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OpenCL Learning progression

Topic

Exercise

concepts

. OCL intro

OpenCL overview, history and
Core models.

ll. Host programs

Vadd program

Understanding host programs

lll. Kernel programs

Basic Jacobi solver

The OpenCL execution model
and how it relates to kernel
programs.

IV. Memory
coalescence

Reorganizing the A
matrix in the Jacobi
solver program.

Memory layout effects on kernel
performance

V. Divergent control
flows

Divergent control flow
in the Jacobi solver

Control flows and how they
impact performance

VI. Occupancy

Work group size
optimization for the
Jacobi solver

Keeping all the resources busy

VIl. Memory hierarchy
in OpenCL

Demo: Matrix
Multiplication

Working with private, local and
global memory




Outline

w=) + OpenCL: overview and core models
* Host programs
* Kernel programs
« Optimizing OpenCL kernels
— Memory coelescence
— Divergent control flows

— Occupancy
— Other Optimizations

« Working with the OpenCL Memory Hierarchy
« Resources supporting OpenCL



Industry Standards for Programming
Heterogeneous Platforms

GPUs

Increasingly general
purpose data-parallel
computing

CPUs

Multiple cores driving
performance increases

Emerging
Intersection

Graphics

prf)A::jeltsis-or Heterogeneous éEIsda}nd
i Computing ading
programming -
e.g. OpenMP Languages

OpenCL - Open Computing Language

Open, royalty-free standard for portable, parallel programming of
heterogeneous parallel computing CPUs, GPUs, and other processors



The origins of OpenCL

— ARM
AMD Merged, needed — Nokia
commonality — |IBM
ATI across products — Sony
Wrote a rough draft [ Qualcomm
GPU vendor - straw man API — Imagination
wants to steal
— — TI
NVIDIA market share
from CPU — + many
more
CPU vendor - K:];l?m;(s)rcn??dpme —
Intel wants to steal group \ 4
nte market share es
from GPU 0“ )
s 7
Was tired of recoding for
Appl many core, GPUs. OpenCL
pPpl€e Pushed vendors to

standardize. Third party names are the property of their owners.



OpenCL Platform Model
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Compute Unit OpenCL Device

* One Host and one or more OpenCL Devices
— Each OpenCL Device is composed of one or more

Compute Units

« Each Compute Unit is divided into one or more Processing Elements
« Memory divided into host memory and device memory



An N-dimensional domain of work-items

* Global Dimensions:
— 1024x1024 (whole problem space)

* Local Dimensions:
— 128x128 (work-group, executes together)

| 1024 |
o uEEEEN

1024

* Choose the dimensions (1, 2, or 3) that are
“best” for your algorithm



Index-space/work-items/work-groups

ocl_get_global_ID(1) = 16
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ocl_get_global_ID(0) = 16
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An N-dimensional domain of work-items

* Global Dimensions:
— 1024x1024 (whole problem space)

* Local Dimensions:
— 128x128 (work-group, executes together)

1024 Synchronization between
L e work-items possible only
—.i======= within work-groups:
§ “mFr I barriers and memory fences
oy
—| -lll'.=‘

=== Cannot synchronize
between work-groups
within a kernel

* Choose the dimensions (1, 2, or 3) that are
“best” for your algorithm



Execution Model

* Host defines a command queue and associates it with a context
(devices, kernels, memory, etc).

* Host enqueues commands to the command queue

Kernel execution - work-group size S, .
commands launch } o
work-items: i.e. a Work-group (., w,) 1
kernel for each pointin .~
an abstract Index Space work-item WOt
(W,S, +sx, WS, +5,) W, S, +sX, W, S, +5,
called an NDRange o) O
| T ’ | ,,"’/ work-group size S,,
Gy work-item work-item
I ~ ~~-_ L (WXSX+SX,WySy+Sy) (wXSx+sx,wySy+sy)
J e | T T (8,:8,) = (0, S,-1) (55,5,) = (S1,S,- 1)
P It ¥
A (G, byG,) G, .
(Gy by Gy) * Work items execute together as a work-group.

index space



OpenCL Memory model

* Private Memory

Private Private Private Private

— Per work-item Memory Memory Memory Memory
Work-ltem Work-ltem Work-ltem Work-Item
— Shared within a T e
Local Memo Local Memo
work-group B | ry
Work-Group Work-Group
Global Memory & Constant Memory

— Visible to all Compute Device

work-groups
 Host memory
— On the CPU

Host Memory

Memory management is explicit:
You are responsible for moving data from
host — global — local and back



The BIG idea behind OpenCL

. g\(e)mgf:ne loops with functions (a kernel) executing at each point in a problem

_|ﬁ\gdcgtf%cne|%sera p1|>(gél40)|g 184 ;<mla(92e4w=it|1,8gr%,l§e7rg Rernel

executions

Traditional loops

void
trad mul (int n,
const float *a,

const float *b,
float *c)

int 1i;
for (i=0; i<n; i++)
c[i] = a[i] * b[i];

Data Parallel OpenCL

kernel wvoid

dp mul (global const float *a,
global const float *Db,

* global float *c)
{

int id = get global id(0);

c[i1d] = a[id] * b[id]:

} // execute over “n” work-items




Context and Command-Queues

Context;

— The environment within which kernels
execute and in which synchronization
and memory management is defined.

The context includes:
— One or more devices
— Device memory
— One or more command-queues

All commands for a device (kernel
execution, synchronization, and memory
operations) are submitted through a
command-queue.

Each Command-queue points to a single
device within a context.

Device

Conte




Execution model (kernels)

* OpenCL execution model ... define a problem domain and execute an instance
of a kernel for each point in the domain

kernel void square (
global float* input,
global float* output)
{
int i = get global id(0);
output[i] = input[i] * input[i];

}
get global id(0)
\ 4
10
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Building Program objects

« The program object encapsulates: OpenCL uses

— A context _ runtime compilation

— The program source/binary because in

— List of target devices and build options u ,
general you don't

 The Build process ... to create a program object k e details of
: now the details o
— clCreateProgramWithSource() the device when

— clCreateProgramWithBinary() you ship the
program
Kernel Code Program

kernel void

horizontal reflect(read only image2d t src, .
write only image2d t dst) Compile for GPU
{ GPU code
int x = get_global id(0); // x-coord
int y = get global id(l); // y-coord
int width = get image width(src); -

float4 src_val = read imagef (src, sampler,
(int2) (width-1-x, y)),

Compile for CPU
CPU code

write imagef (dst, (int2) (x, y), src_val);



Example: vector addition

* The “hello world” program of data parallel programming is a
program to add two vectors

Cli] = A[i] + B[i] fori=1to N

* For the OpenCL solution, there are two parts
— Kernel code
— Host code



Vector Addition - Kernel

kernel void vadd ( global const float *a,
__global const float *b,
__global float *c)

int gid = get global 1d(0);
clgid] = algid] + b[gid];



The basic platform and runtime APIs
in OpenCL (using C)

Context
Programs Kernels Memory Objects Command Queues
d ul e [
__kernel void y I e Buffers .IJ Images |
dp_mul(global const float *a, p_mu
global const float *b, CPU program binary arg[0] value In Out of
global float *c) f— Order Order
{ dp_mul
intid = get_global_id(0); GPU program binary e Queue Queue
el vk Compute Device

Compile code )




Outline

* OpenCL: overview and core models
w= « Host programs
* Kernel programs
« Optimizing OpenCL kernels
— Memory coelescence
— Divergent control flows

— Occupancy
— Other Optimizations

« Working with the OpenCL Memory Hierarchy
« Resources supporting OpenCL



Vector Addition - Host

* The host program ... the code that runs on the host to:
— Setup the environment for the OpenCL program
— Create and manage kernels
« 5 simple steps in a basic Host program
Define the platform ... platform = devices+context+queues
Create and Build the program (dynamic library for kernels)

Setup memory objects
Define kernel (attach arguments to kernel function)
Submit commands ... transfer memory objects and execute kernels

OO WN =



1. Define the platform

* Grab the first available Platform:

err = clGetPlatformIDs(1, &firstPlatformld, &numPlatforms);

» Use the first CPU device the platform provides:

err = clGetDevicelDs(firstPlatformid, CL_DEVICE_TYPE_CPU, 1,
&device_id, NULL);

- Create a simple context with a single device:

context = clCreateContext(firstPlatformld, 1, &device_id, NULL,
NULL, &err);

* Create a simple command queue to feed our compute device:

commands = clCreateCommandQueue(context, device_id, 0, &err);




2. Create and Build the program

- Define source code for the kernel-program as a string literal (great
for toy programs) or read from a file (common in real apps).

 Build the program object:

program = clCreateProgramWithSource(context, 1,
(const char **) & KernelSource, NULL, &err);

- Compile the program to create a “dynamic library” from which
specific kernels can be pulled:

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL);

- Fetch and print error messages (if(err != CL_SUCCESS) ):

size tlen; char buffer[2048];
clGetProgramBuildinfo(program, device _id,
CL_PROGRAM_BUILD_LOG, sizeof(buffer),

buffer, &len);
printf(*%s\n", buffer);




3. Setup Memory Objects

« For vector addition, 3 memory objects ... one for each
input vector (A and B) and one for the output vector (C).

 Create input vectors and assign values on the host:

float a_data[LENGTH], b_data[LENGTH)], c_res [LENGTH];
for(i = 0; i < count; i++){

a_data[i] = rand() / (float)RAND _MAX;

b_data[i] = rand() / (float)RAND_MAX;

* Define OpenCL memory objects:

a_in = clCreateBuffer(context, CL_ MEM_READ _ONLY,
sizeof(float) * count, NULL, NULL);

b_in = clCreateBuffer(context, CL_ MEM_READ _ ONLY,
sizeof(float) * count, NULL, NULL);

c_out = clCreateBuffer(context, CL_ MEM_WRITE_ONLY,
sizeof(float) * count, NULL, NULL);




4. Define the kernel

* Create kernel object from the kernel function “vadd”:

kernel = clCreateKernel(program, "vadd", &err);

 Attach arguments to the kernel function “vadd” to memory objects:

err
err
err
err

= clSetKernelArg(kernel, 0, sizeof(cl_mem), &a_in);

= clSetKernelArg(kernel, 1, sizeof(cl_mem), &b_in);

= clSetKernelArg(kernel, 2, sizeof(cl_mem), &c_out);

= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count);




5. Submit commands

* Write Buffers from host into global memory (as non-blocking operations)

err = clEnqueueWriteBuffer( commands, a_in, CL_FALSE, 0,
sizeof(float) * count, a_data, 0, NULL, NULL );

err = clEnqueueWriteBuffer( commands, b_in, CL_FALSE, O,
sizeof(float) * count, b_data, 0, NULL, NULL );

- Enqueue the kernel for execution (note: in-order queue so this is OK)

err = clEnqueueNDRangeKernel( commands, kernel, 1, NULL,
&global, &local, 0, NULL, NULL );

- Read back the result (as a blocking operation). Use the fact that we have an
in-order queue which assures the previous commands are done before the
read begins.

err = clEnqueueReadBuffer( commands, ¢c_out, CL_TRUE, 0,
sizeof(float) * count, c_res, 0, NULL, NULL );




Vector Addition - Host Program

// create the OpenCL context on a GPU device // build the program
cl_context = clCreateContextFromType (0, err = clBuildProgram(program, 0, NULL, NULL, NULL,
CL DEVICE TYPE GPU, NULL, NULL, NULL); NULL) ;
// get the list of GPU devices associated with context // create the kernel
clGetContextInfo (context, CL CONTEXT DEVICES, O, kernel = clCreateKernel (program, “vec add”, NULL);
NULL, &cb):; -
divices = mallgc(Cb); // set the args values
c GggSgggg?tﬁngfsontext, CL_CONTEXT_DEVICES, cb, err = clSetKernelArg(kernel, 0, (void *) &memobijs[0],
sizeof (cl_mem)) ;
// create a command-gueue err |= clSetKernelArg(kernel, 1, (Yoid *) &memobjs[1],
cmd _queue = clCreateCommandQueue (context, devices[0], sizeof (cl_mem)) ;
0, NULL); err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],
sizeof (cl_mem)) ;
// allocate the buffer memory objects // set work-item dimensions
memobjs[0] = clCreateBuffer (context, CL MEM READ ONLY | global work size[0] = n;
CL MEM COPY HOST PTR, sizeof(cl float)*n, srcAh, - -
o NULL) ; }
memobjs[1] = clCreateBuffer (context,CL MEM READ ONLY | // execute kernel
CL MEM COPY HOST PTR, sizeof(cl float)*n, srcB, err = clEnqueueNDRangeKernel (cmd queue, kernel, 1,
NULL) ; NULL, global work size, NULL, 0, NULL, NULL);
memobjs[2] = clCreateBuffer (context,CL MEM WRITE ONLY,
sizeof(cl_float)*n, NULL, // read output array
NULL) ; err = clEnqueueReadBuffer (cmd queue, memobjs[2],
// create the program CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL);

program = clCreateProgramWithSource (context, 1,
&program source, NULL, NULL);



Vector Addition - Host Program

// create the OpenCL context on a GPU device

cl context = clCreateContextFromType (0,
~CL DEVICE TYPE GPU, NULL, NULL, NULL);

// get the list of GPU devices associated with context

Z Define platform and queues

clGetContextInfo (context, clo,

CiIL, CONMIEY DILWVILCIES ,
devices, NULL) ; o =

// create a command-queue
cmd queue = clCreateCommandQueue (context,
0, NULL);

devices([0],

// builc =
... Build the program
NULL) ;

// create the kernel

kernel = clCreateKernel (program, “vec add”, NULL);

// S .

=: Create and setup kernel -

err |= clSetKernelArg(kernel, 1, (void *)é&memobjs[l],
sizeof (cl mem));

err |= clSetKernelArg(kernel, 2, (void *)&memobijs[2],

izeof (¢l mem)) -

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer (context, CL MEM READ ONLY
CL MEM COPY HOST PTR, sizeof (cl float)*n, srcA,
NULL) ; T B B B

memc ONLY |

¢ Define memory objects =
memobjs (4] = cliCreatebulfer (context,CL MEM WRITE ONLY,

sizeof (cl float)*n, NULL,

// set work-item dimensions
global work sizel0l = n:
. -.... Execute the kernel

err = clEnqueueNDRangeKernel (cmd queue,

NULL, global work size, NULL, O, NULL, NULL);

JJJJJJJJ s A

NULL) ;
create the program

progra™ — "1 ro st oDms s s B G s g T,
&pr

Create the program

// rea

err =
9, ™

Read results on the host

RUE,

It’'s complicated, but most of this is “boilerplate” and not as bad
as it looks.




Exercise 1: Running the Vadd kernel

« Goal:
— To inspect and verify that you can build and run
an OpenCL kernel

 Procedure:

— Use the vadd.c program and makefile we provide.
It will run a simple kernel to add two vectors
together.

— Look at the host code and identify the API calls
discussed in these slides in the host code.
« Expected output:

— A message verifying that the vector addition
completed successfully



Outline

* OpenCL: overview and core models
* Host programs
e « Kernel programs
« Optimizing OpenCL kernels
— Memory coelescence
— Divergent control flows

— Occupancy
— Other Optimizations

« Working with the OpenCL Memory Hierarchy
« Resources supporting OpenCL



Kernel programming

» Kernel programming is where all the
action is at in OpenCL

* Writing simple OpenCL kernels is quite
easy, so we'll cover that quickly
» Optimizing OpenCL kernels to run really

fast is much harder, so that's where we're
going to spend most of the time



OpenCL C kernel language
* Derived from ISO C99

— A few restrictions: no recursion, function pointers,
functions in C99 standard headers ...

— Preprocessing directives defined by C99 are
supported (#include etc.)

 Built-in data types
— Scalar and vector data types, pointers

— Data-type conversion functions:
« convert_type<_sat><_roundingmode>

— Image types: image2d_t, image3d_t and sampler_t



OpenCL C Language Highlights
Function qualifiers

— __kernel qualifier declares a function as a kernel
» |.e. makes it visible to host code so it can be enqueued

— Kernels can call other kernel-side functions

Address space qualifiers
— __global, __local, __constant, __private
— Pointer kernel arguments must be declared with an address space qualifier

Work-item functions
— uint get_work_dim() ... number of dimensions in use (1,2, or 3)
— size_t get_global_id(uint n) ... global work-item ID in dim “n”
— size_t get_local_id(uint n) ... work-item ID in dim “n” inside work-group
— size_t get_group_id(uint n) ... ID of work-group in dim “n”
— size_t get_global_size(uint n) ... num of work-items in dim “n”
— size_t get_local_size(uint n) ... num of work-items in work group in dim “n”

Synchronization functions

— Barriers - all work-items within a work-group must execute the barrier function
before any work-item can continue

— Memory fences - provides ordering between memory operations



OpenCL C Language Restrictions

Pointers to functions are not allowed

Pointers to pointers allowed a kernel,
out not as an argument to a kernel invocation

Bit-fields are not supported

Variable length arrays and structures are not
supported

Recursion is not supported (yet!)

Double types are optional in OpenCL v1.2, but
the key word is reserved

(note: most implementations support double)




Memory Consistency

OpenCL uses a relaxed consistency memory model; i.e.

— The state of memory visible to a work-item is not guaranteed to be
consistent across the collection of work-items at all times.

Within a work-item:

— Memory has load/store consistency to the work-item’s private view of
memory, i.e. it sees its own reads and writes correctly

Within a work-group:

— Local memory is consistent between work-items at a barrier.
Global memory is consistent within a work-group at a
barrier, but not guaranteed across different work-groups!!

— This is a common source of bugs!

Consistency of memory shared between commands (e.g.
kernel invocations) is enforced by synchronization (barriers,
events, in-order queue)



Work-ltem Synchronization

Ensure correct order of memory operations
to local or global memory (with flushes or

. Within a work-group queuing a memory fence)

void barrier () /\
— Takes optional flags
CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
— A work-item that encounters a barrier() will wait until ALL work-
items in its work-group reach the barrier()
— Corollary: If a barrier() is inside a branch, then the branch must be
taken by either:
* ALL work-items in the work-group, OR

* NO work-item in the work-group

* Across work-groups

— No guarantees as to where and when a particular work-group will be
executed relative to another work-group

— Cannot exchange data, or have barrier-like synchronization
between two different work-groups! (Critical issue!)

— Only solution: finish the kernel and start another



Matrix multiplication: sequential code

We calculate C=AB, dimA = (N x N), dimB=(N x N), dimC=(N x N)

void mat mul (int Order, float *A, float *B, float *C)

{

int i, j, k;

for (1 = 0; i < Order; i++) {
for (j = 0; j < Order; j++) {
for (k = 0; k < Order; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,J)
C[i*Order+j] += A[i*Order+k] * B[k*Order+j];

} “a ‘& ]
+

Dot product of a row of A and a column of B for each
element of C



Matrix multiplication performance

 Serial C code on CPU (single core).

Case MFLOPS
CPU GPU
Sequential C (not OpenCL) 887.2 N/A

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz
using the gcc compiler.

These are not official benchmark results. You
may observe completely different results should
you run these tests on your own system.

Third party names are the property of their owners.



Matrix multiplication: sequential code

void mat mul (int Order, float *A, float *B, float *C)
{

int i, j, k;

for (1 = 0; i < Order; i++) {
for (j = 0; j < Order; j++) {
for (k = 0; k < Order; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,J)
C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
}
}
}



Matrix multiplication: Kernel code (1/2)

__kernel void mat mul(
const int Order, _ global float *A,
__global float *B, _ global float *C)

int i, j, k;

for (1 = 0; i < Order; i++) {
for (j = 0; j < Order; j++) {
for (k = 0; k < Order; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,J)
C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
}
}

} Mark as a kernel function and
} specify memory qualifiers




Matrix multiplication: Kernel code (2/2)

__kernel void mat mul(

const int Order, _ global float *A,
__global float *B, _ global float *C)

{
int i, j, k;
= get _global id(0);
j = get global id(1l);
for (k = 0; k < Order; k++) {
// C(i, j) = sum(over k) A(i,k) * B(k,J)
C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
}
}
}
}

Remove outer loops and set
work-item co-ordinates



Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS

CPU GPU
Sequential C (not OpenCL) 887.2 N/A
C(i,j) per work-item, all global 3,926.1 3,720.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

These are not official benchmark results. You may
observe completely different results should you run
these tests on your own system.

Third party names are the property of their owners.



Exercise: Jacobi Solver Program

« Goal:
— To write a non-trivial OpenCL kernel

 Procedure:

— Consider the serial program jac_solv.c. Look at the
program, run it, and understand what'’s its doing.

— The program Jac_solv_ocl_basic.c is a C host program to
run an OpenCL kernel for the jacobi solver.

— A “skeleton” of the kernel program is in the file
jac_ocl_basic.cl.

— Inside the file jac_ocl_basic.cl, write the body of the
kernel program.

» Expected output:
— A message verifying that the program ran correctly .



Jacobi solver kernel code (1/2)

#define TYPE double
#if (TYPE == double)

#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif

kernel void jacobi(
const unsigned Ndim,
global TYPE * A, global TYPE * b,
global TYPE * xold, global TYPE * xnew)

size ti= get global id(0);

xnewli] = (TYPE) 0.0;
for (intj = 0; j < Ndim; j++) {
if (i 1= j)
xnewli] += A[i*Ndim + j] * xold[j];
}
xnewli] = (b[i] - xnewl[i]) / A[i*Ndim + i];}



Jacobi solver kernel code (2/2)

kernel void convergence(
global TYPE * xold, global TYPE * xnew,
local TYPE * conv_loc, global TYPE * conv )

size_ti=get global_id(0); A kernel enqueued on the host
TYPE tmp; to compute convergence. This
implements a reduction with
the last stage of the reduction
occuring on the host.

tmp = xnewl[i] - xold[i];
conv_loc[get local_id(0)] = tmp * tmp;
barrier(CLK_LOCAL_MEM_FENCE);

for (int offset = get_local_size(0) / 2; offset > 0; offset /= 2) {
if (get_local_id(0) < offset) {
conv_loc[get _local _id(0)] += conv_loc[get_local id(0) + offset];
}
barrier(CLK_LOCAL_MEM_FENCE);

}
if (get_local_id(0) ==0) { conv[get _group_id(0)] = conv_loc[0]; }



Processor took 4.8 seconds.

Jacobi Solver Results

 Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
« With OpenMP for multithreading
— 25.3 seconds with 32 threads (hyperthreading enabled)
— 19.0 seconds with 16 threads (hyperthreading disabled)
* Running the OpenMP version natively on the Intel® Xeon® Phi

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double | Nvidia K40 AMD 290X | Intel Xeon Intel Xeon
NDIM = 4096 GPU GPU PHI processor | processor
Basic 35.0 198.2 245.2 23.6

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc

compiler.

Third Party names are the property of their owners.
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Coalesced Access

* Coalesced memory accesses are key for
high performance code

* In principle, it’s very simple, but
frequently requires transposing/

transforming data on the host before
sending it to the GPU

« Sometimes this is an issue of AoS vs. SOA




Memory layout is critical to performance

« “Structure of Arrays vs. Array of Structures”
problem

* Array of Structures (AoS) more natural to code
struct Point{ float x, vy, z, a; };
Point *Points;

x|yl z|lal../x y|z|al|...x|y|z|a|..|x|y|z| a]l...

» Structure of Arrays (S0A) suits memory
coalescence in vector units

struct { float *x, *y, *z, *a; } Points;

Adjacent work-items/
vector-lanes like to
access adjacent
memory locations




Coalescence

« Coalesced memory
accesses are key for
high bandwidth

« Simply, it means, if
thread i accesses
memory location n then
thread i+1 accesses
memory location n+1

 In practice, it’s not
quite as strict...

{

kernel func( _ global float *mema,

__global float *memB)
int g _id = get _global id(0);

// ideal
float vall = memA[g id];

// still pretty good
const int c = 3;
float val2 = memA[g id + c];

// stride size is not so good
float val3 = memA[c*g id];

const int loc =
some strange func(g_id);

// terrible!
float vald = memA[loc];



Memory access patterns
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Memory access patterns

float vall = memA[g_id];
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Memory access patterns

const int ¢ = 3;
float val2 = memA[g_id + cl;
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Memory access patterns

float val3 = memA[3xg_id];
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Strided access results in multiple
memory transactions (and
Kills throughput)

64 Byte Boundary




Memory access patterns

const int loc =
some_strange_func(g_id);

float vald = memA[loc];
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Exercise

 [nspect the memory access patterns in your
Jacobi solver kernel.

* |s there a memory alighment problem? If
so, fix it.
* |f you want to generate the transpose of

the A matrix (a column major order), we
provide a function inside mm_utils.c that
you can call inside the host code to do this.

void init_colmaj_diag_dom_near_identity_matrix(int Ndim, TYPE *A);



Jacobi solver kernel code

#define TYPE double
#if (TYPE == double)

#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif

kernel void jacobi(
const unsigned Ndim,
global TYPE * A, global TYPE * b,
global TYPE * xold, global TYPE * xnew)

{ Original code (row-major A) was:
size ti= get global id(0); xnew(i] += A[i*Ndim + j] * xold[j];
Adjacent work-items process
xnew[i] = (TYPE) 0.0: offset locations into A

for (intj = 0; j < Ndim; j++) { Switch to a column-major A

if (i 1=]) matrix so adjacent work-
xnewl[i] += A[j*Ndim + i] * xold[j];  items process adjacent
} _—— locations in A as you go

xnew[i] = (b[i] - xnewl[i]) / A[i*Ndim + i];} through the loop over j



Processor took 4.8 seconds.

Jacobi Solver Results

 Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
« With OpenMP for multithreading
— 25.3 seconds with 32 threads (hyperthreading enabled)
— 19.0 seconds with 16 threads (hyperthreading disabled)
* Running the OpenMP version natively on the Intel® Xeon® Phi

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds

TYPE = double | Nvidia K40 AMD 290X | Intel Xeon Intel Xeon
NDIM = 4096 GPU GPU PHI processor | processor
Basic 35.0 198.2 245.2 23.6
Colmaj 14.1 15.3 35.8 71.5

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc

compiler.

Third Party names are the property of their owners.
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Single Instruction Multiple Data

 Individual threads of a warp start together at the
same program address

 Each thread has its own instruction address counter

and register state
— Each thread is free to branch and execute independently

— Provide the MIMD abstraction

* Branch behavior
— Each branch will be executed serially
— Threads not following the current branch will be disabled

Awarp -

_ Time
—

Start Branch1 Branch2 Branch3 Converge 59



Branching

GPUs tend not to support speculative execution, which
means that branch instructions have high latency

This latency can be hidden by switching to alternative work-
items/work-groups, but avoiding branches where possible is
still a good idea to improve performance

When different work-items executing within the same SIMD
ALU array take different paths through conditional control
flow, we have divergent branches (vs. uniform branches)

These are even worse: work-items will stall while waiting for
the others to complete

We can use predication, selection and masking to convert
conditional control flow into straight line code and
significantly improve the performance of code that has lots
of conditional branches



Branching

Conditional execution Selection and masking
// Only evaluate expression // Always evaluate expression
// if condition is met // and mask result
if (a > b) temp = (a - b*c);
{ mask = (a>b ? 1.£ : 0.£f);

acc += (a - b*c); acc += (mask * temp) ;



Exercise

 Eliminate the branch in your Jacobi solver
kernel.

 We don’t need any host change so use the
same host program as last time:

— Jac_solv_ocl_colmaj.c



Jacobi solver kernel code

#define TYPE double
#if (TYPE == double)

#pragma OPENCL EXTENSION cl_khr_fp64 : enable
#endif

kernel void jacobi(
const unsigned Ndim,
global TYPE * A, global TYPE * b,
global TYPE * xold, global TYPE * xnew)

size ti= get global id(0);

xnew[i] = (TYPE) 0.0;
for (intj = 0; j < Ndim; j++) {

@] += A[j*Ndim + i] * xold[j] * (TYPE)(H)
}

xnew[i] = (b[i] - xnewl[i]) / A[i*Ndim + i];}




Processor took 4.8 seconds.

Jacobi Solver Results

 Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
« With OpenMP for multithreading
— 25.3 seconds with 32 threads (hyperthreading enabled)
— 19.0 seconds with 16 threads (hyperthreading disabled)
* Running the OpenMP version natively on the Intel® Xeon® Phi

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds
TYPE = double | Nvidia K40 AMD 290X | Intel Xeon Intel Xeon
NDIM = 4096 GPU GPU PHI processor | processor
Basic 35.0 198.2 245.2 23.6
Colmaj 14.1 15.3 35.8 71.5
No Branch 13.3 15.6 16.6 38.8

Note: optimizations in the table are cumulative

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.

Third Party names are the property of their owners.
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Keep the processing elements (PE) busy

* Occupancy: a measure of the fraction of time
during a computation when the PE’s are busy.

Goal is to keep this number high (well over
50%).

« Pay attention to the number of work-items and
work-group sizes

— Rule of thumb: On a modern GPU you want at least
4 work-items per PE in a Compute Unit

— More work-items are better, but diminishing returns,
and there is an upper limit

« Each work item consumes PE finite resources (registers etc)




Occupancy

Number of work-groups per compute unit (CU)
depends on registers and local memory size per
work-group

E.g. NVIDIA’s K40 has 128 words of memory per
processor element (PE), i.e. 128 registers per
core; and 48KB of local memory per CU

But, multiple work-items (threads) will be
scheduled on a single PE (similar to
hyperthreading)

In fact, global memory latency is so high that
multiple work-items per PE are a requirement for
achieving a good proportion of peak
performance!




Work-group sizes

« Work-group sizes being a power of 2 helps on
most architectures. At a minimum use multiples
of:

— 8 for Intel® AVX CPUs
— 16 for Intel® Xeon Phi™ processors
— 32 for Nvidia® GPUs
— 64 for AMD®
— May be different on different hardware
* On most systems aim to run lots of work-groups.
For example, on Xeon Phi, multiples of the number

of threads available (e.g. 240 on a 5110P) is
optimal, but as many as possible is good (1000+)

Third party names are the property of their owners
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Exercise

* Experiment with different work group
sizes. Use host program

jac_solv_colmaj_nobr_wg.c

* You do not need to change the kernel
program ... Use your kernel program from
the last exercise.

* Run the host program with the flag -h to
see the command line options. One of
them (--wg) will vary the workgroup size.



Processor took 4.8 seconds.

Jacobi Solver Results

 Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
« With OpenMP for multithreading
— 25.3 seconds with 32 threads (hyperthreading enabled)
— 19.0 seconds with 16 threads (hyperthreading disabled)
* Running the OpenMP version natively on the Intel® Xeon® Phi

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds
TYPE = double | Nvidia K40 AMD 290X | Intel Xeon Intel Xeon
NDIM = 4096 GPU GPU PHI processor | processor
Basic 35.0 198.2 245.2 23.6
Colmaj 14.1 15.3 35.8 71.5
No Branch 13.3 15.6 16.6 38.8
Opt WG size 13.2 15.1 15.0 32.1

Note: optimizations in the table are cumulative

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.

Third Party names are the property of their owners.
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Constant Memory

Constant memory can be considered
a store for data that never changes

Setting and updating constants in
memory uses the same interface as
global memory, with enqueueRead/ (

kernel void
calc something

enqueueWrite commands global float *a,
The difference is how it is declared global float *b,
in the kernel global float *c,

Some devices may have dedicated
on-chip caches or data-paths for
constant memory

Devices are guaranteed to support
constant memory allocations of at

//constant memory is
//set on the host
constant float *params

least 64kB )
Can also declare OpenCL program {
scope constant data, but this has to //code here
be initialized at OpenCL program }

compile time



Compiler Options

* OpenCL compilers accept a number of flags
that affect how kernels are compiled:

-cl-opt-disable
-cl-single-precision-constant
-cl-denorms-are-zero
-cl-fp32-correctly-rounded-divide-sqrt
(-cl-mad-enable A
-cl-no-signed-zeros
-cl-unsafe-math-optimizations
\~cl-finite-math-only VA
-cl-fast-relaxed-math




Other compilation hints

« Can use an attribute to inform the compiler
of the work-group size that you intend to
launch kernels with:

__attribute ((reqd work group size(x, y, z)))

e As with C/C++, use the const/restrict
keywords for kernel arguments where
appropriate to make sure the compiler can
optimise memory accesses



Exercise

« Experiment with different optimizations
to get the best runtime you can.



Processor took 4.8 seconds.

Jacobi Solver Results

 Serial code running on the Intel® Xeon® CPU and icc took 83 seconds.
« With OpenMP for multithreading
— 25.3 seconds with 32 threads (hyperthreading enabled)
— 19.0 seconds with 16 threads (hyperthreading disabled)
* Running the OpenMP version natively on the Intel® Xeon® Phi

Different versions of the Jacobi Solver with OpenCL. Runtimes in seconds
TYPE = double | Nvidia K40 AMD 290X | Intel Xeon Intel Xeon
NDIM = 4096 GPU GPU PHI processor | processor
Basic 35.0 198.2 245.2 23.6
Colmaj 14.1 15.3 35.8 71.5
No Branch 13.3 15.6 16.6 38.8
Opt WG size 13.2 15.1 15.0 32.1
Unroll by 4 6.2 6.7 13.3 32.1

Note: optimizations in the table are cumulative

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.

Third Party names are the property of their owners.
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OpenCL Memory model

* Private Memory

Private Private Private Private

— Per work-item Memory Memory Memory Memory
Work-ltem Work-ltem Work-ltem Work-Item
— Shared within a T e
Local Memo Local Memo
work-group B | ry
Work-Group Work-Group
Global Memory & Constant Memory

— Visible to all Compute Device

work-groups
* Host memory
— On the CPU

Host Memory

Memory management is explicit:
You are responsible for moving data from
host — global — local and back



The Memory Hierarchy

Bandwidths Sizes
Private memory Private memory
O(2-3) words/cycle/WI O(10) words/WiI
Local memory Local memory
O(10) words/cycle/WG O(1-10) KBytes/WG
Global memory Global memory
0(100-200) GBytes/s O(1-10) GBytes
Host memory Host memory
O(1-100) GBytes/s O(1-100) GBytes

Managing the memory hierarchy is one of the most important
things to get right to achieve good performance

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011



Optimizing matrix multiplication
MM cost determined by FLOPS and memory movement:

— 2*n3 = O(n3) FLOPS

— Operates on 3*n? = O(n%) numbers

To optimize matrix multiplication, we must ensure that for
every memory access we execute as many FLOPS as
possible.

Outer product algorithms are faster, but for pedagogical
reasons, let’s stick to the simple dot-product algorithm.

C(H) A(i,:)
+ X B(:,])

C(H)

Dot product of a row of A and a column of B for each element of C

We will work with work-item/work-group sizes and the
memory model to optimize matrix multiplication



Optimizing matrix multiplication

« There may be significant overhead to manage work-items
and work-groups.

* So let’s have each work-item compute a full row of C

. .. AG,:
Cili“ C‘li” . (i,:) 5.

X

Dot product of a row of A and a column of B for each element of C

« And with an eye towards future optimizations, let’s collect
work-items into work-groups with 64 work-items per work-

group



An N-dimension domain of work-items

* Global Dimensions: 1024 (1D)
Whole problem space (index space)

« Local Dimensions: 64 (work-items per work-group)
Only 1024/64 = 16 work-groups in total

v
o

1024

* Important implication: we will have a lot fewer
work-items per work-group (64) and work-
groups (16). Why might this matter?



Matrix multiplication: One work item per row of C

{
__kernel void mmul( int j, kj

const int Order, int i = get_global_id(0);

__global float *A, float tmp;

__global float *B, for (j = 0; j < Order; j++) {

global float *C) tmp = 0.0%;

- for (k = 0; k < Order; k+

+)

tmp += A[i*Order
+k]*B[k*Order+j];
C[i*Order+j]

tmp;



Mat. Mul. host program (1 row per work-item)

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int main(void)
{ // declarations (not shown)
sz=N*N;
std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram("mmulCrow.cl“
true));

-

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
<int, cl::Buffer, cl::Buffer, cl::Buffer>
(program, "mmul”);

d_A = cl::Buffer(context, begin(h_A),
end(h_A),
= cl::Buffer(context, begin(h_B),
end(h_B), true);

= cl::Buffer(context,
CL_MEM_WRITE_ONLY,
sizeof(float) * sz);

true);
dB

d_C

mmul(cl::EnqueueArgs( queue,
cl::NDRange(N),

cl::NdRange(64)),
N, d_A, d_B, d_C);

cl::copy(queue, d_C, begin(h_C),
end(h_C));

// Timing and check results (not shown)
3



Mat. Mul. host program (1 row per work-item)

cl::CommandQueue queue(context);

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int main(void)
{ // declarations (not shown)
sz=N*N;
std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

Changes to host program:
1. 1D ND Range set to
number of rows in the C

J matrix

2. Local Dimension set to 64
(which gives us 16 work-
groups which matches the
GPU’s number of compute

units).
true));

Third party names are the property of their owners.

auto mmul = cl::make_kernel

}

<int, cl::Buffer, cl::Buffer, cl::Buffer>
(program, "mmul”);

d_A = cl::Buffer(context, begin(h_A),

end(h_A), true);
d_B = cl::Buffer(context, begin(h_B),

end(h_B), true);
d_C = cl::Buffer(context,

CL_MEM_WRITE_ONLY,
sizeof (float) * sz);

mmul(cl::EnqueueArgs( queue,
cl::NDRange(N),

cl::NdRange(64)),
N, d_A, d_B, d_C);

cl::copy(queue, d_C, begin(h_C),
end(h_C));

// Timing and check results (not shown)



Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS

CPU GPU
Sequential C (not OpenCL) 887.2 N/A
C(i,j) per work-item, all global 3,926.1 3,720.9
C row per work-item, all global 3,379.5 4,195.8

This has started to help.

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

These are not official benchmark results. You
may observe completely different results should
Third party names are the property of their owners. you run these tests on your own system.



Optimizing matrix multiplication

« Notice that, in one row of C, each element reuses the same
row of A.

« Let’s copy that row of A into private memory of the work-
item that’s (exclusively) using it to avoid the overhead of
loading it from global memory for each C(i,j) computation.

iy _ el (o ) | 50

Private memory of each
work-item



Private Private
MMMMMMMMMM

Private Memory I .—‘”‘.

ooooooooo

Compute Device

ooooooooo

* A work-items private memory:

— A very scarce resource, only a few tens of 32-bit
words per Work-Item at most (on a GPU)

— If you use too much it spills to global memory or
reduces the number of Work-ltems that can be
run at the same time, potentially harming
performance*

— Think of these like registers on the CPU

 How do you create and manage private
memory?

— Declare statically inside your kernel

* Occupancy on a GPU



Matrix multiplication: (Row of A in private memory)

for (k = 0; k < Order; k++)

__kernel void mmul (
Awrk[k] = A[i*Order+k];

const int Order,
__global float =*A,

__global float *B, for (j = 0; j < Order; j++) {
__global float *C) tmp = 0.0f;

{ for (k = 0; k < Order; k++)
int j, k; tmp += Awrk[k]*B[k*Order+j];
int 1 =

get global id(0); _

C[i*Order+j] tmp;

float tmp;
float Awrk[1024];



Matrix multiplication: (Row of A in private memory)

__kernel void mmul (
const int Order,
__global float =*A,
__global float *B,
__global float *C)

int j, k;
int 1 =
get global id(0);
float tmp;
float Awrk[1024];

Setup a work array for Ain
private memory*

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory)

for (k = 0; k < Pdim; k++)

Awrk[k] = A[i*Ndim+k];

for (j = 0; j < Orde
tmp = 0.0f;
for (k = 0; k < Ox
tmp += Awrk[k]*B[k*(C

Copy a row of A
into private
memory from
global memory
before we start
with the matrix
multiplications.

C[i*Order+j]

tmp;




Mat. Mul. host program (Row of A in private memory)

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int main(void)
{ // declarations (not shown)
sz=N*N;
std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram("mmulCrow.cl®,
true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel
<int, cl::Buffer, cl::Buffer, cl::Buffer>
(program, "mmul”);

d_A = cl::Buffer(context, begin(h_A),
end(h_A), true);

d_B = cl::Buffer(context, begin(h_B),
end(h_B), true);

d_C = cl::Buffer(context,
CL_MEM_WRITE_ONLY,
sizeof(float) * sz);

mmul(cl::EnqueueArgs( queue,
cl::NDRange(N),
(

cl::NDRange 642),
N, d_A, d_B, d_C);

cl::copy(queue, d_C, begin(h_C),
end(h_C));

// Timing and check results (not shown)

}

Host program unchanged from last exercise




Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS
CPU GPU

Sequential C (not OpenCL) 887.2 N/A

C(i,j) per work-item, all global 3,926.1 3,720.9

C row per work-item, all global 3,379.5 4,195.8

C row per work-item, A row private 3,385.8 8,584.3
Device is Tesla® M2090 GPU from /
NVIDIA® with a max of 16 Big impact!

compute units, 512 PEs

Device is Intel® Xeon® CPU, ] i benchmark :
E5649 @ 2.53GHz These are not o 1c1a. enchmark results. You may
observe completely different results should you run
Third party names are the property of their owners. these tests on your own system.



Optimizing matrix multiplication

« We already noticed that, in one row of C, each element uses
the same row of A

« Each work-item in a work-group also uses the same columns
of B

* S0 let’s store the B columns in local memory (which is
shared by the work-items in the work-group)

(L) _ ) +</‘Wr)_\>(

_—

Private memory of each

work-item Local memory for each
work-group




Private Private
Memory Memory

Private Private
emol lemor
Local Mel NOI y v [vercn ] [t | [t

Local Memory

« A work-group’s shared memory
— Typically 10’s of KBytes per Compute Unit*

— Use Local Memory to hold data that can be
reused by all the work-items in a work-group

— As multiple Work-Groups may be running on each Compute Unit
(CU), only a fraction of the total Local Memory size may be
available to each Work-Group

 How do you create and manage local memory?

— Create and Allocate local memory on the host
cl::LocalSpaceArg localmem = cl::Local(sizeof(float)* N);

— Setup the kernel to receive local memory blocks

auto foo = cl::make kernel<int, cl::Buffer,
cl::LocalSpaceArg>(program, “bar”);

— Mark kernel arguments that are from local memory as __local

— Your kernels are responsible for transferring data between Local and
Global/Constant memories ... there are built-in functions to help
(async_work_group_copy(), async_workgroup_strided_copy(), etc)

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011



Local Memory performance hints

* Local Memory doesn’t always help...
— CPUs don’t have special hardware for it ™

— This can mean excessive use of Local Memory might
slow down kernels on CPUs

— GPUs now have effective on-chip caches which can
provide much of the benefit of Local Memory but
without programmer intervention

— Access patterns to Local Memory affect performance
in a similar way to accessing Global Memory
« Have to think about things like coalescence & bank conflicts

— So, your mileage may vary!




Memory Consistency

OpenCL uses a relaxed consistency memory model; i.e.

— The state of memory visible to a work-item is not guaranteed to be
consistent across the collection of work-items at all times.

Within a work-item:

— Memory has load/store consistency to the work-item’s private view of
memory, i.e. it sees its own reads and writes correctly

Within a work-group:

— Local memory is consistent between work-items at a barrier.
Global memory is consistent within a work-group at a
barrier, but not guaranteed across different work-groups!!

— This is a common source of bugs!

Consistency of memory shared between commands (e.g.
kernel invocations) is enforced by synchronization (barriers,
events, in-order queue)



Work-ltem Synchronization

Ensure correct order of memory operations
to local or global memory (with flushes or

. Within a work-group queuing a memory fence)

void barrier () /\
— Takes optional flags
CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE
— A work-item that encounters a barrier() will wait until ALL work-
items in its work-group reach the barrier()
— Corollary: If a barrier() is inside a branch, then the branch must be
taken by either:
* ALL work-items in the work-group, OR

* NO work-item in the work-group

* Across work-groups

— No guarantees as to where and when a particular work-group will be
executed relative to another work-group

— Cannot exchange data, or have barrier-like synchronization
between two different work-groups! (Critical issue!)

— Only solution: finish the kernel and start another



Matrix multiplication: B column shared between work-items

f k = 0; k < Order; k++
kernel void mmul ( or ( ’ raeti )

- _ Awrk[k] = A[i*Order+k];
const int Order,

__global float *A,
__global float *B,
__global float *C,
__local float *Bwrk)

for (j = 0; j < Order; j++) {

for (k=iloc; k< Order; k+=nloc)
Bwrk[k] = B[k* Order +j];
{ barrier (CLK_LOCAL_MEM FENCE) ;
int j, k;
int i = get _global id(0); tmp = 0.0f;
for (k = 0; k < Order; k++)
int iloc = get local id(0); tmp += Awrk[k]*Bwrk[k];
int nloc= get local size(0);
C[i*Order+j] = tmp;
float tmp; barrier (CLK_LOCAL_ MEM_ FENCE) ;

float Awrk[1024]; }



Matrix multiplication: B column shared between work-items

for (k = 0; k < Order; k++)

kernel void mmul ( .
— Awrk[k] = A[1*Order+k];

const int Order,
__global float *A,
__global float *B,
__global float *C,

<:::;;E;cal float *QQEEE:>

{
int j, k;

for (j = 0; j < Order; j++) {

or (k=iloc; k< Order; k+=nloc)
Bwrk[k] = B[k* Order +j];
arrier (CLK_LOCAL MEM FENCE) ;

int i = get_global id(0); tmp = 0.0f;

for (k = 0; k < Order; k++)
tmp += Awrk[k]*Bwrk[k];

int iloc = get local id(0);
int nloc= get local size(O

C[i*Order+j] = tmp;

float tmp; barrier (CLK_LOCAL MEM FENCE) ;
float Awrk[1024]; } Pass a work array in local memory to hold a
} column of B. All the work-items do the copy

“in parallel” using a cyclic loop distribution
(hence why we need iloc and nloc)




Mat. Mul. host Program (Share a column of B within a work-group)

#define DEVICE CL_DEVICE_TYPE_DEFAULT

int main(void)

{ // declarations (not shown)
sZz=N*N;
std::vector<float> h_A(sz);

std::vector<float> h_B(sz);
std::vector<float> h_C(sz);

cl::Buffer d_A, d_B, d_C;

// initialize matrices and setup
// the problem (not shown)

cl::Context context(DEVICE);

cl::Program program(context,
util::loadProgram("mmulCrow.cl®,
true));

cl::CommandQueue queue(context);

auto mmul = cl::make_kernel

}

<int, cl::Buffer, cl::Buffer, cl::Buffer,
cl::LocalSpaceArg > (program, "mmul”);

d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
d_C = cl::Buffer(context,

CL_MEM_WRITE_ONLY, sizeof(float) * sz);

cl::LocalSpaceArg Bwrk =
cl::Local(sizeof(float) * Pdim);

mmul(cl::EnqueueArgs( queue,
cl::NDRange(N), cl::NDRange(64)),
N, d_A, d_B, d_C, Bwrk);

cl::copy(queue, d_C, begin(h_C), end(h_C));

// Timing and check results (not shown)



Mat. Mul. host Program (Share a column of B within a work-group)

cl::CommandQueue queue(context);

#define DEVICE CL_DEVICE_TYPE_DEFAULT
int ma"”(vo"d). auto mmul = cl::make_kernel
{ // declarations (not shown) <int, cl::Buffer, cl::Buffer, cl::Buffer,
sz=N*N; cl::LocalSpaceArg > (program, "mmul"};
std::vector<float> h_A(sz);
Change host program to pass d_A = cl::Buffer(context, begin(h_A), end(h_A),true);
local memory to kernels. d_B = cl::Buffer(context, begin(h_B), end(h_B),true);
« Add an arg of type d_C = cl::Buffer(context,
; LocalSpaceArg is needed. CL_MEM_WRITE_ONLY, sizeof(float) * sz);
* Allocate the size of local
Eec;mt)ry list 1 " cl::LocalSpaceArg Bwrk =
pdate argument st in cl::Local(sizeof (float) * Pdim);
kernel functor L
- . rmmul(cl::EnqueueArgs( queue,
cl::Context context(DEVICE); cl::NDRange(N), cl::NDRange(64)),
cl::Program program(context, N, d_A, d_B, d_C, Bwrk);
util::loadProgram("mmulCrow.cl®, |\_ o T = ’
true)); cl::copy(queue, d_C, begin(h_C), end(h_C));
// Timing and check results (not shown)

3



Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS
CPU GPU
Sequential C (not OpenCL) 887.2 N/A
C(i,j) per work-item, all global 3,926.1 3,720.9
C row per work-item, all global 3,379.5 4,195.8
C row per work-item, A row private 3,385.8 8,584.3
C row per work-item, A private, B local 10,047.5 8,181.9
Device is Tesla® M2090 GPU
from NVIDIA® with a max of The CuBLAS SGEMM provides an effective

16 compute units, 512 PEs measure of peak achievable performance on the

Device is Intel® Xeon® CPU, GPU. CuBLAS performance = 283366.4 MFLOPS
E5649 @ 2.53GHz

These are not official benchmark results. You may observe completely

Third party names are the property of their owners. igarant results should you run these tests on your own system.



Matrix multiplication example:
Naive solution, one dot product per element of C

* Multiplication of two dense matrices.

C(H)

[ X B(:,j)

Dot product of a row of A and a column of B for each element of C

* To make this fast, you need to break the problem down into
chunks that do lots of work for sub problems that fit in fast
memory (OpenCL local memory).



Matrix multiplication: sequential code

void mat mul(int N, float *A, float *B, float *C)
{
int i, j, k;
for (1 = 0; 1 < N; i++) {
for (j = 0; J < N; J++) {
for (k = 0; k < N; k++) {
C[i*N+j] += A[i*N+k] * B[k*N+7j];
}



Matrix multiplication: sequential code

void mat mul(int N, float *A, float *B, float *C)
{
int i, j, k;
for (1 = 0; i < N; 1i++)
for (J = 0; J < N; j++)
for (k = 0; k < N; k++)
C[1*N+j] += A[1*N+k] * B[k*N+j];

Let’s get rid of all
those ugly brackets




Matrix multiplication: sequential code

void mat mul(int N, float *A, float *B, float *C)

{

Jr K;
float tmp;

int i,

int NB=N/block size; // assume N%block size=0

for (ib
for (1
for (jb

for (3

0;

for

for

ib*NB;

ib < NB;

jb*NB;
0;

(kb
(k

i < (ib+1)*NB;
jb < NB;

ib++)
i++)
jb++)

j < (jb+1)*NB;
kb < NB; kb++)

j++)

Break each loop
into chunks with a
size chosen to
match the size of
your fast memory

kb*NB; k < (kb+1)*NB; k++)

C[1*N+]j] += A[i*N+k] * B[k*N+]j];




Matrix multiplication: sequential code

void mat mul(int N, float *A, float *B, float *C)
{

int i, j, k;

float tmp;

int NB=N/block size; // assume N%block size=0

for (ib = 0; ib < NB; ib++)
for (jb = 0; jb < NB; jb++)
for (kb = 0; kb < NB; kb++)

Rearrange loop nest
to move loops over
blocks “out” and
leave loops over a
for (i = ib*NB; i < (ib+1)*NB; i++) single block together

for (j = jb*NB; j < (jb+1)*NB; Jj++)
for (k = kb*NB; k < (kb+1)*NB; k++)
C[i*N+j] += A[i*N+k] * B[k*N+j];



Matrix multiplication: sequential code

void mat mul(int N, float *A, float *B, float *C)
{

int i, 3Jj, k;

float tmp;

int NB=N/block size; // assume N%block size=0

for (ib = 0; ib < NB; ib++) This is just a local
for (Jb = 0; jb < NB; Jb++) matrix multiplication
for (kb = 0; kb < NB; kb++) of a single block
for (i = ib*NB; i < (ib+1)*NB; i++) 'z///

I

' for (j = jb*NB; j < (Jb+1)*NB; j++)

| for (k = kb*NB; k < (kb+1)*NB; k++)
I
I

I
I
I
I
I
I
C[i*N+j] += A[i*N+k] * B[k*N+3j]; :



Matrix multiplication: sequential code

void mat mul(int N, float *A, float *B, float *C)
{

int i, j, k;

int NB=N/block size; // assume N%block size=0

for (ib = 0; ib < NB; ib++)

for (jb = 0; jb < NB; jb++)
for (kb = 0; kb < NB; kb++)
sgemm(C, A, B, ..) // Cip sp = Aip,xp * Bip,ip

C(ib,jb) A(ib,:) B(:,jb)

T~

Note: sgemm is the name of the level three BLAS routine to multiply two matrices



Mapping into A, B, and C from each work item

Understanding
index offsets in
the blocked
matrix
multiplication
program.

16 x 16 NDRange with ocl_get_global_ID(0) = 16

workgroups of size 4x4 | <

Map Matrices A, Band C
onto this NDRange in a

row major order (N =16
and Blksz = 4).

A e0oe
e0e®
e0e®
e0e®

P00 9000 000® 000 @
P0ee 0000 000 000 Y

|<—>|

ocl get local ID(1)=4

ocl _get global ID(1) =16
@
@

| €
®
®
®

!

ocl _get local ID(0) =4



Mapping into A, B, and C from each work item

Row Block Column Block _
C(Iblk,Jblk) A(Iblk, ) B(:,Jblk) Understanding
index offsets in
the blocked
matrix

X multiplication
N program

ocl _get global ID(0) =16

16 x 16 NDRange with
workgroups of size 4x4 | <

Map Matrices A, Band C
onto this NDRange in a

row major order (N =16
and Blksz = 4).

A e0oe
e0e®
e0e®
e0e®

ocl _get global ID(1) =16

ocl_get local ID(1) =4

P0ee 0000 000 000 Y

PPe® 000 ® 000 ® VOO @
PPe® 000 ® 000 ® VOO @
|<—>|

| <
!

ocl _get local ID(0) =4



Mapping into A, B, and C from each work item

Row Block Column Block _
C(Iblk,Jblk) A(Iblk, ) B(:,Jblk) Understanding
index offsets in
the blocked
matrix

X multiplication
N program

Map Matrices A, Band C
onto this NDRange in a

16 x 16 NDRange with
workgroups of size 4x4

Bbase = Jblk*blksz = 1*4

Consider indices for XXX \kooo X ee row majororder(N=16
computation of the block ceceleces ee eeee andBlksz=4).
C(|b|k=2 Jb|k=1) P0G \0000® 0000 0000
’ ©P0e0e® 09000 0000 0000
Abase = Iblk*N*blksz csss sece oe scce Subsequent B blocks
—1*16*4 \:y_o\:ooo 000 o000 (byshif‘tingindexby
@00 9000 0000 0000
eeee 0000 ee o000 Binc = blksz * N
i cece cece ccee ccee =4*16 =64
Subsequent A blocks 00006 0000 00606 006060
by shifting index by teee eceece ce eeee
Ainc = blksz = 4 P000 0006




Blocked matrix multiply: kernel
#define blksz 16

: // upper-left-corner and inc for A and B

—kernel Voég:;f’u”rigigned Nt int Abase = Iblk*N*blksz; int Ainc = blksz;
_gIObaI f|0at* A, |nt Bbase = Jblk*blkSZ, |nt B|nC - bIkSZ*N,
__global float* B, // C(Iblk,Jblk) = (sum over Kblk)
__global float* C, A(Iblk,Kblk)*B(Kblk,Iblk)
__local float* Awrk, for (Kblk = 0; Kblk<Num_BLK; Kblk++)
__local float* Bwrk) { //Load A(Iblk,Kblk) and B(Kblk,Jblk).

{ //Each work-item loads a single element of the two

int kloc, Kblk;

//blocks which are shared with the entire work-group
float Ctmp=0.0f;

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];

// compute element C(i,j) Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];
int i = get_global_id(0);
int j = get_global_id(1); barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)
Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

// Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group_id(0);
int Jblk = get_group_id(1);

// C(i,3) is element C(iloc, jloc) barrier(CLK_LOCAL_MEM_FENCE);

// of block C(Iblk, Jblk) Abase += Ainc; Bbase += Binc;
int iloc = get_local_id(0); by
int jloc = get_local_id(1); C[j*N+i] = Ctmp;

int Num_BLK = N/blksz; ¥



Blocked matrix multiply: kernel

#dlfeﬁr:eelbxl/lé?dz :nGmuI ( // upper-left-corner and inc for A and B
— const unsigned int N, !nt Abase = Iblk*N*blksz; _int Ainc = blksz;
_global float* A, int Bbase = Jblk*blksz;  int Binc = blksz*N;
__global float* B, // C(1blk,Jblk) = (sum over Kblk)
__global float* C, A(Iblk,Kblk)*B(Kblk,Jblk)
__local float* Awrk, for (Kblk = 0; Kblk<Num_BLK; Kblk++)
__local float* Bwrk) { //Load A(Iblk,Kblk) and B(Kblk,Jblk).
. Load A and B //Each work-item loads a single element of the two
int kloc, Kblk; [ 15cks, wait for all //blocks which are shared with the entire work-group
float Ctmp=0.0f;

work-items to finish [

// compute element C(i,j) Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

int i = get_global_id(0);
int j = get_global_id(1); barrier(CLK_LOCAL_MEM_FENCE);

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; ]

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)
Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

// Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group_id(0);
int Jblk = get_group_id(1);

barrier(CLK_LOCAL_MEM_FENCE); Wait for

// C(i,j) is element C(iloc, jloc) everyone to
// of block C(Iblk, Jblk) Abase += Ainc; Bbase += Binc; | finish before
int iloc = get_local_id(0); b going to next
int jloc = get_local_id(1); C[J*N+i] = Ctmp; iteration of Kblk

int Num_BLK = N/blksz; b loop.




Matrix multiplication ... Portable Performance
« Single Precision matrix multiplication (order 1000 matrices)

Corei7, HD NVIDIA

CPU Xeon Phi Graphics Tesla
Sequential C (compiled /O3) 794 4 1221.5
C(1,)) per work-item, all 8415 13591 3721
global '
C row per work-item, all
bl 869.1 4418 4196
C row per work-item, A row 1038 4 24403 8584
private
C row per work-item, A 3984 2 5041 8182
private, B local
Block oriented approach 74051 38348
using local (blksz=16) L2 1S (126322%) (53687%) 19305
Block oriented approach 16268 .8

using local (blksz=32)

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB =4 MB
* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs These are not official benchmark results. You may observe completely

Third party names are the property of their owners. different results should you run these tests on your own system.



Matrix multiplication performance

* Matrices are stored in global memory.

Case MFLOPS

CPU GPU
Sequential C (not OpenCL) 887.2 N/A
C(i,j) per work-item, all global 3,926.1 3,720.9
C row per work-item, all global 3,379.5 4,195.8
C row per work-item, A row private 3,385.8 8,584.3
C row per work-item, A private, B local 10,047.5 8,181.9

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz

These are not official benchmark results. You may
observe completely different results should you run

Third party names are the property of their owners. these tests on your own system.



Matrix multiplication performance (CPU)
* Matrices are stored in global memory.

Case MFLOPS
CPU
Sequential C (not OpenCL, compiled /03) 224.4
C(i,j) per work-item, all global 841.5
C row per work-item, all global 869.1
C row per work-item, A row private 1038.4
C row per work-item, A private, B local 3984.2
Block oriented approach using local (blksz=8) 7482.5
Block oriented approach using local (blksz=16) 12271.3
Block oriented approach using local (blksz=32) 16268.8
Intel MKL SGEMM 63780.6

Device is Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel
compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

These are not official benchmark results. You may observe completely

Third party names are the property of their owners. igarant results should you run these tests on your own system.



Outline

* OpenCL: overview and core models
* Host programs
* Kernel programs
« Optimizing OpenCL kernels
— Memory coelescence

— Divergent control flows
— Occupancy

— Other Optimizations
« Working with the OpenCL Memory Hierarchy
=) . Resources supporting OpenCL



OpenCL 2.0

OpenCL 2.0 was ratified in Nov’13

Brings several important new features:
— Shared Virtual Memory

— Nested parallelism

— Built-in work-group reductions

— Generic address space

— Pipes

— C11 atomics

Specification and headers available here

Production drivers now available from Intel and
AMD, with more expected to follow



Standard Portable Intermediate Representation
Defines an IR for OpenCL programs

Means that developers can ship portable binaries
instead of their OpenCL source

Also intended to be a target for other languages/
programming models (C++ AMP, SYCL, OpenACC,
DSLs)

SPIR 1.2 & SPIR 2.0 ratified, SPIR-V provisional
available now

Implementations available from Intel and AMD,
with more on the way




GycL.

Single source C++ abstraction layer for
OpenCL

Goal is to enable the creation of C++
libraries and frameworks that utilize OpenCL

Can utilize SPIR to target OpenCL platform

Supports ‘host-fallback’ (CPU) when no
OpenCL devices available

Provisional specification released Mar’14

Codeplay and AMD working on
implementations




Libraries

clFFT/cIBLAS / cIlRNG (all on github)
Arrayfire (open source soon)

Boost compute with VexCL
ViennaCL (PETSc), PARALUTION
Lots more - see the Khronos OpenCL pages:

https://www.khronos.org/opencl/resources




Resources:
https://www.khronos.org/opencl/

The OpenCL specification
Surprisingly approachable for a spec!

https://www.khronos.org/reqgistry/cl/

OpenCL reference card
Useful to have on your desk(top)
Available on the same page as the spec.

OpenCL Programming Guide:
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and
James Fung, 2011

Heterogeneous Computing with OpenCL
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry
and Dana Schaa, 2011




OpenCL Tutorials

http://handsonopencl.qgithub.io

One of the most popular OpenCL training
courses on the web

Completely open source (creative commons
attribution CC BY license)

Downloaded over 4,200 times so far!

Lots of training material, examples and
solutions, source code etc

Works on Linux, Windows, OSX etc.



Other useful resources

» Lots of OpenCL examples in the SDKs from
the vendors:

— AMD, Intel, Nvidia, ...

* The SHOC OpenCL/CUDA benchmark suite
(available as source code):
— https://github.com/vetter/shoc/wiki

 The GPU-STREAM memory bandwidth

benchmark:
— https://github.com/UoB-HPC/GPU-STREAM




Other useful resources

* IWOCL webpage & newsletter:
— http://www.iwocl.org
— http://www.iwocl.org/signup-for-updates/

* IWOCL annual conference IWOCL

_ Spr]ng eaCh year NNNNNNNNNNNNNNNNNNNNNNNNNNNNN
— In Vienna, April 19-21 2016!



Conclusion
« OpenCL

— Widespread industrial support

— Defines a platform-APl/framework for heterogeneous parallel
computing, not just GPGPU or CPU-offload programming

— Has the potential to deliver portably performant code; but it has to
be used correctly



Yes, they were all OpenCL times (double precision). The CPU is a dual-socket Intel(R) Xeon(R) CPU E5-2687W
(16 cores total, with hyper-threading enabled). I’ve attached the output of a clinfo run on this machine.
Your jac_solv_parfor (compiled with icc) achieves this on the CPU:

25.3 seconds (32 threads)
19.0 seconds (OMP_NUM_THREADS=16, to avoid hyper-threading)

The serial code takes 83 seconds.
Running the OpenMP version natively on the Xeon Phi gives a very impressive time of 4.8 seconds.

> As Tom says, most GPUs will need a large matrix to realk/éet goin%. Here’s the timings | get with
Ndim=4096 when running on four different devices (NVIDIA GPU, AMD GPU, Xeon Phi and Xeon CPU).

>

S mem e mmmmmmememmmmmemsmmmmmeseammemesseemms-—n-

| | K40 | 290X | Phi | Xeon |
[EEEELEEE [EEEEECEEE [EEEEEEEEE [EEEEECEEE [EEEECEEEE I

| basic | 35.0 | 198.2 | 245.2 | 23.6 |
| colmaj | 14.1 | 15.3 | 35.8 | 71.5 |
| nobr | 13.3 | 15.6 | 16.6 | 38.8 |
lwg | 13.2 | 15.1 | 15.0 | 36.8 |
| best | 6.2 | 6.7 | 13.3 | 32.1 |

V V V V VvV VvV V
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