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OpenCL Learning progression 

Topic Exercise concepts 
I. OCL intro OpenCL overview, history and 

Core models. 
II. Host programs Vadd program 

 
Understanding host programs 

III. Kernel programs Basic Jacobi solver The OpenCL execution model 
and how it relates to kernel 
programs. 

IV. Memory 
coalescence 

Reorganizing the A 
matrix in the Jacobi 
solver program. 

Memory layout effects on kernel 
performance 

V. Divergent control 
flows 

Divergent control flow 
in the Jacobi solver 

Control flows and how they 
impact performance 

VI. Occupancy Work group size 
optimization for the 
Jacobi solver 

Keeping all the resources busy 

VII. Memory hierarchy 
in OpenCL 

Demo: Matrix 
Multiplication  

Working with private, local and 
global memory 



Outline 
•  OpenCL: overview and core models 
•  Host programs 
•  Kernel programs 
•  Optimizing OpenCL kernels 

– Memory coelescence 
– Divergent control flows 
– Occupancy 
– Other Optimizations 

•  Working with the OpenCL Memory Hierarchy 
•  Resources supporting OpenCL 



Industry Standards for Programming 
Heterogeneous Platforms 

OpenCL – Open Computing Language 
 

Open, royalty-free standard for portable, parallel programming of 
heterogeneous parallel computing CPUs, GPUs, and other processors 

 

CPUs 
Multiple cores driving 
performance increases 

GPUs 
Increasingly general 

purpose data-parallel 
computing 

Graphics 
APIs and 
Shading 

Languages 

Multi-
processor 

programming – 
e.g. OpenMP 

Emerging 
Intersection 

Heterogeneous 
Computing 



The origins of OpenCL 
AMD 

ATI 

NVIDIA 

Intel 

Apple 

Merged, needed 
commonality 
across products 

GPU vendor – 
wants to steal 
market share 
from CPU 

CPU vendor – 
wants to steal 
market share 
from GPU 

Was tired of recoding for 
many core, GPUs. 
Pushed vendors to 
standardize. 

Wrote a rough draft 
straw man API 

Khronos Compute 
group formed 

ARM 
Nokia 
IBM 
Sony 
Qualcomm 
Imagination 
TI 

Third party names are the property of their owners. 

+ many 
more 



OpenCL Platform Model 

•  One Host and one or more OpenCL Devices 
–  Each OpenCL Device is composed of one or more 

Compute Units 
•  Each Compute Unit is divided into one or more Processing Elements 

•  Memory divided into host memory and device memory 

Processing 
Element 

OpenCL Device 

… … … 

… 
… … … 

… 
… … … 

… 
… … … 

Host 

Compute Unit 



An N-dimensional domain of work-items 
•  Global Dimensions: 

–  1024x1024 (whole problem space) 
•  Local Dimensions: 

–  128x128 (work-group, executes together) 

•  Choose the dimensions (1, 2, or 3) that are 
“best” for your algorithm 

1024 

10
24
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Index-space/work-items/work-groups 



An N-dimensional domain of work-items 
•  Global Dimensions: 

–  1024x1024 (whole problem space) 
•  Local Dimensions: 

–  128x128 (work-group, executes together) 

•  Choose the dimensions (1, 2, or 3) that are 
“best” for your algorithm 

1024 

10
24

 

Synchronization between 
work-items possible only 

within work-groups: 
barriers and memory fences 

Cannot synchronize 
between work-groups 

within a kernel 



Execution Model 
•  Host defines a command queue and associates it with a context 

(devices, kernels, memory, etc). 
•  Host enqueues commands to the command queue 

Gy

Gx

(wx, wy)

(wxSx + sx, wySy + sy)
(sx, sy) = (0,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1,0)

(wxSx + sx, wySy + sy)
(sx, sy) = (0, Sy-1)

(wxSx + sx, wySy + sy)
(sx, sy) = (Sx-1, Sy- 1)

Index Space Work items execute together as a work-group. 

Kernel execution 
commands launch 
work-items: i.e. a 
kernel for each point in 
an abstract Index Space 
called an NDRange 

A (Gy by Gx ) 
index space 



OpenCL Memory model 
•  Private Memory 

–  Per work-item 

•  Local Memory 
–  Shared within a 

 work-group 

•  Global Memory /
Constant Memory 
–  Visible to all 

 work-groups 

•  Host memory 
–  On the CPU 

Memory management is explicit:  
You are responsible for moving data from 

 host → global → local and back 



The BIG idea behind OpenCL 
•  Replace loops with functions (a kernel) executing at each point in a problem domain. 

– E.g., process a 1024 x 1024 image with one kernel invocation per pixel or 1024 x 1024 = 1,048,576 kernel 
executions 

void 
trad_mul(int n,  
         const float *a,  
         const float *b,  
         float *c) 
{ 
  int i; 
  for (i=0; i<n; i++) 
    c[i] = a[i] * b[i];
 } 

Traditional loops 
kernel void 
dp_mul(global const float *a,  
       global const float *b,  
       global float *c) 
{ 
  int id = get_global_id(0); 
 
  c[id] = a[id] * b[id]; 
  
} // execute over “n” work-items 

Data Parallel OpenCL 



Context and Command-Queues 
•  Context:  

–  The environment within which kernels 
execute and in which synchronization 
and memory management is defined.  

•  The context includes: 
–  One or more devices 
–  Device memory  
–  One or more command-queues 

•  All commands for a device (kernel 
execution, synchronization, and memory 
operations) are submitted through a 
command-queue.   

•  Each Command-queue points to a single 
device within a context. 

Queue 

Conte
xt 

  
Device 

Device 
Memory 



get_global_id(0) 

10 

Execution model (kernels) 
•  OpenCL execution model … define a problem domain and execute an instance 

of a  kernel for each point in the domain 

kernel void square( 
    global float* input,  
    global float* output) 
{ 
  int i = get_global_id(0); 
  output[i] = input[i] * input[i]; 
} 

Inp
ut 

Output 36 1 1 0 81 4 16 1 1 81 36 1 4 4 1 81 64 16 1 81 4 0 0 49 64                               

6 1 1 0 9 2 4 1 1 9 7 6 1 2 2 1 9 8 4 1 9 2 0 0 7 8 

49 



Building Program objects 
•  The program object encapsulates: 

–  A context 
–  The program source/binary 
–  List of target devices and build options 

•  The Build process …  to create a program object 
–  clCreateProgramWithSource() 
–  clCreateProgramWithBinary() 

Program 
kernel void  
horizontal_reflect(read_only image2d_t src, 
                   write_only image2d_t dst)  
{ 
  int x = get_global_id(0);  // x-coord   
  int y = get_global_id(1);  // y-coord   
  int width = get_image_width(src);   
  float4 src_val = read_imagef(src, sampler,  
                       (int2)(width-1-x, y));   
  write_imagef(dst, (int2)(x, y), src_val); 
} 

Compile for 
GPU 

Compile for 
CPU 

GPU 
code 

CPU 
code 

Kernel Code 

OpenCL uses 
runtime compilation 
… because in 
general you don’t 
know the details of 
the device when 
you ship the 
program 



Example: vector addition 
•  The “hello world” program of data parallel programming is a 

program to add two vectors 

C[i] = A[i] + B[i]   for i=1 to N 
 

•  For the OpenCL solution, there are two parts 
–  Kernel code 
–  Host code 



Vector Addition - Kernel 

__kernel void vadd (__global const float *a, 

                    __global const float *b,  
                    __global       float *c) 

 { 

     int gid = get_global_id(0); 

     c[gid]  = a[gid] + b[gid]; 

} 



The basic platform and runtime APIs 
in OpenCL (using C) 

arg [0] 
value 

arg [1] 
value 

arg [2] 
value 

arg [0] 
value 

arg [1] 
value 

arg [2] 
value 

In 
Order 
Queue 

Out of 
Order 
Queue 

GPU 

Context 

__kernel void 
dp_mul(global const float *a, 
       global const float *b, 
       global float *c) 
{ 
  int id = get_global_id(0); 
  c[id] = a[id] * b[id]; 
} 

dp_mul 
CPU program binary 

dp_mul 
GPU program binary 

Programs 

arg[0] value 

arg[1] value 

arg[2] value 

Buffers Images 
In 

Order 
Queue 

Out of 
Order 
Queue 

Compute Device 

  
GPU 

  
CPU 

dp_mul 

Programs Kernels Memory Objects Command Queues 



Outline 
•  OpenCL: overview and core models 
•  Host programs 
•  Kernel programs 
•  Optimizing OpenCL kernels 

– Memory coelescence 
– Divergent control flows 
– Occupancy 
– Other Optimizations 

•  Working with the OpenCL Memory Hierarchy 
•  Resources supporting OpenCL 



Vector Addition - Host  
•  The host program … the code that runs on the host to: 

–  Setup the environment for the OpenCL program 
–  Create and manage kernels 

•  5 simple steps in a basic Host program 
1.  Define the platform … platform = devices+context+queues 
2.  Create and Build the program (dynamic library for kernels) 
3.  Setup memory objects 
4.  Define kernel (attach arguments to kernel function) 
5.  Submit commands … transfer memory objects and execute kernels 



1. Define the platform 

    err = clGetDeviceIDs(firstPlatformId, CL_DEVICE_TYPE_CPU, 1, 
                                                                                     &device_id, NULL); 
  

• Grab the first available Platform: 
err = clGetPlatformIDs(1, &firstPlatformId, &numPlatforms); 
 

• Use the first CPU device the platform provides: 

context = clCreateContext(firstPlatformId, 1, &device_id, NULL, 
                                                                     NULL, &err); 

• Create a simple context with a single device: 

 commands = clCreateCommandQueue(context, device_id, 0, &err); 
 

• Create a simple command queue to feed our compute device: 



2. Create and Build the program 

 program = clCreateProgramWithSource(context, 1,  
             (const char **) & KernelSource, NULL, &err); 

err = clBuildProgram(program, 0, NULL, NULL, NULL, NULL); 

• Define source code for the  kernel-program as a string literal (great 
for toy programs) or read from a file (common in real apps). 

• Build the program object: 

• Compile the program to create a “dynamic library” from which 
specific kernels can be pulled: 

• Fetch and print error messages (if(err != CL_SUCCESS) ): 
size_t len;           char buffer[2048]; 
clGetProgramBuildInfo(program, device_id, 
CL_PROGRAM_BUILD_LOG, sizeof(buffer), 
                                                                                                                               
buffer, &len); 
printf("%s\n", buffer); 



3. Setup Memory Objects 
•  For vector addition,  3 memory objects … one for each 

input vector (A and B) and one for the output vector (C). 
•  Create input vectors and assign values on the host: 

 a_in   = clCreateBuffer(context,  CL_MEM_READ_ONLY,   
                                         sizeof(float) * count, NULL, NULL); 
 b_in   = clCreateBuffer(context,  CL_MEM_READ_ONLY,   
                                        sizeof(float) * count, NULL, NULL); 
 c_out  = clCreateBuffer(context,  CL_MEM_WRITE_ONLY,  
                                        sizeof(float) * count, NULL, NULL); 

float        a_data[LENGTH], b_data[LENGTH], c_res [LENGTH];       
for(i = 0; i < count; i++){ 
        a_data[i] = rand() / (float)RAND_MAX; 
        b_data[i] = rand() / (float)RAND_MAX; 
} 

• Define OpenCL memory objects: 



4. Define the kernel 
•  Create kernel object from the kernel function “vadd”: 

err  = clSetKernelArg(kernel, 0, sizeof(cl_mem), &a_in); 
err |= clSetKernelArg(kernel, 1, sizeof(cl_mem), &b_in); 
err |= clSetKernelArg(kernel, 2, sizeof(cl_mem), &c_out); 
err |= clSetKernelArg(kernel, 3, sizeof(unsigned int), &count); 

kernel = clCreateKernel(program, "vadd", &err); 
 

• Attach arguments to the kernel function “vadd” to memory objects: 



5. Submit commands 

err = clEnqueueWriteBuffer( commands, a_in, CL_FALSE, 0,  
                         sizeof(float) * count, a_data, 0, NULL, NULL ); 

err = clEnqueueWriteBuffer( commands, b_in, CL_FALSE, 0,  
                         sizeof(float) * count, b_data, 0, NULL, NULL ); 

• Write Buffers from host into global memory (as non-blocking operations) 

err = clEnqueueNDRangeKernel( commands, kernel, 1, NULL, 
                                               &global, &local, 0, NULL, NULL ); 

err = clEnqueueReadBuffer( commands, c_out, CL_TRUE, 0,  
                           sizeof(float) * count, c_res, 0, NULL, NULL );   

• Enqueue the kernel for execution (note: in-order queue so this is OK)  

• Read  back the result (as a blocking operation).  Use the fact that we have an 
in-order queue which assures the previous commands are done before the 
read begins.    



Vector Addition - Host Program 
// create the OpenCL context on a GPU device 
cl_context = clCreateContextFromType(0, 

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); 
 
// get the list of GPU devices associated with context 
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,  
                                        NULL, &cb); 
devices = malloc(cb); 
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, 

devices, NULL); 
 
// create a command-queue 
cmd_queue = clCreateCommandQueue(context, devices[0], 

0, NULL); 
 
// allocate the buffer memory objects 
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | 

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA,  
                                         NULL);} 

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB,  
                                         NULL); 

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,  
                            sizeof(cl_float)*n, NULL, 

                                         NULL); 
// create the program 
program = clCreateProgramWithSource(context, 1, 

&program_source, NULL, NULL); 

// build the program 
err = clBuildProgram(program, 0, NULL, NULL, NULL,  

                                         NULL); 
 
// create the kernel 
kernel = clCreateKernel(program, “vec_add”, NULL); 

// set the args values 
err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0],  
                                 sizeof(cl_mem)); 
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1], 
                                 sizeof(cl_mem)); 
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],  
                                  sizeof(cl_mem)); 
// set work-item dimensions 
global_work_size[0] = n; 

// execute kernel 
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, 

NULL, global_work_size, NULL, 0, NULL, NULL); 
 
// read output array 
err = clEnqueueReadBuffer(cmd_queue, memobjs[2], 

CL_TRUE, 0, n*sizeof(cl_float), dst, 0, NULL, NULL); 



Vector Addition - Host Program 
// create the OpenCL context on a GPU device 
cl_context = clCreateContextFromType(0, 

CL_DEVICE_TYPE_GPU, NULL, NULL, NULL); 
 
// get the list of GPU devices associated with context 
clGetContextInfo(context, CL_CONTEXT_DEVICES, 0,  
                                        NULL, &cb); 
devices = malloc(cb); 
clGetContextInfo(context, CL_CONTEXT_DEVICES, cb, 

devices, NULL); 
 
// create a command-queue 
cmd_queue = clCreateCommandQueue(context, devices[0], 

0, NULL); 
 
// allocate the buffer memory objects 
memobjs[0] = clCreateBuffer(context, CL_MEM_READ_ONLY | 

CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcA, 
NULL);} 

memobjs[1] = clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, srcB, 
NULL); 

memobjs[2] = clCreateBuffer(context,CL_MEM_WRITE_ONLY,  
                            sizeof(cl_float)*n, NULL, 

NULL); 
// create the program 
program = clCreateProgramWithSource(context, 1, 

&program_source, NULL, NULL); 
 

// build the program 
err = clBuildProgram(program, 0, NULL, NULL, NULL, 

NULL); 
 
// create the kernel 
kernel = clCreateKernel(program, “vec_add”, NULL); 

// set the args values 
err  = clSetKernelArg(kernel, 0, (void *) &memobjs[0],  
                                 sizeof(cl_mem)); 
err |= clSetKernelArg(kernel, 1, (void *)&memobjs[1], 
                                 sizeof(cl_mem)); 
err |= clSetKernelArg(kernel, 2, (void *)&memobjs[2],  
                                  sizeof(cl_mem)); 
// set work-item dimensions 
global_work_size[0] = n; 

// execute kernel 
err = clEnqueueNDRangeKernel(cmd_queue, kernel, 1, 

NULL, global_work_size, NULL, 0, NULL, NULL); 
 
// read output array 
err = clEnqueueReadBuffer(context, memobjs[2], CL_TRUE, 

0, n*sizeof(cl_float), dst, 0, NULL, NULL); 

Define platform and queues 

Define memory objects 

Create the program 

Build the program 

Create and setup kernel 

Execute the kernel 

Read results on the host 

It’s complicated, but most of this is “boilerplate” and not as bad 
as it looks. 



Exercise 1: Running the Vadd kernel  
•  Goal:  

– To inspect and verify that you can build and run 
an OpenCL kernel 

•  Procedure:  
– Use the vadd.c program and makefile we provide.  

It will run a simple kernel to add two vectors 
together.  

–  Look at the host code and identify the API calls 
discussed in these slides in the host code.    

•  Expected output: 
– A message verifying that the vector addition 

completed successfully 



Outline 
•  OpenCL: overview and core models 
•  Host programs 
•  Kernel programs 
•  Optimizing OpenCL kernels 

– Memory coelescence 
– Divergent control flows 
– Occupancy 
– Other Optimizations 

•  Working with the OpenCL Memory Hierarchy 
•  Resources supporting OpenCL 



Kernel programming 

•  Kernel programming is where all the 
action is at in OpenCL 

•  Writing simple OpenCL kernels is quite 
easy, so we'll cover that quickly 

•  Optimizing OpenCL kernels to run really 
fast is much harder, so that's where we're 
going to spend most of the time 



OpenCL C kernel language 
•  Derived from ISO C99 

– A few restrictions: no recursion, function pointers, 
functions in C99 standard headers ... 

–  Preprocessing directives defined by C99 are 
supported (#include etc.) 

•  Built-in data types 
–  Scalar and vector data types, pointers 
– Data-type conversion functions: 

•  convert_type<_sat><_roundingmode>  

–  Image types: image2d_t, image3d_t and sampler_t 



OpenCL C Language Highlights 
•  Function qualifiers 

–  __kernel qualifier declares a function as a kernel 
•  I.e. makes it visible to host code so it can be enqueued 

–  Kernels can call other kernel-side functions 

•  Address space qualifiers 
–  __global, __local, __constant, __private 
–  Pointer kernel arguments must be declared with an address space qualifier 

•  Work-item functions 
–  uint get_work_dim()  … number of dimensions in use (1,2, or 3) 
–  size_t get_global_id(uint n) … global work-item ID in dim “n” 
–  size_t get_local_id(uint n)  …  work-item ID in dim “n” inside work-group 
–  size_t get_group_id(uint n) … ID of work-group in dim “n” 
–  size_t get_global_size(uint n) … num of work-items in dim “n” 
–  size_t get_local_size(uint n) … num of work-items in work group in dim “n” 

•  Synchronization functions 
–  Barriers - all work-items within a work-group must execute the barrier function 

before any work-item can continue 
–  Memory fences - provides ordering between memory operations 



OpenCL C Language Restrictions 

•  Pointers to functions are not allowed 
•  Pointers to pointers allowed within a kernel, 

but not as an argument to a kernel invocation 
•  Bit-fields are not supported 
•  Variable length arrays and structures are not 

supported 
•  Recursion is not supported (yet!) 
•  Double types are optional in OpenCL v1.2, but 

the key word is reserved 
   (note: most implementations support double) 



Memory Consistency 
•  OpenCL uses a relaxed consistency memory model; i.e.  

–  The state of memory visible to a work-item is not guaranteed to be 
consistent across the collection of work-items at all times. 

•  Within a work-item: 
–  Memory has load/store consistency to the work-item’s private view of 

memory, i.e. it sees its own reads and writes correctly 

•  Within a work-group: 
–  Local memory is consistent between work-items at a barrier. 

•  Global memory is consistent within a work-group at a 
barrier, but not guaranteed across different work-groups!! 
–  This is a common source of bugs! 

•  Consistency of memory shared between commands (e.g. 
kernel invocations) is enforced by synchronization (barriers, 
events, in-order queue)  



Work-Item Synchronization 

•  Within a work-group 
void barrier()
–  Takes optional flags 

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE 
–  A work-item that encounters a barrier() will wait until ALL work-

items in its work-group reach the barrier() 
–  Corollary: If a barrier() is inside a branch, then the branch must be 

taken by either: 
•  ALL work-items in the work-group, OR 
•  NO work-item in the work-group 

•  Across work-groups 
–  No guarantees as to where and when a particular work-group will be 

executed relative to another work-group 
–  Cannot exchange data, or have barrier-like synchronization 

between two different work-groups! (Critical issue!) 
–  Only solution: finish the kernel and start another 

Ensure correct order of memory operations 
to local or global memory (with flushes or 
queuing a memory fence) 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C)
{
    int i, j, k;

    for (i = 0; i < Order; i++) {
      for (j = 0; j < Order; j++) {
        for (k = 0; k < Order; k++) { 
           // C(i, j) = sum(over k) A(i,k) * B(k,j)
           C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
        }
      }
    }
}

We calculate C=AB, dimA = (N x N), dimB=(N x N), dimC=(N x N) 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each 
element of C 



Matrix multiplication performance 

•  Serial C code on CPU (single core). 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 
using the gcc compiler. 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system. 
 



Matrix multiplication: sequential code 

void mat_mul(int Order, float *A, float *B, float *C)
{
    int i, j, k;

    for (i = 0; i < Order; i++) {
      for (j = 0; j < Order; j++) {
        for (k = 0; k < Order; k++) { 
          // C(i, j) = sum(over k) A(i,k) * B(k,j)
          C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
        }
      }
    }
}



Matrix multiplication: Kernel code (1/2) 

void mat_mul(int Order, float *A, float *B, float *C)
{
    int i, j, k;

    for (i = 0; i < Order; i++) {
      for (j = 0; j < Order; j++) {
        for (k = 0; k < Order; k++) { 
          // C(i, j) = sum(over k) A(i,k) * B(k,j)
          C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
        }
      }
    }
}

__kernel void mat_mul(
           const int Order, __global float *A,  
          __global float *B, __global float *C)

Mark as a kernel function and 
specify memory qualifiers 



Matrix multiplication: Kernel code (2/2) 

void mat_mul(int Order, float *A, float *B, float *C)
{
    int i, j, k;

    for (i = 0; i < Order; i++) {
      for (j = 0; j < Order; j++) {
        for (k = 0; k < Order; k++) { 
          // C(i, j) = sum(over k) A(i,k) * B(k,j)
          C[i*Order+j] += A[i*Order+k] * B[k*Order+j];
        }
      }
    }
}

__kernel void mat_mul(
           const int Order, __global float *A,  
          __global float *B, __global float *C)

i = get_global_id(0);
j = get_global_id(1);

Remove outer loops and set 
work-item co-ordinates 



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You may 
observe completely different results should you run 
these tests on your own system. 
 



Exercise: Jacobi Solver Program 

•  Goal:  
–  To write a non-trivial OpenCL kernel 

•  Procedure:  
–  Consider the serial program jac_solv.c.  Look at the 

program, run it, and understand what’s its doing. 
–  The program Jac_solv_ocl_basic.c is a C host program to 

run an OpenCL kernel for the jacobi solver. 
–  A “skeleton” of the kernel program is in the file 

jac_ocl_basic.cl. 
–  Inside the file jac_ocl_basic.cl, write the body of the 

kernel program. 
•  Expected output: 

–  A message verifying that the program ran correctly .    



Jacobi solver kernel code (1/2) 
#define TYPE double 
#if (TYPE == double) 
     #pragma OPENCL EXTENSION cl_khr_fp64 : enable 
#endif 
 
kernel void jacobi(   
           const unsigned Ndim,   
           global TYPE * A,  global TYPE * b,   
           global TYPE * xold,  global TYPE * xnew) 
 
{   
       size_t i = get_global_id(0);   
 
       xnew[i] = (TYPE) 0.0;   
       for (int j = 0; j < Ndim; j++)  {     
             if (i != j)       
                   xnew[i] += A[i*Ndim + j] * xold[j];   
       }   
       xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];} 



Jacobi solver kernel code (2/2) 
kernel void convergence(   
           global TYPE * xold,  global TYPE * xnew,   
            local TYPE * conv_loc,  global TYPE * conv  ) 
{   
       size_t i = get_global_id(0);   
       TYPE tmp;   
        tmp = xnew[i] - xold[i];   
        conv_loc[get_local_id(0)] = tmp * tmp;  
        barrier(CLK_LOCAL_MEM_FENCE);   
 
        for (int offset = get_local_size(0) / 2; offset > 0; offset /= 2)  {     
           if (get_local_id(0) < offset)    {       
               conv_loc[get_local_id(0)] += conv_loc[get_local_id(0) + offset];  
           }     
           barrier(CLK_LOCAL_MEM_FENCE);   
        }   
        if (get_local_id(0) == 0)  {    conv[get_group_id(0)] = conv_loc[0];  } 
} 

A kernel enqueued on the host 
to compute convergence.  This 

implements a reduction with 
the last stage of the reduction 

occuring on the host. 



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 
 

Unroll by 4 6.2 6.7 13.3 32.1 

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc 
compiler.  

Third Party names are the property of their owners. 
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Coalesced Access 

•  Coalesced memory accesses are key for 
high performance code 

•  In principle, it’s very simple, but 
frequently requires transposing/
transforming data on the host before 
sending it to the GPU 

•  Sometimes this is an issue of AoS vs. SoA 



Memory layout is critical to performance 

•  “Structure of Arrays vs. Array of Structures” 
problem 

•  Array of Structures (AoS) more natural to code 
 struct Point{ float x, y, z, a; }; 
 Point *Points; 

 
•  Structure of Arrays (SoA) suits memory 

coalescence in vector units 
 struct { float *x, *y, *z, *a; } Points;  

x x x x … y y y y … z z z z … a a a a …

x y z a … x y z a … x y z a … x y z a …

Adjacent work-items/
vector-lanes like to 
access adjacent 
memory locations 



Coalescence 

•  Coalesced memory 
accesses are key for 
high bandwidth 

•  Simply, it means, if 
thread i accesses 
memory location n then 
thread i+1 accesses 
memory location n+1 

•  In practice, it’s not 
quite as strict… 

__kernel func( __global float *memA,  
               __global float *memB) 
{ 

int g_id = get_global_id(0); 
 
// ideal 
float val1 = memA[g_id]; 
 
// still pretty good  
const int c = 3; 
float val2 = memA[g_id + c]; 
 
// stride size is not so good 
float val3 = memA[c*g_id]; 
 
const int loc = 
  some_strange_func(g_id); 
 
// terrible! 
float val4 = memA[loc]; 

} 



0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 ! GPU Threads 

64 Byte Boundary 
GPU Memory 

64 Byte Boundary 

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns 



float val1 = memA[g_id]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

64 Byte Boundary 

Memory access patterns 



0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

0x120 !0x11c !0x118 !0x114 ! 0x124 ! 0x128 ! 0x12c ! 0x130 ! 0x134 ! 0x138 ! 0x13c ! 0x140 ! 0x144 ! 0x148 !

64 Byte Boundary 

const int c = 3; !
float val2 = memA[g_id + c]; !
!

!

Memory access patterns 



float val3 = memA[3*g_id]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

64 Byte Boundary Strided access results in multiple  
memory transactions (and  

kills throughput) 

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns 



const int loc = !
  some_strange_func(g_id); !
!
float val4 = memA[loc]; !

0 ! 1 ! 2 ! 3 ! 4 ! 5 ! 6 ! 7 !

64 Byte Boundary 

0x100 !0x0fc !0x0f8 !0x0f4 ! 0x104 ! 0x108 ! 0x10c ! 0x110 ! 0x114 ! 0x118 ! 0x11c ! 0x120 ! 0x124 ! 0x128 !

Memory access patterns 



Exercise 

•  Inspect the memory access patterns in your 
Jacobi solver kernel. 

•  Is there a memory alignment problem?  If 
so, fix it. 

•  If you want to generate the transpose of 
the A matrix (a column major order), we 
provide a function inside mm_utils.c that 
you can call inside the host code to do this. 

void init_colmaj_diag_dom_near_identity_matrix(int Ndim,  TYPE *A); 



Jacobi solver kernel code 
#define TYPE double 
#if (TYPE == double) 
     #pragma OPENCL EXTENSION cl_khr_fp64 : enable 
#endif 
 
kernel void jacobi(   
           const unsigned Ndim,   
           global TYPE * A,  global TYPE * b,   
           global TYPE * xold,  global TYPE * xnew) 
 
{   
       size_t i = get_global_id(0);   
 
       xnew[i] = (TYPE) 0.0;   
       for (int j = 0; j < Ndim; j++)  {     
             if (i != j)       
                   xnew[i] += A[j*Ndim + i] * xold[j];   
       }   
       xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];} 

Switch to a column-major A 
matrix so adjacent work-
items process adjacent 
locations in A as you go 
through the loop over j 

Original code (row-major A) was: 
         xnew[i] += A[i*Ndim + j] * xold[j];  
Adjacent work-items process 
offset locations into A 



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 
 

Unroll by 4 6.2 6.7 13.3 32.1 

Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc 
compiler.  

Third Party names are the property of their owners. 
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Single Instruction Multiple Data 
•  Individual threads of a warp start together at the 

same program address 
•  Each thread has its own instruction address counter 

and register state 
–  Each thread is free to branch and execute independently  
–  Provide the MIMD abstraction 

•  Branch behavior 
–  Each branch will be executed serially 
–  Threads not following the current branch will be disabled 

59 

A warp 

Start Branch1 Branch2 Branch3 Converge 

Time 



Branching 
•  GPUs tend not to support speculative execution, which 

means that branch instructions have high latency 
•  This latency can be hidden by switching to alternative work-

items/work-groups, but avoiding branches where possible is 
still a good idea to improve performance 

•  When different work-items executing within the same SIMD 
ALU array take different paths through conditional control 
flow, we have divergent branches (vs. uniform branches) 

•  These are even worse: work-items will stall while waiting for 
the others to complete 

•  We can use predication, selection and masking to convert 
conditional control flow into straight line code and 
significantly improve the performance of code that has lots 
of conditional branches 



Branching 

Conditional execution 
// Only evaluate expression 
// if condition is met 
if (a > b) 
{ 
  acc += (a - b*c); 
} 
 

Selection and masking 
// Always evaluate expression 
// and mask result 
temp = (a - b*c); 
mask = (a > b ? 1.f : 0.f); 
acc += (mask * temp); 
 
 



Exercise 

•  Eliminate the branch in your Jacobi solver 
kernel. 

•  We don’t need any host change so use the 
same host program as last time:   
– Jac_solv_ocl_colmaj.c 



Jacobi solver kernel code  
#define TYPE double 
#if (TYPE == double) 
     #pragma OPENCL EXTENSION cl_khr_fp64 : enable 
#endif 
 
kernel void jacobi(   
           const unsigned Ndim,   
           global TYPE * A,  global TYPE * b,   
           global TYPE * xold,  global TYPE * xnew) 
 
{   
       size_t i = get_global_id(0);   
 
       xnew[i] = (TYPE) 0.0;   
       for (int j = 0; j < Ndim; j++)  {     
  
                   xnew[i] += A[j*Ndim + i] * xold[j] * (TYPE)(i != j);   
       }   
       xnew[i] = (b[i] - xnew[i]) / A[i*Ndim + i];} 



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 
 

Unroll by 4 6.2 6.7 13.3 32.1 

Note: optimizations in the table are cumulative 
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.  

Third Party names are the property of their owners. 
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Keep the processing elements (PE) busy 

•  Occupancy: a measure of the fraction of time 
during a computation when the PE’s are busy.  
Goal is to keep this number high (well over 
50%). 

•  Pay attention to the number of work-items and 
work-group sizes 
– Rule of thumb:  On a modern GPU you want at least 

4 work-items per PE in a Compute Unit 
– More work-items are better, but diminishing returns, 

and there is an upper limit 
•  Each work item consumes PE finite resources (registers etc) 



Occupancy 
•  Number of work-groups per compute unit (CU) 

depends on registers and local memory size per 
work-group 

•  E.g. NVIDIA’s K40 has 128 words of memory per 
processor element (PE), i.e. 128 registers per 
core; and 48KB of local memory per CU 

•  But, multiple work-items (threads) will be 
scheduled on a single PE (similar to 
hyperthreading) 

•  In fact, global memory latency is so high that 
multiple work-items per PE are a requirement for 
achieving a good proportion of peak 
performance! 



Work-group sizes 

•  Work-group sizes being a power of 2 helps on 
most architectures. At a minimum use multiples 
of: 
–  8 for Intel® AVX CPUs 
–  16 for Intel® Xeon Phi™ processors 
–  32 for Nvidia® GPUs 
–  64 for AMD® 
–  May be different on different hardware 

•  On most systems aim to run lots of work-groups. 
For example, on Xeon Phi, multiples of the number 
of threads available (e.g. 240 on a 5110P) is 
optimal, but as many as possible is good (1000+) 

Third party names are the property of their owners 



Effect of work-group sizes 



Exercise 

•  Experiment with different work group 
sizes.  Use host program  

      jac_solv_colmaj_nobr_wg.c 
•  You do not need to change the kernel 

program ... Use your kernel program from 
the last exercise. 

•  Run the host program with the flag –h to 
see the command line options.  One of 
them (--wg) will vary the workgroup size. 



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 

Unroll by 4 6.2 6.7 13.3 32.1 

Third Party names are the property of their owners. 

Note: optimizations in the table are cumulative 
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.  
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Constant Memory 
•  Constant memory can be considered 

a store for data that never changes 
•  Setting and updating constants in 

memory uses the same interface as 
global memory, with enqueueRead/
enqueueWrite commands 

•  The difference is how it is declared 
in the kernel 

•  Some devices may have dedicated 
on-chip caches or data-paths for 
constant memory 

•  Devices are guaranteed to support 
constant memory allocations of at 
least 64kB 

•  Can also declare OpenCL program 
scope constant data, but this has to 
be initialized at OpenCL program 
compile time 

kernel void 
calc_something 
( 
  global float *a,  
  global float *b,  
  global float *c, 
 
  //constant memory is  
  //set on the host 
  constant float *params 
) 
{ 
  //code here 
} 



•  OpenCL compilers accept a number of flags 
that affect how kernels are compiled: 
-cl-opt-disable 
-cl-single-precision-constant 
-cl-denorms-are-zero 
-cl-fp32-correctly-rounded-divide-sqrt 
-cl-mad-enable 
-cl-no-signed-zeros 
-cl-unsafe-math-optimizations 
-cl-finite-math-only 
-cl-fast-relaxed-math 

Compiler Options 

implies 



Other compilation hints 

•  Can use an attribute to inform the compiler 
of the work-group size that you intend to 
launch kernels with: 

__attribute__((reqd_work_group_size(x, y, z))) 
 

•  As with C/C++, use the const/restrict 
keywords for kernel arguments where 
appropriate to make sure the compiler can 
optimise memory accesses 



Exercise 

•  Experiment with different optimizations 
to get the best runtime you can. 



Jacobi Solver Results 
•  Serial code running on the Intel® Xeon® CPU and icc took 83 seconds. 
•  With OpenMP for multithreading 

–  25.3 seconds with 32 threads (hyperthreading enabled) 
–  19.0 seconds with 16 threads (hyperthreading disabled) 

•  Running the OpenMP version natively on the Intel® Xeon® Phi 
Processor took 4.8 seconds. 

Different versions of the Jacobi Solver with OpenCL.  Runtimes in seconds 

TYPE = double 
NDIM = 4096 

Nvidia K40 
GPU 

AMD 290X 
GPU 

Intel Xeon 
PHI processor 

Intel Xeon 
processor 

Basic 35.0 198.2 245.2 23.6 

Colmaj 14.1 15.3 35.8 71.5 

No Branch 13.3 15.6 16.6 38.8 

Opt WG size 13.2 15.1 15.0 32.1 

Unroll by 4 6.2 6.7 13.3 32.1 

Third Party names are the property of their owners. 

Note: optimizations in the table are cumulative 
Dual-socket Intel® Xeon® CPU E5-2687W (16 cores total, hyper-threading enabled) and the Intel® icc compiler.  
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OpenCL Memory model 
•  Private Memory 

–  Per work-item 

•  Local Memory 
–  Shared within a 

 work-group 

•  Global/Constant 
Memory 
–  Visible to all 

 work-groups 

•  Host memory 
–  On the CPU 

Memory management is explicit:  
You are responsible for moving data from 

 host → global → local and back 



The Memory Hierarchy 

Private memory 
O(10) words/WI 

 
Local memory 

O(1-10) KBytes/WG 
 

Global memory 
O(1-10) GBytes 

 
Host memory 
O(1-100) GBytes 

Private memory 
O(2-3) words/cycle/WI 

 
Local memory 

O(10) words/cycle/WG 
 

Global memory 
O(100-200) GBytes/s 

 
Host memory 

O(1-100) GBytes/s 

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011 

Bandwidths Sizes 

Managing the memory hierarchy is one of the most important 
things to get right to achieve good performance 

 



Optimizing matrix multiplication 
•  MM cost determined by FLOPS and memory movement: 

–  2*n3 = O(n3) FLOPS 
–  Operates on 3*n2 = O(n2) numbers 

•  To optimize matrix multiplication, we must ensure that for 
every memory access we execute as many FLOPS as 
possible. 

•  Outer product algorithms are faster, but for pedagogical 
reasons, let’s stick to the simple dot-product algorithm. 

•  We will work with work-item/work-group sizes and the 
memory model to optimize matrix multiplication 

 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 



Optimizing matrix multiplication 

•  There may be significant overhead to manage work-items 
and work-groups. 

•  So let’s have each work-item compute a full row of C 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 

•  And with an eye towards future optimizations, let’s collect 
work-items into work-groups with 64 work-items per work-
group  



An N-dimension domain of work-items 

•  Global Dimensions: 1024 (1D) 
 Whole problem space (index space) 

•  Local Dimensions:  64 (work-items per work-group) 
 Only 1024/64 = 16 work-groups in total 

•  Important implication: we will have a lot fewer 
work-items per work-group (64) and work-
groups (16). Why might this matter? 

10
24

 

64
 



__kernel void mmul(
   const int Order,
   __global float *A,
   __global float *B,
   __global float *C)

Matrix multiplication: One work item per row of C 

{
  int j, k;
  int i = get_global_id(0);
  float tmp;
  for (j = 0; j < Order; j++) {
       tmp = 0.0f;
       for (k = 0; k < Order; k+
+) 
           tmp += A[i*Order
+k]*B[k*Order+j];
       C[i*Order+j] = tmp;
   }
}



Mat. Mul. host program (1 row per work-item) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 
auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 
 
  d_A   = cl::Buffer(context, begin(h_A),  
                                           end(h_A), true); 
  d_B   = cl::Buffer(context, begin(h_B),  
                                           end(h_B), true); 
  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 
 
  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N), 
                             cl::NdRange(64)),  
                             N, d_A,  d_B,  d_C); 
 
  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 
 
   // Timing and check results (not shown) 
} 



Mat. Mul. host program (1 row per work-item) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 
auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 
 
  d_A   = cl::Buffer(context, begin(h_A),  
                                           end(h_A), true); 
  d_B   = cl::Buffer(context, begin(h_B),  
                                           end(h_B), true); 
  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 
 
  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N), 
                             cl::NdRange(64)),  
                             N, d_A,  d_B,  d_C); 
 
  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 
 
   // Timing and check results (not shown) 
} 

Changes to host program: 
1.  1D ND Range set to 

number of rows in the C 
matrix 

2.  Local Dimension set to 64 
(which gives us 16 work-
groups which matches the 
GPU’s number of compute 
units). 

Third party names are the property of their owners. 



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You 
may observe completely different results should 
you run these tests on your own system. 

This has started to help. 



Optimizing matrix multiplication 

•  Notice that, in one row of C, each element reuses the same 
row of A. 

•  Let’s copy that row of A into private memory of the work-
item that’s (exclusively) using it to avoid the overhead of 
loading it from global memory for each C(i,j) computation. 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Private memory of each 
work-item 



Private Memory 

•  A work-items private memory: 
– A very scarce resource, only a few tens of 32-bit 

words per Work-Item at most (on a GPU) 
–  If you use too much it spills to global memory or 

reduces the number of Work-Items that can be 
run at the same time, potentially harming 
performance* 

– Think of these like registers on the CPU 
•  How do you create and manage private 

memory? 
– Declare statically inside your kernel 

* Occupancy on a GPU 



__kernel void mmul(
   const int Order,
   __global float *A,
   __global float *B,
   __global float *C)
{
  int j, k;
  int i = 
get_global_id(0);
  float tmp;  
  float Awrk[1024];

Matrix multiplication: (Row of A in private memory) 

for (k = 0; k < Order; k++)
  Awrk[k] = A[i*Order+k];

  for (j = 0; j < Order; j++) {
    tmp = 0.0f;
    for (k = 0; k < Order; k++) 
  tmp += Awrk[k]*B[k*Order+j];
       
       C[i*Order+j] = tmp;
   }
}



__kernel void mmul(
   const int Order,
   __global float *A,
   __global float *B,
   __global float *C)
{
  int j, k;
  int i = 
get_global_id(0);
  float tmp; 
  float Awrk[1024];

Matrix multiplication: (Row of A in private memory) 

for (k = 0; k < Pdim; k++)
   Awrk[k] = A[i*Ndim+k];

  for (j = 0; j < Order; j++) {
    tmp = 0.0f;
    for (k = 0; k < Order; k++) 
  tmp += Awrk[k]*B[k*Order+j];
        
       C[i*Order+j] = tmp;
   }
}

(*Actually, this is using far more private memory than we’ll have and so Awrk[] will be spilled to global memory) 

Setup a work array for A in 
private memory* 

Copy a row of A 
into private 

memory from 
global memory 
before we start 
with the matrix 
multiplications. 



Mat. Mul. host program (Row of A in private memory) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 
auto mmul = cl::make_kernel 
          <int, cl::Buffer, cl::Buffer, cl::Buffer> 
                             (program, "mmul"); 
 
  d_A   = cl::Buffer(context, begin(h_A),  
                                           end(h_A), true); 
  d_B   = cl::Buffer(context, begin(h_B),  
                                           end(h_B), true); 
  d_C   = cl::Buffer(context,  
                           CL_MEM_WRITE_ONLY,  
                            sizeof(float) * sz); 
 
  mmul(cl::EnqueueArgs( queue,  
                             cl::NDRange(N), 
                             cl::NDRange(64)),  
                             N, d_A,  d_B,  d_C); 
 
  cl::copy(queue, d_C, begin(h_C),  
                                             end(h_C)); 
 
   // Timing and check results (not shown) 
} 

Host program unchanged from last exercise 



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

Device is Tesla® M2090 GPU from 
NVIDIA® with a max of 16 
compute units, 512 PEs 
Device is Intel® Xeon® CPU, 
E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You may 
observe completely different results should you run 
these tests on your own system. 

Big impact! 



Optimizing matrix multiplication 
•  We already noticed that, in one row of C, each element uses 

the same row of A 
•  Each work-item in a work-group also uses the same columns 

of B 
•  So let’s store the B columns in local memory (which is 

shared by the work-items in the work-group) 

= + x 
C(i,j) A(i,:) 

B(:,j) 
C(i,j) 

Private memory of each 
work-item Local memory for each 

work-group 



Local Memory 

•  How do you create and manage local memory? 
–  Create and Allocate local memory on the host 

cl::LocalSpaceArg  localmem = cl::Local(sizeof(float)* N); 

–  Setup the kernel to receive local memory blocks 
auto foo = cl::make_kernel<int, cl::Buffer, 
cl::LocalSpaceArg>(program, “bar”);

–  Mark kernel arguments that are from local memory as __local 

–  Your kernels are responsible for transferring data between Local and 
Global/Constant memories … there are built-in functions to help 
(async_work_group_copy(), async_workgroup_strided_copy(), etc) 

*Size and performance numbers are approximate and for a high-end discrete GPU, circa 2011 

•  A work-group’s shared memory 
–  Typically 10’s of KBytes per Compute Unit* 
–  Use Local Memory to hold data that can be  

reused by all the work-items in a work-group 
–  As multiple Work-Groups may be running on each Compute Unit 

(CU), only a fraction of the total Local Memory size may be 
available to each Work-Group 



Local Memory performance hints 

•  Local Memory doesn’t always help… 
–  CPUs don’t have special hardware for it 
–  This can mean excessive use of Local Memory might 

slow down kernels on CPUs 
–  GPUs now have effective on-chip caches which can 

provide much of the benefit of Local Memory but 
without programmer intervention 

–  Access patterns to Local Memory affect performance 
in a similar way to accessing Global Memory 

•  Have to think about things like coalescence & bank conflicts 

–  So, your mileage may vary! 



Memory Consistency 
•  OpenCL uses a relaxed consistency memory model; i.e.  

–  The state of memory visible to a work-item is not guaranteed to be 
consistent across the collection of work-items at all times. 

•  Within a work-item: 
–  Memory has load/store consistency to the work-item’s private view of 

memory, i.e. it sees its own reads and writes correctly 

•  Within a work-group: 
–  Local memory is consistent between work-items at a barrier. 

•  Global memory is consistent within a work-group at a 
barrier, but not guaranteed across different work-groups!! 
–  This is a common source of bugs! 

•  Consistency of memory shared between commands (e.g. 
kernel invocations) is enforced by synchronization (barriers, 
events, in-order queue)  



Work-Item Synchronization 

•  Within a work-group 
void barrier()
–  Takes optional flags 

 CLK_LOCAL_MEM_FENCE and/or CLK_GLOBAL_MEM_FENCE 
–  A work-item that encounters a barrier() will wait until ALL work-

items in its work-group reach the barrier() 
–  Corollary: If a barrier() is inside a branch, then the branch must be 

taken by either: 
•  ALL work-items in the work-group, OR 
•  NO work-item in the work-group 

•  Across work-groups 
–  No guarantees as to where and when a particular work-group will be 

executed relative to another work-group 
–  Cannot exchange data, or have barrier-like synchronization 

between two different work-groups! (Critical issue!) 
–  Only solution: finish the kernel and start another 

Ensure correct order of memory operations 
to local or global memory (with flushes or 
queuing a memory fence) 



__kernel void mmul(
        const int Order,
   __global float *A,
   __global float *B,
   __global float *C,
   __local   float *Bwrk)
{
 int j, k;
 int i = get_global_id(0);

 int iloc = get_local_id(0);
 int nloc= get_local_size(0);
 
 float tmp;  
 float Awrk[1024];

Matrix multiplication: B column shared between work-items 

for (k = 0; k < Order; k++)
   Awrk[k] = A[i*Order+k];

  for (j = 0; j < Order; j++) {

    for (k=iloc; k< Order; k+=nloc)
         Bwrk[k] = B[k* Order +j];
    barrier(CLK_LOCAL_MEM_FENCE);

    tmp = 0.0f;
    for (k = 0; k < Order; k++) 
        tmp += Awrk[k]*Bwrk[k];
 
    C[i*Order+j] = tmp;
    barrier(CLK_LOCAL_MEM_FENCE);
 }
}



__kernel void mmul(
        const int Order,
   __global float *A,
   __global float *B,
   __global float *C,
   __local   float *Bwrk)
{
 int j, k;
 int i = get_global_id(0);

 int iloc = get_local_id(0);
 int nloc= get_local_size(0);
 
 float tmp;  
 float Awrk[1024];

Matrix multiplication: B column shared between work-items 

for (k = 0; k < Order; k++)
   Awrk[k] = A[i*Order+k];

  for (j = 0; j < Order; j++) {

    for (k=iloc; k< Order; k+=nloc)
         Bwrk[k] = B[k* Order +j];
    barrier(CLK_LOCAL_MEM_FENCE);

    tmp = 0.0f;
    for (k = 0; k < Order; k++) 
        tmp += Awrk[k]*Bwrk[k];
 
    C[i*Order+j] = tmp;
    barrier(CLK_LOCAL_MEM_FENCE);
 }
}

Pass a work array in local memory to hold a 
column of B.  All the work-items do the copy 
“in parallel” using a cyclic loop distribution 

(hence why we need iloc and nloc)  



Mat. Mul. host program (Share a column of B within a work-group) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 

auto mmul = cl::make_kernel 
        <int, cl::Buffer, cl::Buffer, cl::Buffer, 
         cl::LocalSpaceArg > (program, "mmul"); 
 

  d_A   = cl::Buffer(context, begin(h_A), end(h_A),true); 
  d_B   = cl::Buffer(context, begin(h_B), end(h_B),true); 
  d_C   = cl::Buffer(context,  
              CL_MEM_WRITE_ONLY, sizeof(float) * sz); 
 
  cl::LocalSpaceArg Bwrk = 
                    cl::Local(sizeof(float) * Pdim); 
 

  mmul(cl::EnqueueArgs( queue,  
                 cl::NDRange(N),  cl::NDRange(64)),  
                  N, d_A,  d_B,  d_C, Bwrk); 
 

  cl::copy(queue, d_C, begin(h_C), end(h_C)); 
 

   // Timing and check results (not shown) 
} 



Mat. Mul. host program (Share a column of B within a work-group) 

#define DEVICE CL_DEVICE_TYPE_DEFAULT 

int main(void) 
{  // declarations (not shown) 
  sz = N * N; 
  std::vector<float> h_A(sz);  
  std::vector<float> h_B(sz);      
  std::vector<float> h_C(sz);  
 
 cl::Buffer d_A, d_B, d_C;  
 
// initialize matrices  and setup 
// the problem (not shown) 
 
 cl::Context context(DEVICE); 
 cl::Program program(context, 
    util::loadProgram("mmulCrow.cl“,  
        true)); 

cl::CommandQueue queue(context); 
 

auto mmul = cl::make_kernel 
        <int, cl::Buffer, cl::Buffer, cl::Buffer, 
         cl::LocalSpaceArg > (program, "mmul"); 
 

  d_A   = cl::Buffer(context, begin(h_A), end(h_A),true); 
  d_B   = cl::Buffer(context, begin(h_B), end(h_B),true); 
  d_C   = cl::Buffer(context,  
              CL_MEM_WRITE_ONLY, sizeof(float) * sz); 
 
  cl::LocalSpaceArg Bwrk = 
                    cl::Local(sizeof(float) * Pdim); 
 

  mmul(cl::EnqueueArgs( queue,  
                 cl::NDRange(N),  cl::NDRange(64)),  
                  N, d_A,  d_B,  d_C, Bwrk); 
 

  cl::copy(queue, d_C, begin(h_C), end(h_C)); 
 

   // Timing and check results (not shown) 
} 

Change host program to pass 
local memory to kernels.  

•  Add an arg of type 
LocalSpaceArg is needed.  

•  Allocate the size of local 
memory 

•  Update argument list in 
kernel functor 



Matrix multiplication performance 
•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

C row per work-item, A private, B local 10,047.5 8,181.9 

Device is Tesla® M2090 GPU 
from NVIDIA® with a max of 
16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, 
E5649 @ 2.53GHz 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 
different results should you run these tests on your own system. 

The CuBLAS SGEMM provides an effective 
measure of peak achievable performance on the 
GPU.   CuBLAS performance  = 283366.4 MFLOPS 



Matrix multiplication example: 
Naïve solution, one dot product per element of C 

•  Multiplication of two dense matrices. 

•  To make this fast, you need to break the problem down into 
chunks that do lots of work for sub problems that fit in fast 
memory (OpenCL local memory). 

 

= x 
A(i,:) 

B(:,j) 
C(i,j) 

Dot product of a row of A and a column of B for each element of C 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)
{
    int i, j, k;
    for (i = 0; i < N; i++) {
      for (j = 0; j < N; j++) {
        for (k = 0; k < N; k++) { 
          C[i*N+j] += A[i*N+k] * B[k*N+j];
        }
      }
    }
}



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)
{
    int i, j, k;
    for (i = 0; i < N; i++)  
      for (j = 0; j < N; j++)
        for (k = 0; k < N; k++)
          C[i*N+j] += A[i*N+k] * B[k*N+j];
}

Let’s get rid of all 
those ugly brackets 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;   
 float tmp;
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++) 
   for (i = ib*NB; i < (ib+1)*NB; i++)
     for (jb = 0; jb < NB; jb++) 
       for (j = jb*NB; j < (jb+1)*NB; j++)
         for (kb = 0; kb < NB; kb++) 
           for (k = kb*NB; k < (kb+1)*NB; k++)
             C[i*N+j] += A[i*N+k] * B[k*N+j];
} 

Break each loop 
into chunks with a 
size chosen to 
match the size of 
your fast memory 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;   
 float tmp;
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++) 
   for (jb = 0; jb < NB; jb++) 
     for (kb = 0; kb < NB; kb++) 

 for (i = ib*NB; i < (ib+1)*NB; i++)
   for (j = jb*NB; j < (jb+1)*NB; j++)
     for (k = kb*NB; k < (kb+1)*NB; k++)
       C[i*N+j] += A[i*N+k] * B[k*N+j];
} 

Rearrange loop nest 
to move loops over 

blocks “out” and 
leave loops over a 

single block together 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;   
 float tmp;
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++) 
   for (jb = 0; jb < NB; jb++) 
     for (kb = 0; kb < NB; kb++) 

 for (i = ib*NB; i < (ib+1)*NB; i++)
   for (j = jb*NB; j < (jb+1)*NB; j++)
     for (k = kb*NB; k < (kb+1)*NB; k++)
       C[i*N+j] += A[i*N+k] * B[k*N+j];
} 

This is just a local 
matrix multiplication 

of a single block 



Matrix multiplication: sequential code 

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;   
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++) 
   for (jb = 0; jb < NB; jb++) 
     for (kb = 0; kb < NB; kb++) 
       sgemm(C, A, B, …)   // Cib,jb = Aib,kb * Bkb,jb

 
 
 
} 

Note: sgemm is the name of the level three BLAS routine to multiply two matrices 

= x 

A(ib,:) B(:,jb) C(ib,jb) 



Mapping into A, B, and C from each work item 
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= x 

A(Iblk,:) B(:,Jblk) C(Iblk,Jblk) 

Row Block Column Block 
Mapping into A, B, and C from each work item 
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Mapping into A, B, and C from each work item 
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Row Block Column Block 
Understanding 
index offsets in 

the blocked 
matrix 

multiplication 
program. 



Blocked matrix multiply: kernel 
#define blksz 16 
__kernel void mmul( 
                const unsigned int N, 
                __global float* A, 
                __global float* B, 
                __global float* C, 
                __local  float* Awrk, 
                __local  float* Bwrk) 
{ 
   int kloc, Kblk; 
   float Ctmp=0.0f; 
 
   //  compute element C(i,j) 
   int i = get_global_id(0); 
   int j = get_global_id(1); 
 
   // Element C(i,j) is in block C(Iblk,Jblk) 
   int Iblk = get_group_id(0); 
   int Jblk = get_group_id(1); 
 
   // C(i,j) is element C(iloc, jloc)  
   //  of block C(Iblk, Jblk) 
   int iloc = get_local_id(0); 
   int jloc = get_local_id(1); 
   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 
  int Abase = Iblk*N*blksz;   int Ainc  = blksz; 
  int Bbase = Jblk*blksz;      int Binc  = blksz*N; 
 

 // C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk) 
  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 
  {   //Load A(Iblk,Kblk) and B(Kblk,Jblk). 
      //Each work-item loads a single element of the two  
      //blocks which are shared with the entire work-group 
 

      Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; 
      Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      #pragma unroll 
      for(kloc=0; kloc<blksz; kloc++) 
  Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      Abase += Ainc;    Bbase += Binc; 
   } 
   C[j*N+i] = Ctmp; 
} 



Blocked matrix multiply: kernel 
#define blksz 16 
__kernel void mmul( 
                const unsigned int N, 
                __global float* A, 
                __global float* B, 
                __global float* C, 
                __local  float* Awrk, 
                __local  float* Bwrk) 
{ 
   int kloc, Kblk; 
   float Ctmp=0.0f; 
 
   //  compute element C(i,j) 
   int i = get_global_id(0); 
   int j = get_global_id(1); 
 
   // Element C(i,j) is in block C(Iblk,Jblk) 
   int Iblk = get_group_id(0); 
   int Jblk = get_group_id(1); 
 
   // C(i,j) is element C(iloc, jloc)  
   //  of block C(Iblk, Jblk) 
   int iloc = get_local_id(0); 
   int jloc = get_local_id(1); 
   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 
  int Abase = Iblk*N*blksz;   int Ainc  = blksz; 
  int Bbase = Jblk*blksz;      int Binc  = blksz*N; 
 

 // C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk) 
  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 
  {   //Load A(Iblk,Kblk) and B(Kblk,Jblk). 
      //Each work-item loads a single element of the two  
      //blocks which are shared with the entire work-group 
 

      Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; 
      Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      #pragma unroll 
      for(kloc=0; kloc<blksz; kloc++) 
  Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      Abase += Ainc;    Bbase += Binc; 
   } 
   C[j*N+i] = Ctmp; 
} 

Load A and B 
blocks, wait for all 
work-items to finish 

Wait for 
everyone to 
finish before 
going to next 

iteration of Kblk 
loop. 



Matrix multiplication … Portable Performance 

CPU Xeon Phi Core i7, HD 
Graphics 

NVIDIA 
Tesla 

Sequential C (compiled /O3) 224.4 1221.5  

C(i,j) per work-item, all 
global 841.5 13591 3721 

C row per work-item, all 
global 869.1 4418 4196 

C row per work-item, A row 
private 1038.4 24403 8584 

C row per work-item, A 
private, B local 3984.2 5041 8182 

Block oriented approach 
using local (blksz=16) 12271.3  74051 

(126322*) 
38348 

(53687*) 119305 

Block oriented approach 
using local (blksz=32) 16268.8 

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler  64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3. 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 
different results should you run these tests on your own system. 

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB 
* The comp was run twice and only the second time is reported (hides cost of memory movement. 

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory.  ICC 2013 sp1 update 2. 
Tesla®	
  M2090	
  GPU	
  from	
  NVIDIA®	
  with	
  a	
  max	
  of	
  16	
  compute	
  units,	
  512	
  PEs	
  

•  Single Precision matrix multiplication (order 1000 matrices)   



Matrix multiplication performance 

•  Matrices are stored in global memory. 

Case MFLOPS 

CPU GPU 

Sequential C (not OpenCL) 887.2 N/A 

C(i,j) per work-item, all global 3,926.1 3,720.9 

C row per work-item, all global 3,379.5 4,195.8 

C row per work-item, A row private 3,385.8 8,584.3 

C row per work-item, A private, B local 10,047.5 8,181.9 

Device is Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 
Device is Intel® Xeon® CPU, E5649 @ 2.53GHz 

Third party names are the property of their owners. 

These  are not official benchmark results.  You may 
observe completely different results should you run 
these tests on your own system. 



Matrix multiplication performance (CPU) 
•  Matrices are stored in global memory. 

Case MFLOPS 

CPU 

Sequential C (not OpenCL, compiled /O3) 224.4 

C(i,j) per work-item, all global 841.5 

C row per work-item, all global 869.1 

C row per work-item, A row private 1038.4 

C row per work-item, A private, B local 3984.2 

Block oriented approach using local (blksz=8) 7482.5 

Block oriented approach using local (blksz=16) 12271.3  

Block oriented approach using local (blksz=32) 16268.8 

Intel MKL SGEMM 63780.6 

Device is Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel 
compiler  64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3. 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 
different results should you run these tests on your own system. 



Outline 
•  OpenCL: overview and core models 
•  Host programs 
•  Kernel programs 
•  Optimizing OpenCL kernels 

– Memory coelescence 
– Divergent control flows 
– Occupancy 
– Other Optimizations 

•  Working with the OpenCL Memory Hierarchy 
•  Resources supporting OpenCL 



OpenCL 2.0 

•  OpenCL 2.0 was ratified in Nov’13 
•  Brings several important new features: 

–  Shared Virtual Memory 
–  Nested parallelism 
–  Built-in work-group reductions 
–  Generic address space 
–  Pipes 
–  C11 atomics 

•  Specification and headers available here 
•  Production drivers now available from Intel and 

AMD, with more expected to follow 



SPIR 

•  Standard Portable Intermediate Representation 
•  Defines an IR for OpenCL programs 
•  Means that developers can ship portable binaries 

instead of their OpenCL source 
•  Also intended to be a target for other languages/

programming models (C++ AMP, SYCL, OpenACC, 
DSLs) 

•  SPIR 1.2 & SPIR 2.0 ratified, SPIR-V provisional 
available now 

•  Implementations available from Intel and AMD, 
with more on the way 



SYCL 

•  Single source C++ abstraction layer for 
OpenCL 

•  Goal is to enable the creation of C++ 
libraries and frameworks that utilize OpenCL 

•  Can utilize SPIR to target OpenCL platform 
•  Supports ‘host-fallback’ (CPU) when no 

OpenCL devices available 
•  Provisional specification released Mar’14 
•  Codeplay and AMD working on 

implementations 



Libraries 

•  clFFT/clBLAS / clRNG (all on github) 
•  Arrayfire (open source soon) 
•  Boost compute with VexCL 
•  ViennaCL (PETSc), PARALUTION 
•  Lots more - see the Khronos OpenCL pages: 

 
     
https://www.khronos.org/opencl/resources  



Resources: 
https://www.khronos.org/opencl/ 

OpenCL Programming Guide:  
Aaftab Munshi, Benedict Gaster, Timothy G. Mattson and 
James Fung, 2011  

Heterogeneous Computing with OpenCL 
Benedict Gaster, Lee Howes, David R. Kaeli, Perhaad Mistry 
and Dana Schaa, 2011 

The OpenCL specification 
Surprisingly approachable for a spec! 

https://www.khronos.org/registry/cl/  

OpenCL reference card 
Useful to have on your desk(top) 
Available on the same page as the spec. 



OpenCL Tutorials 

•  One of the most popular OpenCL training 
courses on the web 

•  Completely open source (creative commons 
attribution CC BY license) 

•  Downloaded over 4,200 times so far! 
•  Lots of training material, examples and 

solutions, source code etc 
•  Works on Linux, Windows, OSX etc. 

http://handsonopencl.github.io  



Other useful resources 

•  Lots of OpenCL examples in the SDKs from 
the vendors: 
–   AMD, Intel, Nvidia, … 

•  The SHOC OpenCL/CUDA benchmark suite 
(available as source code): 
–  https://github.com/vetter/shoc/wiki 

•  The GPU-STREAM memory bandwidth 
benchmark: 
–  https://github.com/UoB-HPC/GPU-STREAM 



Other useful resources 

•  IWOCL webpage & newsletter: 
– http://www.iwocl.org 
– http://www.iwocl.org/signup-for-updates/ 

•  IWOCL annual conference 
– Spring each year 
–  In Vienna, April 19-21 2016! 



Conclusion 
•  OpenCL  

–  Widespread industrial support 

–  Defines a platform-API/framework for heterogeneous parallel 
computing, not just GPGPU or CPU-offload programming 

–  Has the potential to deliver portably performant code; but it has to 
be used correctly 

 



•  Yes, they were all OpenCL times (double precision). The CPU is a dual-socket Intel(R) Xeon(R) CPU E5-2687W 
(16 cores total, with hyper-threading enabled). I’ve attached the output of a clinfo run on this machine.  
Your jac_solv_parfor (compiled with icc) achieves this on the CPU: 

•  25.3 seconds (32 threads) 
•  19.0 seconds (OMP_NUM_THREADS=16, to avoid hyper-threading) 

•  The serial code takes 83 seconds. 

•  Running the OpenMP version natively on the Xeon Phi gives a very impressive time of 4.8 seconds. 
•    
•  > As Tom says, most GPUs will need a large matrix to really get going. Here’s the timings I get with 

Ndim=4096 when running on four different devices (NVIDIA GPU, AMD GPU, Xeon Phi and Xeon CPU). 
•  >  
•  > ------------------------------------------------ 
•  > |        |    K40  |   290X  |    Phi  |   Xeon  | 
•  > |--------|---------|---------|---------|---------| 
•  > | basic  |   35.0  |  198.2  |  245.2  |   23.6  | 
•  > | colmaj |   14.1  |   15.3  |   35.8  |   71.5  | 
•  > | nobr   |   13.3  |   15.6  |   16.6  |   38.8  | 
•  > | wg     |   13.2  |   15.1  |   15.0  |   36.8  | 
•  > | best   |    6.2  |    6.7  |   13.3  |   32.1  | 
•  > ------------------------------------------------ 
•  >  


