
A hands-on Introduction to OpenCL
Tim Mattson

Acknowledgements: Alice Koniges of Berkeley Lab/NERSC and Simon
McIntosh-Smith, James Price, and Tom Deakin of the University of Bristol

OpenCL Learning progression

Topic Exercise concepts
I. OCL intro OpenCL overview, history and

Core models.
II. Host programs Vadd program

Understanding host programs

III. Kernel programs Basic Jacobi solver The OpenCL execution model
and how it relates to kernel
programs.

IV. Memory
coalescence

Reorganizing the A
matrix in the Jacobi
solver program.

Memory layout effects on kernel
performance

V. Divergent control
flows

Divergent control flow
in the Jacobi solver

Control flows and how they
impact performance

VI. Occupancy Work group size
optimization for the
Jacobi solver

Keeping all the resources busy

VII. Memory hierarchy
in OpenCL

Demo: Matrix
Multiplication

Working with private, local and
global memory

Outline
•  OpenCL: overview and core models
•  Host programs
•  Kernel programs
•  Optimizing OpenCL kernels

– Memory coelescence
– Divergent control flows
– Occupancy
– Other Optimizations

•  Working with the OpenCL Memory Hierarchy
•  Resources supporting OpenCL

Industry Standards for Programming
Heterogeneous Platforms

OpenCL – Open Computing Language

Open, royalty-free standard for portable, parallel programming of
heterogeneous parallel computing CPUs, GPUs, and other processors

CPUs
Multiple cores driving
performance increases

GPUs
Increasingly general

purpose data-parallel
computing

Graphics
APIs and
Shading

Languages

Multi-
processor

programming –
e.g. OpenMP

Emerging
Intersection

Heterogeneous
Computing

The origins of OpenCL
AMD

ATI

NVIDIA

Intel

Apple

Merged, needed
commonality
across products

GPU vendor –
wants to steal
market share
from CPU

CPU vendor –
wants to steal
market share
from GPU

Was tired of recoding for
many core, GPUs.
Pushed vendors to
standardize.

Wrote a rough draft
straw man API

Khronos Compute
group formed

ARM
Nokia
IBM
Sony
Qualcomm
Imagination
TI

Third party names are the property of their owners.

+ many
more

OpenCL Platform Model

•  One Host and one or more OpenCL Devices
–  Each OpenCL Device is composed of one or more

Compute Units
•  Each Compute Unit is divided into one or more Processing Elements

•  Memory divided into host memory and device memory

Processing
Element

OpenCL Device

… … …

…
… … …

…
… … …

…
… … …

Host

Compute Unit

An N-dimensional domain of work-items
•  Global Dimensions:

–  1024x1024 (whole problem space)
•  Local Dimensions:

–  128x128 (work-group, executes together)

•  Choose the dimensions (1, 2, or 3) that are
“best” for your algorithm

1024

10
24

ocl_get_global_ID(0)	
 =	
 16	

oc
l_
ge
t_
gl
ob

al
_I
D(
1)
	
 =
	
 1
6	

ocl_get_local_ID(0)	
 =	
 4	

ocl_get_local_ID(1)	
 =	
 4	

Index-space/work-items/work-groups

An N-dimensional domain of work-items
•  Global Dimensions:

–  1024x1024 (whole problem space)
•  Local Dimensions:

–  128x128 (work-group, executes together)

•  Choose the dimensions (1, 2, or 3) that are
“best” for your algorithm

1024

10
24

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

Execution Model
•  Host defines a command queue and associates it with a context

(devices, kernels, memory, etc).
•  Host enqueues commands to the command queue

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)
(sx, sy) = (0,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1, Sy- 1)

Index Space Work items execute together as a work-group.

Kernel execution
commands launch
work-items: i.e. a
kernel for each point in
an abstract Index Space
called an NDRange

A (Gy by Gx)
index space

OpenCL Memory model
•  Private Memory

–  Per work-item

•  Local Memory
–  Shared within a

 work-group

•  Global Memory /
Constant Memory
–  Visible to all

 work-groups

•  Host memory
–  On the CPU

Memory management is explicit:
You are responsible for moving data from

 host → global → local and back

The BIG idea behind OpenCL
•  Replace loops with functions (a kernel) executing at each point in a problem domain.

– E.g., process a 1024 x 1024 image with one kernel invocation per pixel or 1024 x 1024 = 1,048,576 kernel
executions

void
trad_mul(int n,
 const float *a,
 const float *b,
 float *c)
{
 int i;
 for (i=0; i<n; i++)
 c[i] = a[i] * b[i];
 }

Traditional loops
kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);

 c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL

Context and Command-Queues
•  Context:

–  The environment within which kernels
execute and in which synchronization
and memory management is defined.

•  The context includes:
–  One or more devices
–  Device memory
–  One or more command-queues

•  All commands for a device (kernel
execution, synchronization, and memory
operations) are submitted through a
command-queue.

•  Each Command-queue points to a single
device within a context.

Queue

Conte
xt

Device

Device
Memory

get_global_id(0)

10

Execution model (kernels)
•  OpenCL execution model … define a problem domain and execute an instance

of a kernel for each point in the domain

kernel void square(
 global float* input,
 global float* output)
{
 int i = get_global_id(0);
 output[i] = input[i] * input[i];
}

Inp
ut

Output 36 1 1 0 81 4 16 1 1 81 36 1 4 4 1 81 64 16 1 81 4 0 0 49 64

6 1 1 0 9 2 4 1 1 9 7 6 1 2 2 1 9 8 4 1 9 2 0 0 7 8

49

Building Program objects
•  The program object encapsulates:

–  A context
–  The program source/binary
–  List of target devices and build options

•  The Build process … to create a program object
–  clCreateProgramWithSource()
–  clCreateProgramWithBinary()

Program
kernel void
horizontal_reflect(read_only image2d_t src,
 write_only image2d_t dst)
{
 int x = get_global_id(0); // x-coord
 int y = get_global_id(1); // y-coord
 int width = get_image_width(src);
 float4 src_val = read_imagef(src, sampler,
 (int2)(width-1-x, y));
 write_imagef(dst, (int2)(x, y), src_val);
}

Compile for
GPU

Compile for
CPU

GPU
code

CPU
code

Kernel Code

OpenCL uses
runtime compilation
… because in
general you don’t
know the details of
the device when
you ship the
program

Example: vector addition
•  The “hello world” program of data parallel programming is a

program to add two vectors

C[i] = A[i] + B[i] for i=1 to N

•  For the OpenCL solution, there are two parts
–  Kernel code
–  Host code

Vector Addition - Kernel

__kernel void vadd (__global const float *a,

 __global const float *b,
 __global float *c)

 {

 int gid = get_global_id(0);

 c[gid] = a[gid] + b[gid];

}

The basic platform and runtime APIs
in OpenCL (using C)

arg [0]
value

arg [1]
value

arg [2]
value

arg [0]
value

arg [1]
value

arg [2]
value

In
Order
Queue

Out of
Order
Queue

GPU

Context

__kernel void
dp_mul(global const float *a,
 global const float *b,
 global float *c)
{
 int id = get_global_id(0);
 c[id] = a[id] * b[id];
}

dp_mul
CPU program binary

dp_mul
GPU program binary

Programs

arg[0] value

arg[1] value

arg[2] value

Buffers Images
In

Order
Queue

Out of
Order
Queue

Compute Device

GPU

CPU

dp_mul

Programs Kernels Memory Objects Command Queues

Outline
•  OpenCL: overview and core models
•  Host programs
•  Kernel programs
•  Optimizing OpenCL kernels

– Memory coelescence
– Divergent control flows
– Occupancy
– Other Optimizations

•  Working with the OpenCL Memory Hierarchy
•  Resources supporting OpenCL

Vector Addition - Host
•  The host program … the code that runs on the host to:

–  Setup the environment for the OpenCL program
–  Create and manage kernels

•  5 simple steps in a basic Host program
1.  Define the platform … platform = devices+context+queues
2.  Create and Build the program (dynamic library for kernels)
3.  Setup memory objects
4.  Define kernel (attach arguments to kernel function)
5.  Submit commands … transfer memory objects and execute kernels

1. Define the platform

 err = clGetDeviceIDs(firstPlatformId, CL_DEVICE_TYPE_CPU, 1,
 &device_id, NULL);

• Grab the first available Platform:
err = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms);

• Use the first CPU device the platform provides:

context = clCreateContext(firstPlatformId, 1, &device_id, NULL,
 NULL, &err);

• Create a simple context with a single device:

 commands = clCreateCommandQueue(context, device_id, 0, &err);

• Create a simple command queue to feed our compute device:

2. Create and Build the program

 program = clCreateProgramWithSource(context, 1,
 (const char **) & KernelSource, NULL, &err);

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

• Define source code for the kernel-program as a string literal (great
for toy programs) or read from a file (common in real apps).

• Build the program object:

• Compile the program to create a “dynamic library” from which
specific kernels can be pulled:

• Fetch and print error messages (if(err != CL_SUCCESS)):
size_t len; char buffer[2048];
clGetProgramBuildInfo(program, device_id,
CL_PROGRAM_BUILD_LOG, sizeof(buffer),

buffer, &len);
printf("%s\n", buffer);

3. Setup Memory Objects
•  For vector addition, 3 memory objects … one for each

input vector (A and B) and one for the output vector (C).
•  Create input vectors and assign values on the host:

 a_in = clCreateBuffer(context, CL_MEM_READ_ONLY,
 sizeof(float) * count, NULL, NULL);
 b_in = clCreateBuffer(context, CL_MEM_READ_ONLY,
 sizeof(float) * count, NULL, NULL);
 c_out = clCreateBuffer(context, CL_MEM_WRITE_ONLY,
 sizeof(float) * count, NULL, NULL);

float a_data[LENGTH], b_data[LENGTH], c_res [LENGTH];
for(i = 0; i < count; i++){
 a_data[i] = rand() / (float)RAND_MAX;
 b_data[i] = rand() / (float)RAND_MAX;
}

• Define OpenCL memory objects:

4. Define the kernel
•  Create kernel object from the kernel function “vadd”:

err = clSetKernelArg(kernel, 0, sizeof(cl_mem), &a_in);
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &b_in);
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &c_out);
err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count);

kernel = clCreateKernel(program, "vadd", &err);

• Attach arguments to the kernel function “vadd” to memory objects:

5. Submit commands

err = clEnqueueWriteBuffer(commands, a_in, CL_FALSE, 0,
 sizeof(float) * count, a_data, 0, NULL, NULL);

err = clEnqueueWriteBuffer(commands, b_in, CL_FALSE, 0,
 sizeof(float) * count, b_data, 0, NULL, NULL);

• Write Buffers from host into global memory (as non-blocking operations)

err = clEnqueueNDRangeKernel(commands, kernel, 1, NULL,
 &global, &local, 0, NULL, NULL);

err = clEnqueueReadBuffer(commands, c_out, CL_TRUE, 0,
 sizeof(float) * count, c_res, 0, NULL, NULL);

• Enqueue the kernel for execution (note: in-order queue so this is OK)

• Read back the result (as a blocking operation). Use the fact that we have an
in-order queue which assures the previous commands are done before the
read begins.

Vector Addition - Host Program
// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,
 NULL, &cb);
devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb,

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context, devices[0],

0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA,
 NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,
 NULL);

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,
 sizeof(cl_float)*n, NULL,

 NULL);
// create the program
program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL,

 NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],
 sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(cmd_queue, memobjs[2],

CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Vector Addition - Host Program
// create the OpenCL context on a GPU device
cl_context = clCreateContextFromType(0,

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,
 NULL, &cb);
devices = malloc(cb);
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb,

devices, NULL);

// create a command-queue
cmd_queue = clCreateCommandQueue(context, devices[0],

0, NULL);

// allocate the buffer memory objects
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY |

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA,
NULL);}

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY |
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,
NULL);

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,
 sizeof(cl_float)*n, NULL,

NULL);
// create the program
program = clCreateProgramWithSource(context, 1,

&program_source, NULL, NULL);

// build the program
err = clBuildProgram(program, 0, NULL, NULL, NULL,

NULL);

// create the kernel
kernel = clCreateKernel(program, “vec_add”, NULL);

// set the args values
err = clSetKernelArg(kernel, 0, (void *) &memobjs[0],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1],
 sizeof(cl_mem));
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],
 sizeof(cl_mem));
// set work-item dimensions
global_work_size[0] = n;

// execute kernel
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1,

NULL, global_work_size, NULL, 0, NULL, NULL);

// read output array
err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE,

0, n*sizeof(cl_float), dst, 0, NULL, NULL);

Define platform and queues

Define memory objects

Create the program

Build the program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as bad
as it looks.

Exercise 1: Running the Vadd kernel
•  Goal:

– To inspect and verify that you can build and run
an OpenCL kernel

•  Procedure:
– Use the vadd.c program and makefile we provide.

It will run a simple kernel to add two vectors
together.

–  Look at the host code and identify the API calls
discussed in these slides in the host code.

•  Expected output:
– A message verifying that the vector addition

completed successfully

Outline
•  OpenCL: overview and core models
•  Host programs
•  Kernel programs
•  Optimizing OpenCL kernels

– Memory coelescence
– Divergent control flows
– Occupancy
– Other Optimizations

•  Working with the OpenCL Memory Hierarchy
•  Resources supporting OpenCL

Kernel programming

•  Kernel programming is where all the
action is at in OpenCL

•  Writing simple OpenCL kernels is quite
easy, so we'll cover that quickly

•  Optimizing OpenCL kernels to run really
fast is much harder, so that's where we're
going to spend most of the time

OpenCL C kernel language
•  Derived from ISO C99

– A few restrictions: no recursion, function pointers,
functions in C99 standard headers ...

–  Preprocessing directives defined by C99 are
supported (#include etc.)

•  Built-in data types
–  Scalar and vector data types, pointers
– Data-type conversion functions:

•  convert_type<_sat><_roundingmode>

–  Image types: image2d_t, image3d_t and sampler_t

OpenCL C Language Highlights
•  Function qualifiers

–  __kernel qualifier declares a function as a kernel
•  I.e. makes it visible to host code so it can be enqueued

–  Kernels can call other kernel-side functions

•  Address space qualifiers
–  __global, __local, __constant, __private
–  Pointer kernel arguments must be declared with an address space qualifier

•  Work-item functions
–  uint get_work_dim() … number of dimensions in use (1,2, or 3)
–  size_t get_global_id(uint n) … global work-item ID in dim “n”
–  size_t get_local_id(uint n) … work-item ID in dim “n” inside work-group
–  size_t get_group_id(uint n) … ID of work-group in dim “n”
–  size_t get_global_size(uint n) … num of work-items in dim “n”
–  size_t get_local_size(uint n) … num of work-items in work group in dim “n”

•  Synchronization functions
–  Barriers - all work-items within a work-group must execute the barrier function

before any work-item can continue
–  Memory fences - provides ordering between memory operations

OpenCL C Language Restrictions

•  Pointers to functions are not allowed
•  Pointers to pointers allowed within a kernel,

but not as an argument to a kernel invocation
•  Bit-fields are not supported
•  Variable length arrays and structures are not

supported
•  Recursion is not supported (yet!)
•  Double types are optional in OpenCL v1.2, but

the key word is reserved
 (note: most implementations support double)

Memory Consistency
•  OpenCL uses a relaxed consistency memory model; i.e.

–  The state of memory visible to a work-item is not guaranteed to be
consistent across the collection of work-items at all times.

•  Within a work-item:
–  Memory has load/store consistency to the work-item’s private view of

memory, i.e. it sees its own reads and writes correctly

•  Within a work-group:
–  Local memory is consistent between work-items at a barrier.

•  Global memory is consistent within a work-group at a
barrier, but not guaranteed across different work-groups!!
–  This is a common source of bugs!

•  Consistency of memory shared between commands (e.g.
kernel invocations) is enforced by synchronization (barriers,
events, in-order queue)

Work-Item Synchronization

•  Within a work-group
void barrier()
–  Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
–  A work-item that encounters a barrier() will wait until ALL work-

items in its work-group reach the barrier()
–  Corollary: If a barrier() is inside a branch, then the branch must be

taken by either:
•  ALL work-items in the work-group, OR
•  NO work-item in the work-group

•  Across work-groups
–  No guarantees as to where and when a particular work-group will be

executed relative to another work-group
–  Cannot exchange data, or have barrier-like synchronization

between two different work-groups! (Critical issue!)
–  Only solution: finish the kernel and start another

Ensure correct order of memory operations
to local or global memory (with flushes or
queuing a memory fence)

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)
{
 int i, j, k;

 for (i = 0; i < Order; i++) {
 for (j = 0; j < Order; j++) {
 for (k = 0; k < Order; k++) {
 // C(i, j) = sum(over k) A(i,k) * B(k,j)
 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
 }
 }
 }
}

We calculate C=AB, dimA = (N x N), dimB=(N x N), dimC=(N x N)

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each
element of C

Matrix multiplication performance

•  Serial C code on CPU (single core).

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz
using the gcc compiler.

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Matrix multiplication: sequential code

void mat_mul(int Order, float *A, float *B, float *C)
{
 int i, j, k;

 for (i = 0; i < Order; i++) {
 for (j = 0; j < Order; j++) {
 for (k = 0; k < Order; k++) {
 // C(i, j) = sum(over k) A(i,k) * B(k,j)
 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
 }
 }
 }
}

Matrix multiplication: Kernel code (1/2)

void mat_mul(int Order, float *A, float *B, float *C)
{
 int i, j, k;

 for (i = 0; i < Order; i++) {
 for (j = 0; j < Order; j++) {
 for (k = 0; k < Order; k++) {
 // C(i, j) = sum(over k) A(i,k) * B(k,j)
 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
 }
 }
 }
}

__kernel void mat_mul(
 const int Order, __global float *A,  
 __global float *B, __global float *C)

Mark as a kernel function and
specify memory qualifiers

Matrix multiplication: Kernel code (2/2)

void mat_mul(int Order, float *A, float *B, float *C)
{
 int i, j, k;

 for (i = 0; i < Order; i++) {
 for (j = 0; j < Order; j++) {
 for (k = 0; k < Order; k++) {
 // C(i, j) = sum(over k) A(i,k) * B(k,j)
 C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
 }
 }
 }
}

__kernel void mat_mul(
 const int Order, __global float *A,  
 __global float *B, __global float *C)

i = get_global_id(0);
j = get_global_id(1);

Remove outer loops and set
work-item co-ordinates

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You may
observe completely different results should you run
these tests on your own system.

Exercise: Jacobi Solver Program

•  Goal:
–  To write a non-trivial OpenCL kernel

•  Procedure:
–  Consider the serial program jac_solv.c. Look at the

program, run it, and understand what’s its doing.
–  The program Jac_solv_ocl_basic.c is a C host program to

run an OpenCL kernel for the jacobi solver.
–  A “skeleton” of the kernel program is in the file

jac_ocl_basic.cl.
–  Inside the file jac_ocl_basic.cl, write the body of the

kernel program.
•  Expected output:

–  A message verifying that the program ran correctly .

Jacobi solver kernel code (1/2)
#define TYPE double
#if (TYPE == double)
 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif

kernel void jacobi(
 const unsigned Ndim,
 global TYPE * A, global TYPE * b,
 global TYPE * xold, global TYPE * xnew)

{
 size_t i = get_global_id(0);

 xnew[i] = (TYPE) 0.0;
 for (int j = 0; j < Ndim; j++) {
 if (i != j)
 xnew[i] += A[i*Ndim + j] * xold[j];
 }
 xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];}

Jacobi solver kernel code (2/2)
kernel void convergence(
 global TYPE * xold, global TYPE * xnew,
 local TYPE * conv_loc, global TYPE * conv)
{
 size_t i = get_global_id(0);
 TYPE tmp;
 tmp = xnew[i] - xold[i];
 conv_loc[get_local_id(0)] = tmp * tmp;
 barrier(CLK_LOCAL_MEM_FENCE);

 for (int offset = get_local_size(0) / 2; offset > 0; offset /= 2) {
 if (get_local_id(0) < offset) {
 conv_loc[get_local_id(0)] += conv_loc[get_local_id(0) + offset];
 }
 barrier(CLK_LOCAL_MEM_FENCE);
 }
 if (get_local_id(0) == 0) { conv[get_group_id(0)] = conv_loc[0]; }
}

A kernel enqueued on the host
to compute convergence. This

implements a reduction with
the last stage of the reduction

occuring on the host.

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc
compiler.

Third Party names are the property of their owners.

Outline
•  OpenCL: overview and core models
•  Host programs
•  Kernel programs
•  Optimizing OpenCL kernels

– Memory coelescence
– Divergent control flows
– Occupancy
– Other Optimizations

•  Working with the OpenCL Memory Hierarchy
•  Resources supporting OpenCL

Coalesced Access

•  Coalesced memory accesses are key for
high performance code

•  In principle, it’s very simple, but
frequently requires transposing/
transforming data on the host before
sending it to the GPU

•  Sometimes this is an issue of AoS vs. SoA

Memory layout is critical to performance

•  “Structure of Arrays vs. Array of Structures”
problem

•  Array of Structures (AoS) more natural to code
 struct Point{ float x, y, z, a; };
 Point *Points;

•  Structure of Arrays (SoA) suits memory

coalescence in vector units
 struct { float *x, *y, *z, *a; } Points;

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-items/
vector-lanes like to
access adjacent
memory locations

Coalescence

•  Coalesced memory
accesses are key for
high bandwidth

•  Simply, it means, if
thread i accesses
memory location n then
thread i+1 accesses
memory location n+1

•  In practice, it’s not
quite as strict…

__kernel func(__global float *memA,
 __global float *memB)
{

int g_id = get_global_id(0);

// ideal
float val1 = memA[g_id];

// still pretty good
const int c = 3;
float val2 = memA[g_id + c];

// stride size is not so good
float val3 = memA[c*g_id];

const int loc =
 some_strange_func(g_id);

// terrible!
float val4 = memA[loc];

}

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! GPU Threads

64 Byte Boundary
GPU Memory

64 Byte Boundary

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns

float val1 = memA[g_id]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

64 Byte Boundary

Memory access patterns

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

0x120 !0x11c !0x118 !0x114 ! 0x124 ! 0x128 ! 0x12c ! 0x130 ! 0x134 ! 0x138 ! 0x13c ! 0x140 ! 0x144 ! 0x148 !

64 Byte Boundary

const int c = 3; !
float val2 = memA[g_id + c]; !
!

!

Memory access patterns

float val3 = memA[3*g_id]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

64 Byte Boundary Strided access results in multiple
memory transactions (and

kills throughput)

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns

const int loc = !
 some_strange_func(g_id); !
!
float val4 = memA[loc]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

64 Byte Boundary

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns

Exercise

•  Inspect the memory access patterns in your
Jacobi solver kernel.

•  Is there a memory alignment problem? If
so, fix it.

•  If you want to generate the transpose of
the A matrix (a column major order), we
provide a function inside mm_utils.c that
you can call inside the host code to do this.

void init_colmaj_diag_dom_near_identity_matrix(int Ndim, TYPE *A);

Jacobi solver kernel code
#define TYPE double
#if (TYPE == double)
 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif

kernel void jacobi(
 const unsigned Ndim,
 global TYPE * A, global TYPE * b,
 global TYPE * xold, global TYPE * xnew)

{
 size_t i = get_global_id(0);

 xnew[i] = (TYPE) 0.0;
 for (int j = 0; j < Ndim; j++) {
 if (i != j)
 xnew[i] += A[j*Ndim + i] * xold[j];
 }
 xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];}

Switch to a column-major A
matrix so adjacent work-
items process adjacent
locations in A as you go
through the loop over j

Original code (row-major A) was:
 xnew[i] += A[i*Ndim + j] * xold[j];
Adjacent work-items process
offset locations into A

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc
compiler.

Third Party names are the property of their owners.

Outline
•  OpenCL: overview and core models
•  Host programs
•  Kernel programs
•  Optimizing OpenCL kernels

– Memory coelescence
– Divergent control flows
– Occupancy
– Other Optimizations

•  Working with the OpenCL Memory Hierarchy
•  Resources supporting OpenCL

Single Instruction Multiple Data
•  Individual threads of a warp start together at the

same program address
•  Each thread has its own instruction address counter

and register state
–  Each thread is free to branch and execute independently
–  Provide the MIMD abstraction

•  Branch behavior
–  Each branch will be executed serially
–  Threads not following the current branch will be disabled

59

A warp

Start Branch1 Branch2 Branch3 Converge

Time

Branching
•  GPUs tend not to support speculative execution, which

means that branch instructions have high latency
•  This latency can be hidden by switching to alternative work-

items/work-groups, but avoiding branches where possible is
still a good idea to improve performance

•  When different work-items executing within the same SIMD
ALU array take different paths through conditional control
flow, we have divergent branches (vs. uniform branches)

•  These are even worse: work-items will stall while waiting for
the others to complete

•  We can use predication, selection and masking to convert
conditional control flow into straight line code and
significantly improve the performance of code that has lots
of conditional branches

Branching

Conditional execution
// Only evaluate expression
// if condition is met
if (a > b)
{
 acc += (a - b*c);
}

Selection and masking
// Always evaluate expression
// and mask result
temp = (a - b*c);
mask = (a > b ? 1.f : 0.f);
acc += (mask * temp);

Exercise

•  Eliminate the branch in your Jacobi solver
kernel.

•  We don’t need any host change so use the
same host program as last time:
– Jac_solv_ocl_colmaj.c

Jacobi solver kernel code
#define TYPE double
#if (TYPE == double)
 #pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif

kernel void jacobi(
 const unsigned Ndim,
 global TYPE * A, global TYPE * b,
 global TYPE * xold, global TYPE * xnew)

{
 size_t i = get_global_id(0);

 xnew[i] = (TYPE) 0.0;
 for (int j = 0; j < Ndim; j++) {

 xnew[i] += A[j*Ndim + i] * xold[j] * (TYPE)(i != j);
 }
 xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];}

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Note: optimizations in the table are cumulative
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.

Third Party names are the property of their owners.

Outline
•  OpenCL: overview and core models
•  Host programs
•  Kernel programs
•  Optimizing OpenCL kernels

– Memory coelescence
– Divergent control flows
– Occupancy
– Other Optimizations

•  Working with the OpenCL Memory Hierarchy
•  Resources supporting OpenCL

Keep the processing elements (PE) busy

•  Occupancy: a measure of the fraction of time
during a computation when the PE’s are busy.
Goal is to keep this number high (well over
50%).

•  Pay attention to the number of work-items and
work-group sizes
– Rule of thumb: On a modern GPU you want at least

4 work-items per PE in a Compute Unit
– More work-items are better, but diminishing returns,

and there is an upper limit
•  Each work item consumes PE finite resources (registers etc)

Occupancy
•  Number of work-groups per compute unit (CU)

depends on registers and local memory size per
work-group

•  E.g. NVIDIA’s K40 has 128 words of memory per
processor element (PE), i.e. 128 registers per
core; and 48KB of local memory per CU

•  But, multiple work-items (threads) will be
scheduled on a single PE (similar to
hyperthreading)

•  In fact, global memory latency is so high that
multiple work-items per PE are a requirement for
achieving a good proportion of peak
performance!

Work-group sizes

•  Work-group sizes being a power of 2 helps on
most architectures. At a minimum use multiples
of:
–  8 for Intel® AVX CPUs
–  16 for Intel® Xeon Phi™ processors
–  32 for Nvidia® GPUs
–  64 for AMD®
–  May be different on different hardware

•  On most systems aim to run lots of work-groups.
For example, on Xeon Phi, multiples of the number
of threads available (e.g. 240 on a 5110P) is
optimal, but as many as possible is good (1000+)

Third party names are the property of their owners

Effect of work-group sizes

Exercise

•  Experiment with different work group
sizes. Use host program

 jac_solv_colmaj_nobr_wg.c
•  You do not need to change the kernel

program ... Use your kernel program from
the last exercise.

•  Run the host program with the flag –h to
see the command line options. One of
them (--wg) will vary the workgroup size.

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Third Party names are the property of their owners.

Note: optimizations in the table are cumulative
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.

Outline
•  OpenCL: overview and core models
•  Host programs
•  Kernel programs
•  Optimizing OpenCL kernels

– Memory coelescence
– Divergent control flows
– Occupancy
– Other Optimizations

•  Working with the OpenCL Memory Hierarchy
•  Resources supporting OpenCL

Constant Memory
•  Constant memory can be considered

a store for data that never changes
•  Setting and updating constants in

memory uses the same interface as
global memory, with enqueueRead/
enqueueWrite commands

•  The difference is how it is declared
in the kernel

•  Some devices may have dedicated
on-chip caches or data-paths for
constant memory

•  Devices are guaranteed to support
constant memory allocations of at
least 64kB

•  Can also declare OpenCL program
scope constant data, but this has to
be initialized at OpenCL program
compile time

kernel void
calc_something
(
 global float *a,
 global float *b,
 global float *c,

 //constant memory is
 //set on the host
 constant float *params
)
{
 //code here
}

•  OpenCL compilers accept a number of flags
that affect how kernels are compiled:
-cl-opt-disable
-cl-single-precision-constant
-cl-denorms-are-zero
-cl-fp32-correctly-rounded-divide-sqrt
-cl-mad-enable
-cl-no-signed-zeros
-cl-unsafe-math-optimizations
-cl-finite-math-only
-cl-fast-relaxed-math

Compiler Options

implies

Other compilation hints

•  Can use an attribute to inform the compiler
of the work-group size that you intend to
launch kernels with:

__attribute__((reqd_work_group_size(x, y, z)))

•  As with C/C++, use the const/restrict
keywords for kernel arguments where
appropriate to make sure the compiler can
optimise memory accesses

Exercise

•  Experiment with different optimizations
to get the best runtime you can.

Jacobi Solver Results
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
•  With OpenMP for multithreading

–  25.3 seconds with 32 threads (hyperthreading enabled)
–  19.0 seconds with 16 threads (hyperthreading disabled)

•  Running the OpenMP version natively on the Intel® Xeon® Phi
Processor took 4.8 seconds.

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double
NDIM = 4096

Nvidia K40
GPU

AMD 290X
GPU

Intel Xeon
PHI processor

Intel Xeon
processor

Basic 35.0 198.2 245.2 23.6

Colmaj 14.1 15.3 35.8 71.5

No Branch 13.3 15.6 16.6 38.8

Opt WG size 13.2 15.1 15.0 32.1

Unroll by 4 6.2 6.7 13.3 32.1

Third Party names are the property of their owners.

Note: optimizations in the table are cumulative
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.

Outline
•  OpenCL: overview and core models
•  Host programs
•  Kernel programs
•  Optimizing OpenCL kernels

– Memory coelescence
– Divergent control flows
– Occupancy
– Other Optimizations

•  Working with the OpenCL Memory Hierarchy
•  Resources supporting OpenCL

OpenCL Memory model
•  Private Memory

–  Per work-item

•  Local Memory
–  Shared within a

 work-group

•  Global/Constant
Memory
–  Visible to all

 work-groups

•  Host memory
–  On the CPU

Memory management is explicit:
You are responsible for moving data from

 host → global → local and back

The Memory Hierarchy

Private memory
O(10) words/WI

Local memory

O(1-10) KBytes/WG

Global memory
O(1-10) GBytes

Host memory
O(1-100) GBytes

Private memory
O(2-3) words/cycle/WI

Local memory

O(10) words/cycle/WG

Global memory
O(100-200) GBytes/s

Host memory

O(1-100) GBytes/s

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011

Bandwidths Sizes

Managing the memory hierarchy is one of the most important
things to get right to achieve good performance

Optimizing matrix multiplication
•  MM cost determined by FLOPS and memory movement:

–  2*n3 = O(n3) FLOPS
–  Operates on 3*n2 = O(n2) numbers

•  To optimize matrix multiplication, we must ensure that for
every memory access we execute as many FLOPS as
possible.

•  Outer product algorithms are faster, but for pedagogical
reasons, let’s stick to the simple dot-product algorithm.

•  We will work with work-item/work-group sizes and the
memory model to optimize matrix multiplication

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Optimizing matrix multiplication

•  There may be significant overhead to manage work-items
and work-groups.

•  So let’s have each work-item compute a full row of C

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

•  And with an eye towards future optimizations, let’s collect
work-items into work-groups with 64 work-items per work-
group

An N-dimension domain of work-items

•  Global Dimensions: 1024 (1D)
 Whole problem space (index space)

•  Local Dimensions: 64 (work-items per work-group)
 Only 1024/64 = 16 work-groups in total

•  Important implication: we will have a lot fewer
work-items per work-group (64) and work-
groups (16). Why might this matter?

10
24

64

__kernel void mmul(
 const int Order,
 __global float *A,
 __global float *B,
 __global float *C)

Matrix multiplication: One work item per row of C

{
 int j, k;
 int i = get_global_id(0);
 float tmp;
 for (j = 0; j < Order; j++) {
 tmp = 0.0f;
 for (k = 0; k < Order; k+
+)
 tmp += A[i*Order
+k]*B[k*Order+j];
 C[i*Order+j] = tmp;
 }
}

Mat. Mul. host program (1 row per work-item)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),
 end(h_A), true);
 d_B = cl::Buffer(context, begin(h_B),
 end(h_B), true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N),
 cl::NdRange(64)),
 N, d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Mat. Mul. host program (1 row per work-item)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),
 end(h_A), true);
 d_B = cl::Buffer(context, begin(h_B),
 end(h_B), true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N),
 cl::NdRange(64)),
 N, d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Changes to host program:
1.  1D ND Range set to

number of rows in the C
matrix

2.  Local Dimension set to 64
(which gives us 16 work-
groups which matches the
GPU’s number of compute
units).

Third party names are the property of their owners.

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

This has started to help.

Optimizing matrix multiplication

•  Notice that, in one row of C, each element reuses the same
row of A.

•  Let’s copy that row of A into private memory of the work-
item that’s (exclusively) using it to avoid the overhead of
loading it from global memory for each C(i,j) computation.

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each
work-item

Private Memory

•  A work-items private memory:
– A very scarce resource, only a few tens of 32-bit

words per Work-Item at most (on a GPU)
–  If you use too much it spills to global memory or

reduces the number of Work-Items that can be
run at the same time, potentially harming
performance*

– Think of these like registers on the CPU
•  How do you create and manage private

memory?
– Declare statically inside your kernel

* Occupancy on a GPU

__kernel void mmul(
 const int Order,
 __global float *A,
 __global float *B,
 __global float *C)
{
 int j, k;
 int i =
get_global_id(0);
 float tmp;
 float Awrk[1024];

Matrix multiplication: (Row of A in private memory)

for (k = 0; k < Order; k++)
 Awrk[k] = A[i*Order+k];

 for (j = 0; j < Order; j++) {
 tmp = 0.0f;
 for (k = 0; k < Order; k++)
 tmp += Awrk[k]*B[k*Order+j];

 C[i*Order+j] = tmp;
 }
}

__kernel void mmul(
 const int Order,
 __global float *A,
 __global float *B,
 __global float *C)
{
 int j, k;
 int i =
get_global_id(0);
 float tmp;
 float Awrk[1024];

Matrix multiplication: (Row of A in private memory)

for (k = 0; k < Pdim; k++)
 Awrk[k] = A[i*Ndim+k];

 for (j = 0; j < Order; j++) {
 tmp = 0.0f;
 for (k = 0; k < Order; k++)
 tmp += Awrk[k]*B[k*Order+j];

 C[i*Order+j] = tmp;
 }
}

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)

Setup a work array for A in
private memory*

Copy a row of A
into private

memory from
global memory
before we start
with the matrix
multiplications.

Mat. Mul. host program (Row of A in private memory)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer>
 (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A),
 end(h_A), true);
 d_B = cl::Buffer(context, begin(h_B),
 end(h_B), true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY,
 sizeof(float) * sz);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N),
 cl::NDRange(64)),
 N, d_A, d_B, d_C);

 cl::copy(queue, d_C, begin(h_C),
 end(h_C));

 // Timing and check results (not shown)
}

Host program unchanged from last exercise

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

Device is Tesla® M2090 GPU from
NVIDIA® with a max of 16
compute units, 512 PEs
Device is Intel® Xeon® CPU,
E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You may
observe completely different results should you run
these tests on your own system.

Big impact!

Optimizing matrix multiplication
•  We already noticed that, in one row of C, each element uses

the same row of A
•  Each work-item in a work-group also uses the same columns

of B
•  So let’s store the B columns in local memory (which is

shared by the work-items in the work-group)

= + x
C(i,j) A(i,:)

B(:,j)
C(i,j)

Private memory of each
work-item Local memory for each

work-group

Local Memory

•  How do you create and manage local memory?
–  Create and Allocate local memory on the host

cl::LocalSpaceArg localmem = cl::Local(sizeof(float)* N);

–  Setup the kernel to receive local memory blocks
auto foo = cl::make_kernel<int, cl::Buffer,
cl::LocalSpaceArg>(program, “bar”);

–  Mark kernel arguments that are from local memory as __local

–  Your kernels are responsible for transferring data between Local and
Global/Constant memories … there are built-in functions to help
(async_work_group_copy(), async_workgroup_strided_copy(), etc)

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011

•  A work-group’s shared memory
–  Typically 10’s of KBytes per Compute Unit*
–  Use Local Memory to hold data that can be

reused by all the work-items in a work-group
–  As multiple Work-Groups may be running on each Compute Unit

(CU), only a fraction of the total Local Memory size may be
available to each Work-Group

Local Memory performance hints

•  Local Memory doesn’t always help…
–  CPUs don’t have special hardware for it
–  This can mean excessive use of Local Memory might

slow down kernels on CPUs
–  GPUs now have effective on-chip caches which can

provide much of the benefit of Local Memory but
without programmer intervention

–  Access patterns to Local Memory affect performance
in a similar way to accessing Global Memory

•  Have to think about things like coalescence & bank conflicts

–  So, your mileage may vary!

Memory Consistency
•  OpenCL uses a relaxed consistency memory model; i.e.

–  The state of memory visible to a work-item is not guaranteed to be
consistent across the collection of work-items at all times.

•  Within a work-item:
–  Memory has load/store consistency to the work-item’s private view of

memory, i.e. it sees its own reads and writes correctly

•  Within a work-group:
–  Local memory is consistent between work-items at a barrier.

•  Global memory is consistent within a work-group at a
barrier, but not guaranteed across different work-groups!!
–  This is a common source of bugs!

•  Consistency of memory shared between commands (e.g.
kernel invocations) is enforced by synchronization (barriers,
events, in-order queue)

Work-Item Synchronization

•  Within a work-group
void barrier()
–  Takes optional flags

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
–  A work-item that encounters a barrier() will wait until ALL work-

items in its work-group reach the barrier()
–  Corollary: If a barrier() is inside a branch, then the branch must be

taken by either:
•  ALL work-items in the work-group, OR
•  NO work-item in the work-group

•  Across work-groups
–  No guarantees as to where and when a particular work-group will be

executed relative to another work-group
–  Cannot exchange data, or have barrier-like synchronization

between two different work-groups! (Critical issue!)
–  Only solution: finish the kernel and start another

Ensure correct order of memory operations
to local or global memory (with flushes or
queuing a memory fence)

__kernel void mmul(
 const int Order,
 __global float *A,
 __global float *B,
 __global float *C,
 __local float *Bwrk)
{
 int j, k;
 int i = get_global_id(0);

 int iloc = get_local_id(0);
 int nloc= get_local_size(0);

 float tmp;
 float Awrk[1024];

Matrix multiplication: B column shared between work-items

for (k = 0; k < Order; k++)
 Awrk[k] = A[i*Order+k];

 for (j = 0; j < Order; j++) {

 for (k=iloc; k< Order; k+=nloc)
 Bwrk[k] = B[k* Order +j];
 barrier(CLK_LOCAL_MEM_FENCE);

 tmp = 0.0f;
 for (k = 0; k < Order; k++)
 tmp += Awrk[k]*Bwrk[k];

 C[i*Order+j] = tmp;
 barrier(CLK_LOCAL_MEM_FENCE);
 }
}

__kernel void mmul(
 const int Order,
 __global float *A,
 __global float *B,
 __global float *C,
 __local float *Bwrk)
{
 int j, k;
 int i = get_global_id(0);

 int iloc = get_local_id(0);
 int nloc= get_local_size(0);

 float tmp;
 float Awrk[1024];

Matrix multiplication: B column shared between work-items

for (k = 0; k < Order; k++)
 Awrk[k] = A[i*Order+k];

 for (j = 0; j < Order; j++) {

 for (k=iloc; k< Order; k+=nloc)
 Bwrk[k] = B[k* Order +j];
 barrier(CLK_LOCAL_MEM_FENCE);

 tmp = 0.0f;
 for (k = 0; k < Order; k++)
 tmp += Awrk[k]*Bwrk[k];

 C[i*Order+j] = tmp;
 barrier(CLK_LOCAL_MEM_FENCE);
 }
}

Pass a work array in local memory to hold a
column of B. All the work-items do the copy
“in parallel” using a cyclic loop distribution

(hence why we need iloc and nloc)

Mat. Mul. host program (Share a column of B within a work-group)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer,
 cl::LocalSpaceArg > (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Bwrk =
 cl::Local(sizeof(float) * Pdim);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N), cl::NDRange(64)),
 N, d_A, d_B, d_C, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)
}

Mat. Mul. host program (Share a column of B within a work-group)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)
{ // declarations (not shown)
 sz = N * N;
 std::vector<float> h_A(sz);
 std::vector<float> h_B(sz);
 std::vector<float> h_C(sz);

 cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

 cl::Context context(DEVICE);
 cl::Program program(context,
 util::loadProgram("mmulCrow.cl“,
 true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
 <int, cl::Buffer, cl::Buffer, cl::Buffer,
 cl::LocalSpaceArg > (program, "mmul");

 d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
 d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
 d_C = cl::Buffer(context,
 CL_MEM_WRITE_ONLY, sizeof(float) * sz);

 cl::LocalSpaceArg Bwrk =
 cl::Local(sizeof(float) * Pdim);

 mmul(cl::EnqueueArgs(queue,
 cl::NDRange(N), cl::NDRange(64)),
 N, d_A, d_B, d_C, Bwrk);

 cl::copy(queue, d_C, begin(h_C), end(h_C));

 // Timing and check results (not shown)
}

Change host program to pass
local memory to kernels.

•  Add an arg of type
LocalSpaceArg is needed.

•  Allocate the size of local
memory

•  Update argument list in
kernel functor

Matrix multiplication performance
•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU
from NVIDIA® with a max of
16 compute units, 512 PEs
Device is Intel® Xeon® CPU,
E5649 @ 2.53GHz

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

The CuBLAS SGEMM provides an effective
measure of peak achievable performance on the
GPU. CuBLAS performance = 283366.4 MFLOPS

Matrix multiplication example:
Naïve solution, one dot product per element of C

•  Multiplication of two dense matrices.

•  To make this fast, you need to break the problem down into
chunks that do lots of work for sub problems that fit in fast
memory (OpenCL local memory).

= x
A(i,:)

B(:,j)
C(i,j)

Dot product of a row of A and a column of B for each element of C

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 for (i = 0; i < N; i++) {
 for (j = 0; j < N; j++) {
 for (k = 0; k < N; k++) {
 C[i*N+j] += A[i*N+k] * B[k*N+j];
 }
 }
 }
}

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 for (i = 0; i < N; i++)
 for (j = 0; j < N; j++)
 for (k = 0; k < N; k++)
 C[i*N+j] += A[i*N+k] * B[k*N+j];
}

Let’s get rid of all
those ugly brackets

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 float tmp;
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++)
 for (i = ib*NB; i < (ib+1)*NB; i++)
 for (jb = 0; jb < NB; jb++)
 for (j = jb*NB; j < (jb+1)*NB; j++)
 for (kb = 0; kb < NB; kb++)
 for (k = kb*NB; k < (kb+1)*NB; k++)
 C[i*N+j] += A[i*N+k] * B[k*N+j];
}

Break each loop
into chunks with a
size chosen to
match the size of
your fast memory

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 float tmp;
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++)
 for (jb = 0; jb < NB; jb++)
 for (kb = 0; kb < NB; kb++)

 for (i = ib*NB; i < (ib+1)*NB; i++)
 for (j = jb*NB; j < (jb+1)*NB; j++)
 for (k = kb*NB; k < (kb+1)*NB; k++)
 C[i*N+j] += A[i*N+k] * B[k*N+j];
}

Rearrange loop nest
to move loops over

blocks “out” and
leave loops over a

single block together

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 float tmp;
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++)
 for (jb = 0; jb < NB; jb++)
 for (kb = 0; kb < NB; kb++)

 for (i = ib*NB; i < (ib+1)*NB; i++)
 for (j = jb*NB; j < (jb+1)*NB; j++)
 for (k = kb*NB; k < (kb+1)*NB; k++)
 C[i*N+j] += A[i*N+k] * B[k*N+j];
}

This is just a local
matrix multiplication

of a single block

Matrix multiplication: sequential code

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++)
 for (jb = 0; jb < NB; jb++)
 for (kb = 0; kb < NB; kb++)
 sgemm(C, A, B, …) // Cib,jb = Aib,kb * Bkb,jb

}

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

= x

A(ib,:) B(:,jb) C(ib,jb)

Mapping into A, B, and C from each work item

ocl_get_global_ID(0)	
 =	
 16	

oc
l_
ge
t_
gl
ob

al
_I
D(
1)
	
 =
	
 1
6	

ocl_get_local_ID(0)	
 =	
 4	

ocl_get_local_ID(1)	
 =	
 4	

16	
 x	
 16	
 NDRange	
 with	
 	

workgroups	
 of	
 size	
 4x4	

Map	
 Matrices	
 A,	
 B	
 and	
 C	

onto	
 this	
 NDRange	
 	
 in	
 a	

row	
 major	
 order	
 (N	
 =	
 16	

and	
 Blksz	
 =	
 4).	
 	
 	

Understanding
index offsets in

the blocked
matrix

multiplication
program.

= x

A(Iblk,:) B(:,Jblk) C(Iblk,Jblk)

Row Block Column Block
Mapping into A, B, and C from each work item

ocl_get_global_ID(0)	
 =	
 16	

oc
l_
ge
t_
gl
ob

al
_I
D(
1)
	
 =
	
 1
6	

ocl_get_local_ID(0)	
 =	
 4	

ocl_get_local_ID(1)	
 =	
 4	

16	
 x	
 16	
 NDRange	
 with	
 	

workgroups	
 of	
 size	
 4x4	

Map	
 Matrices	
 A,	
 B	
 and	
 C	

onto	
 this	
 NDRange	
 	
 in	
 a	

row	
 major	
 order	
 (N	
 =	
 16	

and	
 Blksz	
 =	
 4).	
 	
 	

Understanding
index offsets in

the blocked
matrix

multiplication
program.

16	
 x	
 16	
 NDRange	
 with	
 	

workgroups	
 of	
 size	
 4x4	

Abase	
 =	
 Iblk*N*blksz	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 1	
 *	
 16	
 *	
 4	

Bbase	
 =	
 Jblk*blksz	
 	
 =	
 1*4	
 	
 	
 	
 	

	

Subsequent	
 A	
 blocks	

by	
 shiPing	
 index	
 by	

Ainc	
 =	
 blksz	
 =	
 4	

Subsequent	
 B	
 blocks	

by	
 shiPing	
 index	
 by	

Binc	
 =	
 blksz	
 *	
 N	

	
 	
 	
 	
 	
 	
 	
 	
 	
 =	
 4	
 *	
 16	
 =	
 64	

	

	

	

	

Mapping into A, B, and C from each work item

Consider	
 indices	
 for	

computaQon	
 of	
 the	
 block	

C(Iblk=2,	
 Jblk=1)	

Map	
 Matrices	
 A,	
 B	
 and	
 C	

onto	
 this	
 NDRange	
 	
 in	
 a	

row	
 major	
 order	
 (N	
 =	
 16	

and	
 Blksz	
 =	
 4).	
 	
 	

= x

A(Iblk,:) B(:,Jblk) C(Iblk,Jblk)

Row Block Column Block
Understanding
index offsets in

the blocked
matrix

multiplication
program.

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 { //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 { //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Load A and B
blocks, wait for all
work-items to finish

Wait for
everyone to
finish before
going to next

iteration of Kblk
loop.

Matrix multiplication … Portable Performance

CPU Xeon Phi Core i7, HD
Graphics

NVIDIA
Tesla

Sequential C (compiled /O3) 224.4 1221.5

C(i,j) per work-item, all
global 841.5 13591 3721

C row per work-item, all
global 869.1 4418 4196

C row per work-item, A row
private 1038.4 24403 8584

C row per work-item, A
private, B local 3984.2 5041 8182

Block oriented approach
using local (blksz=16) 12271.3 74051

(126322*)
38348

(53687*) 119305

Block oriented approach
using local (blksz=32) 16268.8

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB
* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla®	
 M2090	
 GPU	
 from	
 NVIDIA®	
 with	
 a	
 max	
 of	
 16	
 compute	
 units,	
 512	
 PEs	

•  Single Precision matrix multiplication (order 1000 matrices)

Matrix multiplication performance

•  Matrices are stored in global memory.

Case MFLOPS

CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3

C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

Third party names are the property of their owners.

These are not official benchmark results. You may
observe completely different results should you run
these tests on your own system.

Matrix multiplication performance (CPU)
•  Matrices are stored in global memory.

Case MFLOPS

CPU

Sequential C (not OpenCL, compiled /O3) 224.4

C(i,j) per work-item, all global 841.5

C row per work-item, all global 869.1

C row per work-item, A row private 1038.4

C row per work-item, A private, B local 3984.2

Block oriented approach using local (blksz=8) 7482.5

Block oriented approach using local (blksz=16) 12271.3

Block oriented approach using local (blksz=32) 16268.8

Intel MKL SGEMM 63780.6

Device is Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel
compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

Outline
•  OpenCL: overview and core models
•  Host programs
•  Kernel programs
•  Optimizing OpenCL kernels

– Memory coelescence
– Divergent control flows
– Occupancy
– Other Optimizations

•  Working with the OpenCL Memory Hierarchy
•  Resources supporting OpenCL

OpenCL 2.0

•  OpenCL 2.0 was ratified in Nov’13
•  Brings several important new features:

–  Shared Virtual Memory
–  Nested parallelism
–  Built-in work-group reductions
–  Generic address space
–  Pipes
–  C11 atomics

•  Specification and headers available here
•  Production drivers now available from Intel and

AMD, with more expected to follow

SPIR

•  Standard Portable Intermediate Representation
•  Defines an IR for OpenCL programs
•  Means that developers can ship portable binaries

instead of their OpenCL source
•  Also intended to be a target for other languages/

programming models (C++ AMP, SYCL, OpenACC,
DSLs)

•  SPIR 1.2 & SPIR 2.0 ratified, SPIR-V provisional
available now

•  Implementations available from Intel and AMD,
with more on the way

SYCL

•  Single source C++ abstraction layer for
OpenCL

•  Goal is to enable the creation of C++
libraries and frameworks that utilize OpenCL

•  Can utilize SPIR to target OpenCL platform
•  Supports ‘host-fallback’ (CPU) when no

OpenCL devices available
•  Provisional specification released Mar’14
•  Codeplay and AMD working on

implementations

Libraries

•  clFFT/clBLAS / clRNG (all on github)
•  Arrayfire (open source soon)
•  Boost compute with VexCL
•  ViennaCL (PETSc), PARALUTION
•  Lots more - see the Khronos OpenCL pages:

https://www.khronos.org/opencl/resources

Resources:
https://www.khronos.org/opencl/

OpenCL Programming Guide:
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and
James Fung, 2011

Heterogeneous Computing with OpenCL
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry
and Dana Schaa, 2011

The OpenCL specification
Surprisingly approachable for a spec!

https://www.khronos.org/registry/cl/

OpenCL reference card
Useful to have on your desk(top)
Available on the same page as the spec.

OpenCL Tutorials

•  One of the most popular OpenCL training
courses on the web

•  Completely open source (creative commons
attribution CC BY license)

•  Downloaded over 4,200 times so far!
•  Lots of training material, examples and

solutions, source code etc
•  Works on Linux, Windows, OSX etc.

http://handsonopencl.github.io

Other useful resources

•  Lots of OpenCL examples in the SDKs from
the vendors:
–  AMD, Intel, Nvidia, …

•  The SHOC OpenCL/CUDA benchmark suite
(available as source code):
–  https://github.com/vetter/shoc/wiki

•  The GPU-STREAM memory bandwidth
benchmark:
–  https://github.com/UoB-HPC/GPU-STREAM

Other useful resources

•  IWOCL webpage & newsletter:
– http://www.iwocl.org
– http://www.iwocl.org/signup-for-updates/

•  IWOCL annual conference
– Spring each year
–  In Vienna, April 19-21 2016!

Conclusion
•  OpenCL

–  Widespread industrial support

–  Defines a platform-API/framework for heterogeneous parallel
computing, not just GPGPU or CPU-offload programming

–  Has the potential to deliver portably performant code; but it has to
be used correctly

•  Yes, they were all OpenCL times (double precision). The CPU is a dual-socket Intel(R) Xeon(R) CPU E5-2687W
(16 cores total, with hyper-threading enabled). I’ve attached the output of a clinfo run on this machine.
Your jac_solv_parfor (compiled with icc) achieves this on the CPU:

•  25.3 seconds (32 threads)
•  19.0 seconds (OMP_NUM_THREADS=16, to avoid hyper-threading)

•  The serial code takes 83 seconds.

•  Running the OpenMP version natively on the Xeon Phi gives a very impressive time of 4.8 seconds.
• 
•  > As Tom says, most GPUs will need a large matrix to really get going. Here’s the timings I get with

Ndim=4096 when running on four different devices (NVIDIA GPU, AMD GPU, Xeon Phi and Xeon CPU).
•  >
•  > --
•  > | | K40 | 290X | Phi | Xeon |
•  > |--------|---------|---------|---------|---------|
•  > | basic | 35.0 | 198.2 | 245.2 | 23.6 |
•  > | colmaj | 14.1 | 15.3 | 35.8 | 71.5 |
•  > | nobr | 13.3 | 15.6 | 16.6 | 38.8 |
•  > | wg | 13.2 | 15.1 | 15.0 | 36.8 |
•  > | best | 6.2 | 6.7 | 13.3 | 32.1 |
•  > --
•  >

