j

We want to rewrite these contributions in such a way that they are splitted into
an isospin triplet and an isospin singlet channels, adding then a parameter to
control the first with respect to the second.

As always, let us notice that:

~⌧i · ~⌧j = 1� 4PT=0
ij = 4PT=1

ij � 3.

We can sum the two expressions multiplying the first by 3, and obtain the
following identity:

~⌧i · ~⌧j = �3PT=0
ij + PT=1

ij

Now, defining:

vPij� ⌘ vPij�(CS , CP ) = �CP

6
{Xi�, X�j}+ CSO

2⇡,S
ij�

the isospin-dependent three body potential then becomes:

v⌧⌧ij� = �3vPij�P
T=0
ij + vPij�P

T=1
ij .

We define a new potential by inserting a parameter A that controls the strength
of the potential projected on the isospin triplet channel:

v⌧⌧ij� = �3vPij�P
T=0
ij +AvPij�P

T=1
ij .

A = 0 is the case in which the isospin triplet channel is suppressed. A = 1 is the
present potential case. However, I think that in this context A could assume
arbitrarily large values, and even change sign. Actually, it can be inferred that
if PT=0

ij is the most contributing channel in hypernuclei as expected, the expec-

tation of vPij� should be mostly negative in order to give the observed reduction
of B(⇤). This means that under this hypothesis some repulsion might be gained
in neutron matter withouta↵ecting the results in hypernuclei by playing with
negative values of A.

This potential can be easily recast in the usual form useful for AFDMC
calculations in this way:

v⌧⌧ij� =
3

4
(A� 1)vPij� +

1

4
(3 +A)vPij�~⌧i · ~⌧j .

Notice that there is a contribution that has to be added to the isospin indepen-
dent part of the interaction as well.

Please check coe�cients, signs etc.

1

v⌧⌧ij� = �3vPij�P̂
T=0
ij + CT v

P
ij�P̂

T=1
ij

CT=1 gives the original potential, but 
we can choose an arbitrary value. 
CT < 1 ⇒ more repulsion

NN isospin singlet NN isospin triplet

Pauli repulsion

must be negative on average
to give repulsion

v⌧⌧ij� =
3

4
(CT � 1)vPij� +

1

4
(3 + CT )v

P
ij�~⌧i · ~⌧j



Can we really constrain the interaction 
from hyper nuclear data?

E 
/ E

(c
T=

1)

cT

4
RH 
4
RHe
5
RHe

17
RO

41
RCa

49
RCa

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

-2.0 -1.0 0.0 1.0 2.0 3.0

Francesco Catalano, Diego Lonardoni, FP, unpublished

PRELIM
IN

ARY



Can we really constrain the interaction 
from hyper nuclear data?

E 
/ E

(c
T=

1)

cT

4
RH 
4
RHe
5
RHe

17
RO

41
RCa

49
RCa

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

-2.0 -1.0 0.0 1.0 2.0 3.0

Francesco Catalano, Diego Lonardoni, FP, unpublished

small asymmetry

PRELIM
IN

ARY



Can we really constrain the interaction 
from hyper nuclear data?

E 
/ E

(c
T=

1)

cT

4
RH 
4
RHe
5
RHe

17
RO

41
RCa

49
RCa

0.75

0.80

0.85

0.90

0.95

1.00

1.05

1.10

1.15

-2.0 -1.0 0.0 1.0 2.0 3.0

Francesco Catalano, Diego Lonardoni, FP, unpublished

small asymmetry

larger asymmetryPRELIM
IN

ARY



Conclusions
Status
•The three-body hyperon-nucleon force provides the necessary repulsion 

to reproduce the ground state physics of medium-light hypernuclei
•The three-body hyperon-nucleon interaction plays a fundamental role in 

the softening of the EoS and for the consequent reduction of the 
predicted maximum mass.

Needs & Developments
• experimental inputs: scattering data, energy spectrum (gs+exc), CSB 

effects
•benchmark calculations 
•different NN(N) and YN(N) potentials: Nijmegen, chiral, isospin 
•projected realistic (hyper)nuclear matter in beta equilibrium 
•medium-heavy mass hypernuclei [(e,e’,K), proposal submitted at JLab]


