Are we going back to a "RISC era"?

Or moving to some other recognizable era?

28 October 2015 Sverre Jarp, CERN honorary staff

RISC: Reduced Instruction Set Computing

Disclaimer

Predicting the future

Going back?

Personal biases

Evening lecture

My own background at CERN

- I started at CERN in 1974
- Brand-new computer building (B513)
- Supercomputers:
 - CDC 6600
 - CDC 7600 with CDC6500/6400 front-ends
- Mainframes
 - ♦ IBM S/370 systems
 - Initially to get reliable tape storage; running MVS
 - IBM 303x, 309x families and plug-compatible systems
 - VM/CMS
- RISC era
 - DEC, HP, IBM, SGI, SUN desktop/server systems
- PC era
 - Until now 28/10/201

CDC supercomputers

- Designed by Seymour Cray
 - Serial number "00000N"
 - "Which instruction would you like next?"
- R-RISC (Really Reduced)
- People were "cheap", machines expensive
- From Wikipedia

- **→**7600
 - 27.5 ns, peak 36 Mflops, 60-bit words
 - Fragile
 - Introduced instruction pipelining
 - Smart instruction stack
 - Peripheral Processing Units for I/O
 - In production at CERN for ten years

28/10/2015

RISC era

IBM mainframes

- Monolithic systems for "everything"
 - Batch, time sharing, data handling, networking, etc.
- Very expensive just like the CDC <u>supercomputers</u>
- Started with 370/168 (in 1976)
 - 4 MB of memory !
 - MVS operating system, FORTRAN-77
- (UA-1) to find the W boson in 1982

Nevertheless, these

"tiny" mainframes

allowed C.Rubbia

- Wylbur/Milten for text editing on start/stop terminals
 - Each user was represented in a 4K page
- Later 303x, 3090 systems and Plug-Compatible Systems
 - Instruction Set enhanced via a Vector Facility
 - Operating system moved to VM/CMS, VM/XA
 - "The poor man's PC"
 28/10/2015

The RISC era

(Reduced Instruction Set Computing)

- First RISC system was probably the IBM 801
 - John Cocke et al
- Idea pursued by teams at Stanford (J.Hennessy) and Berkeley (D.Patterson)
 - ◆ The former led to MIPS, latter to SPARC
- Big breakthrough with Apollo DN/10000
 - 4 CPUs
 - Custom-made RISC core (PRISM)
 - Could attach to the mainframe

Why did we jump on the RISC bandwagon?

- Price/performance
- Flexibility for incremental additions/ upgrades
- Distributed ownership
- **UNIX**
- Software development environment on personal workstations
- The mainframe was still around (for a long while) performing more mundane tasks (tape handling, etc.)

Was everything "good"?

- Of course, not!
- Lots of "waste" due to replication of effort
- Every RISC vendor offered a different UNIX and a different compiler
 - System maintenance was expensive:
 - "Six support staff one primary and one back-up per architecture"
 - Porting and verification took a huge toll on resources
 - The results often differed: Endianness, FMA, optimisation levels, etc.
 - People had to become porting heroes

SC era

SHIFT architecture

- "Scalable Heterogeneous Integrated FaciliTy"
- Allowed seamless integration of the RISC-based systems
 - CPU servers
 - Disk servers
 - Tape servers
- Won a 21st Century Achievement Award from the Computerworld Honors Program
- Software based on tcp/ip:
 - Remote File I/O (RFIO)
 - Disk Pool Manager (DPM)

HP and PA-RISC

- HP's workstations were preferred by many developers
- Servers were small, but price/performance was good
 - We bought, for instance, many servers for simulations
 - The "snake farms"
- HP acquired Apollo
 - But, it took almost a decade to get a 4-CPU server back in the market,
 - The Kittyhawk

RD47: Our seminal CHEP-95 paper

- Paper presented in Rio
 - Computing in High Energy Physics
- **Using PCs**
 - Pentium and Pentium Pro
- Not faster than the RISC systems
 - But much better price/performance
- In our community,
 - this started the move to PCs
 - Plus: Linux

EUROPEAN LABORATORY FOR PARTICLE PHYSICS

PC **Physics Computer**

Sverre Jarp, Hong Tang, Antony Simmins Computing and Networks Division/CERN 1211 Geneva 23 Switzerland

Weizmann Institute, Israel

Presented at CHEP-95, 21 September 1995, Rio de Janeiro, Brazil

The first PC farms

Are we moving forward in spirals?

Supercomputers Heterogeneous Heterogeneous Monolithic PC servers Mainframes RISC servers supercomputers servers

Who is pushing for heterogeneity?

IBM & the OpenPower Foundation

- Lots of members
 - ♦ Platinum, Gold, Silver levels
- Some key members: IBM, Tyan, Nvidia,
 Mellanox, Google, Micron
- Offerings pitted against Xeon servers
 - Power 8, up to 4 GHz, new CAPI bus
 - Lots of execution units; Wide superscalar design
 - Up to 12 cores/chip, 8-way SMT
 - 4 cache levels (32K+64K, 512K, up to 96 MB, 128 MB)

IBM and supercomputing

- Systems based on Power 8 being offered today
- Two systems planned for 2017
 - Summit (ORNL) and Sierra (LLNL)
 - Based on Power 9 chips
 - Volta GPUs from Nvidia (NVLINK interconnect)
 - Mellanox EDR networking

ARM Ltd.

- ◆A72: Latest 64-bit high-end design
- Much better than A57
 - Which is/was a "transitional" design
 - ◆ Still centred on ARM32 support ?
- 3-way superscalar, OOO execution
- Now, some good DP latencies:
 - → FMUL=3, FADD=3, FCVT=2
- Not so good
 - ◆ FDIV=18, FSQRT=32

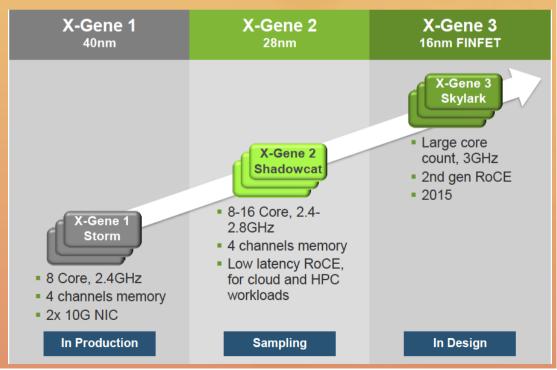
ARM Architecture licensees

- AppliedMicro
- Broadcom
- **◆**Cavium
- **♦** Apple
- Huawei
- **◆** Nvidia
- **◆**AMD
- Samsung

- ◆ Marvell
- **♦** Microsoft
- **◆** Qualcomm
- **♦**Intel
- ◆ Faraday

Apple

- ◆ Intel x86(-64) chips since 2006
- Acquired P.A. Semi in 2008
 - PWRficient chips
 - Daniel Dobberpuhl [originally DEC]
- ARM64 designs since 2011
- Amazingly aggressive time-wise
 - New designs even before ARM themselves
- As measured by Anandtech the superscalar design is complex
- Most resent design (A9, A9X) saw a doubling of memory bandwidth
 - 80% more CPU performance
- Will Apple stop at the iPad Pro?



Applied Micro

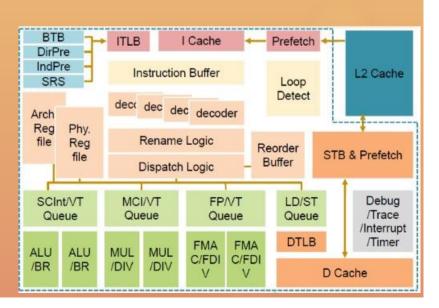
- Early out (2011)
- X-Gene 1 available since some time
 - 40 nm, 8 cores, 2.4 GHz
 - Not even Atom-level performance

From HotChips 2014

- ◆X-Gene 2
 - 28 nm, 16 cores, 2.8 GHz
 - 4-way superscalar
- ◆X-Gene 3
 - → 16nm FINFET
 - 32 cores

28/10/2015

QUALCOMM


- Best known for its mobile chips
 - Snapdragon, mainly ARM32
- Recently, they announced an alliance around a "server" ARM64 chip
 - Partners: Mellanox, Xilinx
- Prototype based on single 24-core chip
- Working with US and Chinese "hyperscalers"
- Production systems "only" in 2017

Cavium

- **◆**ThunderX
 - ◆28 nm
- Two SoCs launched
 - **♦**8-16 cores
 - ◆ 24-48 cores
 - ◆16 MB L2
- Currently, only provider of ARM64SMP chips

Phytium: a Chinese ARM chip

- Presented at Hot Chips this year
- Phytium Technology, Ltd (2012)
- Chip with 64 custom cores in 28 nm
 - ◆2 GHz, 4 flops/cycle → 512 Gflops peak
 - ◆8-core panels in which four cores share a 4-MB L2
 - ◆ 128 MB L3 cache
 - Multithreading
- But, when?

But, does ARM need to care about servers?

- Maybe it is enough to concentrate on the "lower end"
 - Billions of smart phones
 - Still NN-core 64-bit chips with sufficient memory
 - ◆Trillions of IoT (Internet-of-Things) devices
- At least when these devices have power
 - Most of the computing in the world might be done here?


A possible 2020 statement: "The CMS collaboration does more simulation than ever, because every collaborator lends the processors in his/her automobile over night for scientific computing!"

Back to heterogeneity: What is different, now?

- OS: Linux for everybody
- Common compilers
 - ◆ GNU compiler suite. Fortran and C/C++ [5.2]
 - http://gcc.gnu.org/
 - ◆ **LLVM** (C/C++) compiler framework [3.7]
 - Originated from U. of Illinois; Strongly supported by Apple
 - http://www.llvm.org/
- Myriads of open source software packages:
 - OpenStack, MySql, Hadoop, Lustre, etc.

LLVM and its design

◆Three parts:

- Advantage:
 - Add Middle part for performing hardware-independent optimisation
- As a result the compiler becomes more attractive for new hardware!
 - Easier to port a "slim" back-end
- Lots of back-end versions exist

Intel's grip on the market

- Moore's law
- Two decades since the Pentium Pro
- Aggressive new Xeon designs
 - ◆ Tick-Tock [.., Haswell, Broadwell, Skylake, ...]
- Xeon Phi developed in parallel
 - Although, only combined Tick-Tock
- Not afraid of "deprecating" what they recently invented
 - SSE-128 and AVX-256 in favour of AVX-512
- Huge investments in software
 - Biggest compiler team in the world?
- Entire eco-system accompanies each chip generation

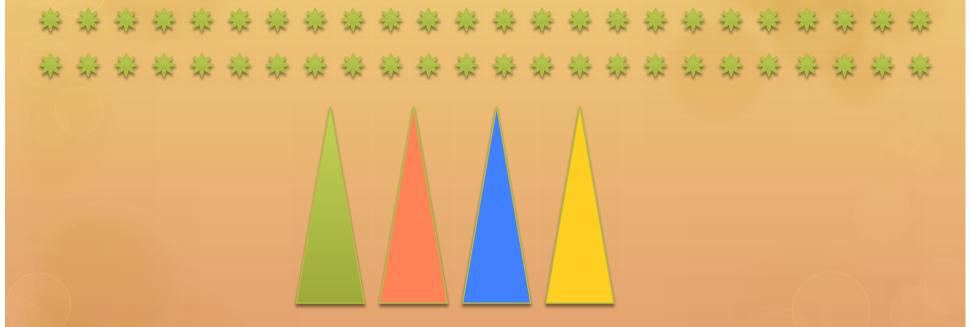
Xeon Phi co-processors

- MIC: Many Integrated Cores
- Grew out of "Larrabee" graphics accelerator
 - Knights Ferry software dev. vehicle
 - ◆ Knights Corner (22 nm 61 cores)
 - ◆ Knights Landing (14 nm 72 cores)
 - Future versions

- Rather revolutionary vector-based instruction set
 - Evolved from LNI to AVX-512
 - 32 * 512-bit vector registers, 8 * mask registers
- High-speed memory
 - Combination of eDRAM and DDR4

When Moore's law grinds to a halt

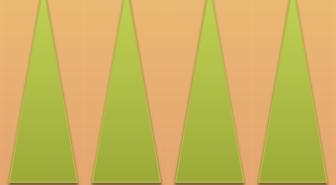
- Increasing competition around smarter and better integrated designs
- Closer integration at all levels
- Hardware/software co-design
- CPUs, GPUs (accelerators), FPGAs, etc.
- Complex memory hierarchies
- Very large non-volatile memories


Intel: A mainframe/supercomputer company (as it was in the past)?

- The company has most of the ingredients for building an entire system:
- **CPUs**
- Co-processors
- Memories (in collaboration with Micron and probably others)
- Non-volatile memories (3D XPoint, SSDs)
- Interconnect fabric (OmniPath)
- Software

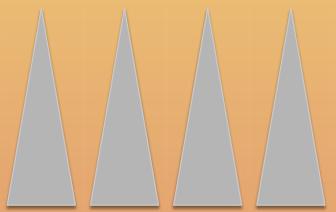
30

Scenario-1: the Mega-centers matter


 Billions of edge systems dependent on heterogeneous Megacenters

Scenario-2: the Mega-centers matter

 Billions of edge systems dependent on mainly homogeneous Megacenters



Scenario-3: Only the Edge matters

- ◆ Big servers are basically anonymous "cloud storage servers"
 - CPU architecture is more or less irrelevant

