INFN

Computer Architecture and “
Performance Tuning

“Recent Changes in Processor
Architectures and the 7 Dimensions
of Performance”

Vincenzo Innocente

Original Slides by

Sverre Jarp
CERN
Honorary Staff

ESC 2015 — Bertinoro, Italy — October 2015

Computer Architecture and Performance Tuning

Goal of these lectures

1. Give an understanding of modern computer
architectures from a performance point-of-view

= Processor, Memory subsystem, Caches
= Use x86-64 as a de-facto standard

= But keep an eye on ARM64, as well as GPUs/
accelerators

2. Explain hardware factors that improve or degrade
program execution speed

= Prepare for writing well-performing software

Computer Architecture and Performance Tuning

Contents

= Introduction:
= Setting the Scene; Scaling “laws”

= Complexity in Computing

= Basic Architecture
= Memory subsystem

= Performance Dimensions:
= Vectorisation

= |nstruction level parallelism
= Multi-core parallelisation

= Conclusion

h Computer Architecture and Performance Tuning

The Big Issues

(from an architectural viewpoint)

4]

Computer Architecture and Performance Tuning

Where are we coming from??

[|
= Memory:
= Single, homogeneous memory e
Source : Wikipedia
= Low latency
[|

= CPU scaling:
= Moore’s law (1965)

= Dennard scaling (1974)

Little or no parallelism Robert Denmard (BN

Source : Wikipedia

Computer Architecture and Performance Tuning

Where are we today ?

Memory:
= Multi-layered, complex layout

= Non-uniform; even disjoint
= High latency

Extreme parallelism at all levels
= |nstruction, Chip, System

Things
have
become
worse!

Computer Architecture and Performance Tuning

Von Neumann architecture

= From Wikipedia:

= The von Neumann
architecture is a computer
design model that uses a
processing unit and a
single separate storage
structure to hold both
iInstructions and data.

= |t can be viewed as an
entity into which one
streams instructions and
data in order to produce
results

Algorithms and Data Structures

Instructions Data
Results
Input
Processing

Computer Architecture and Performance Tuning

Von Neumann architecture (cont'd)

= The goal is to produce results
as fast as possible

= But, lots of problems can
occur:

= |nstructions or data don’t
arrive in time

= Bandwidth issues?
= Latency issues?

= Clashes between input data
and output data

= Other “complexity-based”
problems inside an extreme
processing parallelism

Algorithms and Data Structures

Instructions Data

Results

Input

Processing

Many people think the architecture
is out-dated. But nobody has
managed to replace it (yet).

Computer Architecture and Performance Tuning

Moore’s “law’

= A marching order established
~50 years ago

)

= “Let’s continue to double the &
number of transistors every hCLl 070

other year!” 3[

= First published as: =
= Moore, G.E.: Cramming more
components onto integrated
circuits. Electronics, 38(8), April oo
1965. J—
= Accepted by all partners: |

= Semiconductor manufacturers
= Hardware integrators

= Software companies [‘ .

= Us, the consumers

From Wikipedia

Computer Architecture and Performance Tuning

Moore's “law” (cont'd)

= The consequences: An incredible
level of integration

= CPUs: Many-core, Hardware vectors,
Hardware threading

= GPUs: Enormous number of floating-
point units

= Today, we commonly acquire chips
with more than 1°000°000°000 (10°9)
transistors!

= Apple A8X (just announced) has 3!

= Server chips and high-end GPU
devices have even more

= Kepler GK110:

— 7.1 billion transistors
10

From Wikipedia

Computer Architecture and Performance Tuning

Semiconductor evolution

= Today’s silicon processes:
a 28, 22 NMm We are here

= Being introduced:
= 14 nm (2013/14) I

= |n research:
= 10 nm (2015/16

)
= 7 nm (2017/18)
)

HT

LHC data

= 5nm (2019/20

—<Source: Intel

S. Borkar et al. (Intel), "Platform 2015: Intel Platform Evolution for the Next Decade", 2005.

2 nm (2028?) TSMC

= By the end of this decade we will have chips with
~100’000°000°000 (10') transistors!

= And, this will continue to drive innovation
11

u The 7 “fat” years Of 10,000,000
frequency scaling:
= The Pentium Proin oo
1996: 150 MHz

= The Pentium 4 in 2003
3.8 GHz (~25x)

10,000

= Since then

= Core 2 systems:
= ~3 GHz

= Multi-core

1,000
100

= Recent CERN purchase:
= |ntel Xeon E5-2650 v2

= “only” 2.60 GHz

0

1970

12

Computer Architecture and Performance Tuning

Frequency scaling.

Intel

(sources: Intel

CPU’

|, Wikipe

|
Trends
dia, K. OFukotun)

| Transistors (000)
@ Clock Speed (MHz)
A Power (W)

@ Perf/Clock (ILP)

l

1975 1980

1985

1990

1995 2000

2005 2010

Computer Architecture and Performance Tuning

...vs Memory Latency

coc _A Time f9r a 64-bit Today’s computers now take
Atanasoff- Multiply-Add much longer to fetch or store
than to add and multiply.
32 msec
msec - 16 msec
1psec Cray 1M
) . 138 Cray 2
Time for a 64-bit nsec 130
sec - Memory Fetch nsec
b y 1 sec 100 nsec g9 nsec
ILLIAC IV Pentium
U
e gl Xeon 5500
e AnseC 4 3sec
| | | | | I I . I)
1940 1950 1960 1970 1980 1990 2000 2010
Year

13

Computer Architecture and Performance Tuning

Real consequence of Moore’s law

= We are being “snowed under” by “innovation”:

= More (and more complex) execution units
= Hundreds of new instructions

= Longer SIMD/SSE hardware vectors
= More and more cores

= Specialised accelerators

= Complex cache hierarchies

= |n order to profit we need to “think parallel”

= Data parallelism

“Data Oriented Design”

. " Taskparallelism

h Computer Architecture and Performance Tuning

Complexity in Computing

|]

Computer Architecture and Performance Tuning

Archaic Computing Units

= As “stupid” as 50 years ago

= Based on the Von Neumann
architecture

—Primitive “machine language”

= Ferranti Mercury:

= Floating-point calculations
- Add: 3 cycles

— Multiply: 5 cycles

= Today:

= Programming for performance
IS the same headache as in the
past

Computer Architecture and Performance Tuning

And the language Is ancient, too!

= Assembly/machine code!

__Zématmulv (snippet):

17

vmovlhps xmm0, %$xmm3, $xmm3
vmOovsSs + b(%rip), %xmm4

vinsertf128 $1, %xmm3, %ymm3, $ymm3
vinsertps $0x10, 44+ b(%rip), %xmm7,

VMOVSS 48+ b (%rip), %xmmé

vinsertps $0x10, 36+ b(%rip), %xmml, %
vmovlhps xmm0, %Sxmm2, 3$xmm2

vinsertps $0x10, 60+ b(%rip), %xmm4, %
VXOrps $xmm4, Ixmméd, Ixmmé

vinsertf128 $1, %$xmm2, $ymm2, ymm2
vinsertps $0x10, 52+ b(%rip), %xmm6, %xmml
vmovlhps xmm0O, %xmml, %$xmml

vmovaps _a(%rip), %SymmO

vinsertf128 $1, %xmml, %ymml, $ymml
vpermilps $O0, $ymmO, %ymm7

vmulps SymmS, Symm7, Fymm7
vaddps symm4, Symm7, Symm7

vpermilps $85, %$ymmO, %ymmé6

Computer Architecture and Performance Tuning

Even assembly is "too high level”

= Intel translates “CISC” x86 assembly instructions

= into "RISC” u-operations
= which can vary with each CPU generation

= NVIDIA translates PTX (parallel thread execution, or
virtual assembly)

= into machine instructions
= which can vary with each GPU generation

= Even the brand-new ARMG64 instruction set translates
into p-operations

= So, what does it really mean (?) when the hardware tells
you:

CISC: Complex Instruction Set Computing

= “XXN operations executed”

RISC: Reduced Instruction Set Computing

18

Computer Architecture and Performance Tuning

In the days of the Pentium

= Life was really simple:

Pipelining

= Basically two dimensions

= The pipeline and its frequency Superscalar

= The number of boxes

= The semiconductor industry
increased the frequency

Nodes

= We acquired the right number of
(single-socket) boxes

Sockets

19

Computer Architecture and Performance Tuning

Performance: A complicated story!

20

We start with a concrete, real-life problem to solve

= For instance, simulate the passage of elementary particles
through matter

We write programs in high level languages
= C++, JAVA, Python, etc.

A compiler (or an interpreter) transforms the high-level code to
machine-level code

We link in external libraries

A sophisticated processor with a complex architecture and
even more complex micro-architecture executes the code

In most cases, we have little clue as to the efficiency of this
transformation process

Computer Architecture and Performance Tuning

A Complicated Story (in 9 layers!)

= Computing problems are solved by
getting electrons to “dance”

Problem
Design, Algorithms, Data
Language, Source program

Compilers, Libraries
System architecture
Instruction set architecture
u-architecture
Circuits
Electrons

Adapted from Y.Patt, U-Austin

21

Computer Architecture and Performance Tuning

But, are we in control ?

= We want the process to complete in the shortest possible time

= Our compute job (a process) will require the execution of a given
number of (machine-level) instructions

= Dictated by the algorithms inside (and the compiler)

= This time corresponds to a given number of machine cycles

= Simple example:
= A program consists of 100 instructions

= \We measure an execution time of 6 seconds
on a processor running at 2.0 GHz Instructions || Data

= We can now compute a key value: \ /
= Cycles per Instruction (CPI): (6*2.0*10%) / 1070 =1.2

Results

= This has to be seen as a “yardstick™: Input
= Cycles vary: Reference cycles, Actual cycles?

= |nstructions vary: Vector/Scalar? Micro/Macro? l

= Even worse: Useful/Superfluous instructions? Processing

22

Computer Architecture and Performance Tuning

Let’s start with the basics!

For a review of latest INTEL architecture see
http://www.anandtech.com/show/6355/intels-haswell-architecture

23

Computer Architecture and Performance Tuning

Simple processor layout

Keeps the state of execution

RN

= A simple processor with IC
four key components:
= Control Logic FU Flags
= [nstruction Counter
PSW
= Program Status Word
. . Control
= Register File
RO
_ _ Data R1
* Functional Unit «—>»| Data
_ transfer\ <=
= Data Transfer Unit <—>| unit
= Data bus Address RNN

= Address bus \ Registers

24

Simple server diagram

= Multiple components which
interact during the execution

of a program:

= Processors/cores
= w/private caches
- |-cache, D-cache

= Shared caches
= |nstructions and Data

= Memory controllers
= Memory (non-uniform)

= |/O subsystem
= Network attachment

= Disk subsystem
25

_I_I

Computer Architecture and Performance Tuning

Memory

Socket 0 Socket 1
CO|[C1| | C1
C2(C3 C2(C3
C4 | C5 C4 | C5
Shared Shared

cache cache

Mem-ctl Mem-ctl

N/

Interconnect

/0 bus

Intel Nehalem

h Computer Architecture and Performance Tuning

Memory Subsystem

|]

Computer Architecture and Performance Tuning

Optimal Memory Programming

= What needs to be understood:

= The memory hierarchy
= Main memory
- Physical layout

— Latency
- Bandwidth

= Caches
- Physical layout, Line sizes

- Levels/Sharing
— Latency

= Programmer/Compiler

- Data Layout
— Data Locality

= Execution environment:
— Affinity

27

Computer Architecture and Performance Tuning

Cache/Memory Hierarchy

Processor Core
(Registers)

= From CPU to 1 1

main memory : _

on a recent L1l L1D (R-G‘LB i" :’V-3ZB)/1C

Haswell (32 KB) (32 KB) c latency

processor I T

= With L2 R: 64B/1c

multicore, (256 KB) 11c latency
memory
:Dsagr?;\,/-f;h 32B/1c for all cores
between > 21c latency
cores in Shared L3
the same (~20 MB)
processor _
(socket) 24 B/c for all cores

Local/remote memory

(large, but typically non-uniform)

28

> 200c latency

c =cycle

Computer Architecture and Performance Tuning

Cache lines (1)

29

When a data element or an instruction is requested by the
processor, a cache line is ALWAYS moved (as the
minimum quantity), usually to Level-1

| requested | | | | | | | |

A cache line is a contiguous section of memory, typically
64B in size (8 * double) and 64B aligned

= A 32KB Level-1 cache can hold 512 lines

When cache lines have to be moved come from memory
= Latency is long (>200 cycles)

= |t is even longer if the memory is remote

= Memory controller stays busy (~8 cycles)

Computer Architecture and Performance Tuning

Cache lines (2)

= Good utilisation is vital

= When only one element (4B or 8B) element is used inside
the cache line:

= A lot of bandwidth is wasted!

| requested | | | | | | | |

= Multidimensional C arrays should be accessed with the last
index changing fastest:

for (i =0; i < rows; ++i)
for (j = 0; j < columns; ++j)
mymatrix [i] [j] += increment;

= Pointer chasing (in linked lists) can easily lead to “cache
thrashing” (too much memory traffic)

30

Computer Architecture and Performance Tuning

Cache lines (3)

= Prefetching:
= Fetch a cache line before it is requested
= Hiding latency

= Normally done by the hardware
= Especially if processor executes Out-of-order

= Also done by software instructions
= Especially when In-order (IA-64, Xeon Phi, etc.)

= Locality is vital:
= Spatial locality — Use all elements in the line

= Temporal locality — Complete the execution whilst the
elements are certain to be in the cache

Programming the memory hierarchy is an art in itself.

31

Computer Architecture and Performance Tuning

Cache/Memory Trends

= The trend is to
deepen and
diversify the
cache/memory
hierarchy:
= Additional
levels of
cache

= Multiple kinds
of large
memories

= Non-volatile
memories
(great for
databases,
etc.)

32

Processor Core

I |

L1l L1D
L2
Shared L3

Local/remote
memory (1)
Larger, slower

Local/remote
memory (2)
Faster, smaller

Non-volatile
memory (3)

e ogheket 0 Socket 1
colc1| % c1
C2(C3 C2(C3
C4/C5 |C4/C5
= Shared Shared
100 cache cache
Mem-ctl Mem-ct
emory Interconnect
I/O bus....—~—

33

o P — . — i — -

Computer Architecture and Performance Tuning

Latency Measurements (example)

= Memory Latency on Sandy Bridge-EP 2690 (dual socket)
= 90 ns (local) versus 150 ns (remote)

— — — — — —
—
o

. e @ e 2 @ s e @ e e @ e &
(o

Computer Architecture and Performance Tuning

Current GPU Memory Layout

= CPU and GPU memories
are separate

= What everybody wantsisa |CPU GPU
single unified view of t t
memory

Unified Memory

= One vision is

“Heterogeneous Systems
Architecture”’(HSA)

pushed by AMD, ARM, and
others

= Example:
= AMD Kaveri APU

34

h Computer Architecture and Performance Tuning

CPU
Performance
Dimensions

|]

Computer Architecture and Performance Tuning

In the days of the Pentium

= Life in the days of the
Pentium was really simple:

Pipelining

= Basically two dimensions Superscalar

= The pipeline and its frequency
= The number of boxes

= The semiconductor industry
increased the frequency

Nodes

= We acquired the right number of
(single-socket) boxes

Sockets

36

Computer Architecture and Performance Tuning

Now: Seven dimensions of performance

= First three dimensions:
= Hardware vectors/SIMD Vector width

= Superscalar
= Pipelining

Superscalar

= Next dimension is a “pseudo” Pipelining
dimension:

= Hardware multithreading

Multithreading

= Last three dimensions:
= Multiple cores

= Multiple sockets Multicore

Nodes

= Multiple compute nodes

SIMD = Single Instruction Multiple Data

Computer Architecture and Performance Tuning

Seven multiplicative dimensions:

= First three dimensions:

= Hardware vectors/SIMD }

2x, 4x, 8x, 16x

= Superscalar }

1x - 10x

= Pipelining

= Next dimension is a “pseudo”

dimension: ~
= Hardware multithreading

= Last three dimensions:
= Multiple cores

= Multiple sockets

= Multiple compute nodes

38

— | 10x — 100x

Data and Instruction
Level parallelism
(Vectors/Matrices)

Task parallelism
(Events/Tracks)

Task/process
parallelism

Computer Architecture and Performance Tuning

Simple, but illustrative example

= Xeon Phi has ~60 cores, 4-way hardware threading,
hardware vectors of size 8 (Double Precision):

= Program A: Threaded 60 x 4, vectorised 8x:
= Performance potential: 1920

= Program B: Not threaded: 1x, not vectorised: 1x
= Performance potential: 1

In Order, 4
threads,

Memory Controller
Memory Controller

In Order, 4

threads,

1$ DT D
$

39

Computer Architecture and Performance Tuning

Streaming Multiprocessor Architecture

SMX
[Bavuction Cathe
Warp Schaduler Warp Scheduler Warp Scheduber

Disgench Jpaich Disguch Otspaich Otspaich Dispatich Otapalch Dispaich
& 1 3 - : &

Register Flle |65,536 x 32.bit)

& 4 2 4 3 3
woar U Coe Core Core

N
-

U Coe Core

Coe Core

Core

Core

Cune

Core

Core

N N N N -
BN I N N N O O N N N N -

Core Core
Imterconnect Network
G4 KB Shared Memory /L1 Cache

43 KB Read-Only Data Cache

SMX: 192 single-peecision CUDA cores, 84 double-prechiion units, 32 specisl function units [SFU), and 52 loed/store units

Py Source: NVIDIA white paper

40

Computer Architecture and Performance Tuning

GPUs: 7 dimensions of performance

= First four dimensions:
= Superscalar (dual issue)

= Pipelining
= Threads (32)
= |nstruction Schedulers (4)

= Then, there are:
= Warps

= Last dimensions:
= Multiple SMs

= Multiple accelerators

41

Pipelining

Threads

Warps

Superscalar

Instruction Schedulers

SM

Cards

Computer Architecture and Performance Tuning

Part 1: Opportunities for scaling

performance inside a core

= Here are the first three dimensions

= The resources:
= HW vectors: Fill the computational
width
= Superscalar: Fill the ports

* Pipelining: Fill the stages

= Best approach: Data Oriented
Design

= In HEP today, we probably extract
(much?) less than 10% of peak

. execution capability!

HW vector width

Superscalar

Pipelining

First topic: Vector registers

= Until recently, Steaming SIMD Extensions (SSE):
= 16 “XMM’ registers with 128 bits each (in 64-bit mode)

= New (as of 2011): Advanced Vector eXtensions (AVX):

= 16 "YMM?” registers with 256 bits each

Computer Architecture and Performance Tuning

32 Bytes 32 Byte elements
16 Words E15|E14|E13|E12|E1M|E10(E9 | E8 | E7 | E6 | E5 | E4 | E3 | E2 | E1 | EO
8 Dwords/Single E7 E6 E5 E4 E3 E2 E1 EO
4 Qwords/Double E3 E2 E1 EO
N J
Bit 255 Bit 0
\ 128 bits (SSE)
256 bits (AVX 1/AVX 2) j

43 Future: 51%its (AVX512)

Computer Architecture and Performance Tuning

Four floating-point data flavours

= Single precision

EO

= Scalar single (SS)

= PaCked Single (PS) E7 | E6 | ES | E4 | E3 | E2 | E1 | EO

= Double precision

EO

= Scalar Double (SD)

= Packed Double (PD) = E2 E1 EO

= Note:
= Scalar mode (with AVX) means using only:
= 1/8 of the width (single precision)

= 1/4 of the width (double precision)

= Even longer vectors are-coming! have been announced !

= Definitely 512 bits (already used in the Xeon Phi co-processors)
44

Computer Architecture and Performance Tuning

Single Instruction Multiple Data

- Scalar processing + SIMD processing (Intel)
- traditional mode - with SSE / SSE2
- one operation produces - one operation produces
one result multiple results

X x3
+
Y y3
X+Y | x3+y3

Slide Source: Alex Klimovitski & Dean Macri, Intel Corporation

Computer Architecture and Performance Tuning

Second topic: Superscalar architecture
Enhanced Processor Core

Instruction Fetch and

Pre Decode

32kB
Instruction Cache

ITLB

Instruction Queue

Decode

Rename/Allocate

Retirement Unit
(ReOrder Buffer)

Reservation Station

Execution Units

DTLB

32kB
Data Cache

46

2nd | evel TLB

256kB

2Md | evel Cache

Front End
Execution
Engine
Memory

L3 and beyond

Computer Architecture and Performance Tuning

Intel Haswell Front End

= |nstruction are loaded in

= A Predictor will choose
which Branch to follow

47

their own cache |

Prediction

Unit

Inserted in a que

than dispatched to four

decoding “station”

= |f wrong the queue is

drained and need to be
filled with the correct set of

instructions

Instruction Length Decoder

Instruction Queue

Complex

Decoder
Decoder § Decoder B Decoder

56-entry Instruction Decode Queue

32KB L1
Instruction
Cache

1.5K pop
Cache

Computer Architecture and Performance Tuning

Second topic: Superscalar architecture

= |In this simplified design, Instruction stream
iInstructions are decoded }
in sequence, but Decode
dispatched to two]
Functional Units. Dispatch

= The decoder and
dispatcher must be

Port 0 | | Port 1

able to handle two FUO FU1

iInstructions per cycle

= The FUs can have Results
identical or different l

execution capabilities

48

49

Computer Architecture and Performance Tuning

Enhanced superscalar architecture

= A more realistic
architecture will have
multiple FUs hanging
off the same port

= An instruction can be
dispatched to either
matching execution
unit on a given port,
but not to both units
on the same portin a
given cycle

Instruction stream

l

Dispatch
Port 0 Port 1
FUO FU1
(i-add) (i-add)
| |
FU 2 FU3
(i-shift) (i-mul)

Results

|

Computer Architecture and Performance Tuning

Execution Unit Overview

Unified Reservation Station

Integer ALU & Integer ALU & Store Integer ALU &
Shift LEA Address Shift
FP Multiply FP Add Intel’s Nehalem micro- Branch
architecture can execute four
instructions in parallel (across FP Shuffle
Integer . .
SSE Integer six ports) in each cycle.
) SSE Integer ALU
Integer Shuffles -
Integer Shuffles

50

Latest superscalar architecture

51

Computer Architecture and Performance Tuning

Multiply

x87 FP
Add

DIV
SQRT

Integer
MUL

PortO | Portl1l | Port2 | Port3 | Port4 | Port5 | Port 6 | Port 7
Integer Integer Load Load Store nteger Integer Store
Alu Alu Data Data Data Alu Alu Address
| 1 | | 1
Integer Integer Store Store Integer Integer
Shift LEA Address Address LEA Shift
1 | | | |
Vec Int Vector Vec Int
ALU Logical ALU
I | I
Vector Vector
shift PSAD Shuffle
| I 1
Vector String Vector
Logical Compare Logical
’é"
ec FMA
ec FMul
ec FAdd

= |ntel’s Haswell micro-architecture can
execute four instructions in parallel

(across eight ports) in each cycle.

Computer Architecture and Performance Tuning

Matrix multiply example

= For a given algorithm, we can understand exactly which

functional execution units are needed
= Forinstance, in the innermost loop of matrix multiplication

for (inti=0;i<N; ++i){
for (intj=0;j<N;++j){
for (intk=0; k<N; ++k) {
C[li* N+j] += a[i*N+k] * b[k*N+j];
}

}

Until Haswell (2012): Store Add Load Mult Load

As of Haswell (2013): Store Load FMA Load

52

Computer Architecture and Performance Tuning

Apple A7/A8 (based on ARM A57)

Port 0 | Port1l | Port2 | Port3 Po:l't 4 P0|"t 5| Port6 | Port7 | Port8
l |
Integer | | Integer Int Int Load Load sl i e e FDIV
| [| || s | | s | |y | |vec | | oS
|
Integer Integer Integer Integer
MUL DIV Shift Shift = Nine ports

— ‘ = Six instructions (on average)
decoded/executed/retired

= 128-bit vectors

And, this is for (hno more than) a phone?

Based on an article on
“anandtech.com” and
discussions with ARM

53

Computer Architecture and Performance Tuning

Third topic: Instruction pipelining

= |nstructions are broken up into stages.
= With a one-cycle execution latency (simplified):

Execute

Execute

= With a three-cycle execution latency:

Exec-1 Exec-2 Exec-3
Exec-1 Exec-2 Exec-3

54

Computer Architecture and Performance Tuning

Real-life latencies

= Most integer/logic instructions have a one-cycle execution
latency:

= For example (on an Intel Xeon processor)::
= ADD, AND, SHL (shift left), ROR (rotate right)

= Amongst the exceptions:
= IMUL (integer multiply): 3
= |IDIV (integer divide): 13 — 23

* Floating-point latencies are typically multi-cycle

= FADD (3), FMUL (5) ’F*“Snzf(;'is‘glz';
= Same for both x87 and SIMD double-precision variants y

= Exception: FABS (absolute value): 1
= Many-cycle, no pipepine : FDIV (20), FSQRT (27)

- Other math functions: even more Latencies in the Core micro-architecture

(Intel Manual No. 248966-026 or later).
55 AMD processor latencies are similar.

56

= Statement 2 cannot be

= Statement 3 cannot be

Computer Architecture and Performance Tuning

Latencies and serial code (1)

= |In serial programs, we
typically pay the penalty of a
multi-cycle latency during
execution:

* In this example:

started before statement 1
has finished

started before statement 2

has finished
I-F | I-D |[EX-1|EX-2|EX-3|EX-4|EX-5|W-B
I-F | I-D | - - - - |[EX-1|EX-2|EX-3|W-B
I-F | I-D - - - - - - [EX-1/W-B

double a, b, ¢, d, e, f;
b=2.0;c=3.0; e =4.0;

a=b *c; /] Statement 1

\

d=a+e; /| Statement 2

e

f = fabs(d); // Statement 3

Computer Architecture and Performance Tuning

Latencies and serial code (2)

EX-1|EX-2|EX-3|EX-4 EX-SF
F o] - | - | - | - |exa[Ex-2/Ex-3
= QObservations:

= Even if the processor can fetch and decode a new instruction
every cycle, it must wait for the previous result to be made
available

= Fortunately, the result takes a ‘bypass’, so that the write-back stage
does not cause even further delays

= The result: CPl is equal to 3
= 9 execution cycles are needed for 3 instructions!

= A good way to hide latency is to [get the compiler to] unroll

i (vector) loops !
)

Computer Architecture and Performance Tuning

Mini-example of real-life scalar, serial code

= Suffers long latencies:

High level C++ code >

Machine instructions -

if (abs(point[0] - origin[0]) > xhalfsz) return FALSE;

movsd 16(%rsi), YoxmmO
subsd 48(%rdi), oxmmO0 // load & subtract

andpd _2ilOfloatpacket.1(%rip), YoxmmO // and with a mask
comisd 24(%rdi), Y%oxmmO // load and compare

jbe ..B5.3

Prob 43% // jump if FALSE

Cycle

Port 0

Port 1

Port 2

Port 3

Port 4

Port 5

Same

instructions

laid out

according to

latencies on
the Nehalem

processor -

Ol | Nl | M| ®®|DN

NB: Out-of-
order

scheduling

not taken 1

into account. =

13

58

Computer Architecture and Performance Tuning

Sequential to parallel: Polynomial

Horner Method

float r = p[0] +
y * (p[1] +
y * (p[2] +
y * (p[3] +
y * (p[4] +
y * (p[5] +
y * p[6]))))) ;

59

Estrin Method

float p56 = p[5] +y * p[6];
float p34 = p[3] +y * p[4];
float y2 = y*y;

float p12 = p[1] + y*p[2];
float p36 = p34 + y2*p56;
float p16 = p12 + y2*p36;
float r = p[0] + y*p16;

Computer Architecture and Performance Tuning

Out-of-order (OOO) scheduling

= Most modern processors use OOO scheduling

= This means that they will speculatively execute instructions
ahead of time (Xeon: inside a “window™ of ~150 instructions)

= |n certain cases the results of such executed instructions must
be discarded

= At the end, there is a difference between “executed
instructions” and “retired instructions”

= One typical reason for this is mispredicted branches

= Potential problem with OOO:
= A lot of extra energy is needed!

= Interestingly: ARM has two designs:
= A53 (low power, in-order), A57 (high power, OOO)

60

Computer Architecture and Performance Tuning

Summary of Last Two Dimensions

61

Commonly referred to as:
= |nstruction level parallelism (ILP)

Very dependent on algorithms and/or data structures
Issues are equally valid for vector and scalar computing

Multiplies with what we get from all the other dimensions
= Threading

= Vectorisation

But, difficult to understand or manipulate
= Both micro-architecture and compilers get in the way

Computer Architecture and Performance Tuning

Important performance measurements

(that can tell you if things go wrong)

= Related to what we have = Plus:
discussed: = The total number (and the
= The total cycle count (C) type) of computational SSE/

AV X instructions

The total instruction count (I)

= Derived value: CPI = The number of divisions

= Total number of cache

= Resource Stall count: Cycles accesses

when no execution occurred
= And their “location” = Total number of (last-level)
cache misses

= Total number of executed
branch instructions

= Total number of mispredicted
branches

62

Computer Architecture and Performance Tuning

How to measure them?

= Linux perf

= https://perf.wiki.kernel.org/index.php/Tutorial

= http://www.brendangreqgqg.com/perf.nhtml

= https://github.com/andikleen/pmu-tools

= |ntel Vtune/Advisor

63

Computer Architecture and Performance Tuning

Exercise 1

= Exchange the order of the loops in the matrix multiplication
= Use matmul.cpp

= Compile
= c++ -std=c++14 —Wall —-O2 -fopt-info-vec

= Measure. What’s happening
= source doPerf

= Recompile with
= -O3 (aggressive optimization and vectorization)

= -Ofast (allow reordering of math operation)
= Add —funroll-loops (force loop unrolling)

= Change the product in a division

64

Computer Architecture and Performance Tuning

Exercise 2

= Compare Horner Method with Estrin
= Use PolyTest.cpp

= Change compiler options

65

Computer Architecture and Performance Tuning

Exercise 3

= Branch predictor in OO code
= Use Virtual.cpp

= Measure in various conditions
= Remove “random_shuffle”

= |ncrease number of Derived Classes
= Try to change the order in the vector of pointers

66

Exercise 4

= Different form of “Braching” in conditional code

= Use Branch.cpp

Computer Architecture and Performance Tuning

= Compare different form of conditional code

= Compile with —-02 —0O3 —Ofast

67

Computer Architecture and Performance Tuning

Part 2: Parallel execution across
hw-threads and cores

= First a “pseudo” dimension:
= Hardware multithreading

= Last three dimensions:

= Mu
= Mu
= Mu

tip
tip
tip

e cores
e sockets
e compute nodes

= Multiple nodes will not be
discussed here

= Qur focus is scalability inside
a node

68

Multithreading

Processor cores

Sockets

Compute nodes

Computer Architecture and Performance Tuning

Definition of a hardware core/thread

= Core
= A complete ensemble

of execution logic, and State: Registers, IC
cache storage as well O %
as register files plus & =
. . i ®
PO TR tauton cooes, || B
gic etc. ®
software process or o =
thread - @
» o

= Hardware thread State: Registers, IC

= Addition of a set of
register files plus IC

The sharing of the execution logic can
be coarse-grained or fine-grained.

69

‘ — Computer Architecture and Performance Tuning \
Simultaneous Multi-Threading (SMT)

w/o SMT SMT

« SMT

— Run 2 threads at the same time per
core

Take advantage of 4-wide execution
engine

- Keep it fed with multiple threads

— Hide latency of a single thread

Most power efficient performance
feature

- Very low die area cost

— Can provide significant performance
benefit depending on application

— Much more efficient than adding an
entire core

Nehalem advantages
— Larger caches
— Massive memory BW

. -1

Time (proc. cycles)

Note: Each box
represents a
processor
execution unit

Computer Architecture and Performance Tuning

Definition of a software
process and thread

= Process (OS process):

= An instance of a computer program that is being executed
(sequentially). It typically runs as a program with its
private set of operating system resources, i.e. in its own
“address space” with all the program code and data, its
own file descriptors with the operating system
permissions, its own heap and its own stack.

= Thread:

= A process may have multiple threads of execution. These
threads run in the same address space, share the same
program code, the operating system resources as the
process they belong to. Each thread gets its own stack.

74 Adapted from Wikipedia

Computer Architecture and Performance Tuning

Seven multiplicative dimensions:

= First three dimensions:
= Hardware vectors/SIMD

= Next dimension is a “pseudo”
dimension:

= Hardware multithreading

= Superscalar

= Pipelining

(aka SMT)

= |Last three dimensions:

72

= Mu
= Mu
= Mu

tip
tip
tip

e cores
e sockets
e compute nodes

Data and Instruction
Level parallelism
(Vectors/Matrices)

Task parallelism
(Events/Tracks)

Task/process
parallelism

Computer Architecture and Performance Tuning

The move to many-core systems

= Examples of “CPU slots”: Sockets * Cores * HW-threads
= Basically what you observe in “cat /proc/cpuinfo”

= Conservative:
= Dual-socket AMD six-core (Istanbul): 2*6"1=12

= Dual-socket Intel six-core (Westmere-EP): 2*6*2 =24

= More aggressive:
= Quad-socket AMD Interlagos (16-core) 4*16*1= 64

= Quad-socket Westmere-EX “octo-core’: 4*10*2= 80

= Already now: Hundreds (or thousands) of CPU slots !

= Octo-socket Oracle/Sun Niagara (T5) processors
w/16 cores and 8 threads (each): 8*16 * 8 =1024

= So, if you write new software, think: Thousands !!

73

74

Computer Architecture and Performance Tuning

Let’s briefly introduce parallelism

Computer Architecture and Performance Tuning

Parallelization support (C++ and others)

= Large selection of tools (inside the compiler or as
additions):

75

Native: pthreads/Windows threads

New C++ standard: std::thread

OpenMP

Intel Threading Building Blocks (TBB; also open source)
Intel CILK+

OpenACC

Thread wrapper classes

MPI (from multiple providers), etc.

CUDA (on GPUs from Nvidia)

OpenCL

Computer Architecture and Performance Tuning

Designing Threaded Programs

= Partition

= Divide problem into

tasks

= Communicate

= Determine amount

and pattern of
communication

= Agglomerate
= Combine tasks

= Map
= Assign

agglomerated tasks
to created threads

76

Communication

Final Program

DESIGNING and BUILDING
PARALLEL PROGRAMS

arey,

Ian Foster

Initial tasks

Concurrency in Parallel software:

Find Concurrency

Original Problem < Tasks, shared and local data

M M - } Res h CInnUIate(unp)’
|)
R

Units of execution + new shared data
for extracted dependencies

Program SPMD_Emb_Par () [
{| Program SPMD_Emb_Par () |
{| Program SPMD_Emb_Par () |
{| Program SPMD_Emb_Par ()
{
TYPE *tmp. *func();

: global_array Data(TYPE):
Supp Ortlng global_array Res(TYPE):

pattems int Num = get_num_procs():

int 1d = get_proc_1d():
1f (1d==0) setup_problem(N, Data):
for (int I= ID; I=N:I=I+Num){

ad

Corresponding source code

© 2009 Mathew J. Softile, Timothy G. Maﬂsal, and Craig E Rasmussen

Computer Architecture and Performance Tuni

Intel Xeon Phi: A “co-processor”

ng

* Intel Many Integrated Cores (MIC):

“Knights Corner”

= Announced at ISC10 (end-May 2010)

= Based on the x86 architecture, 22nm
= |[n-Order

= Many-core (up to 62 cores) + 4-way
multithreaded + 512-bit vector unit

= Limited memory: 8 — 16 Gigabytes

48’000 such
accelerators are
used in the
world’s fastest
supercomputer
(Tianhe-2 Xeon-
cluster in China)

In Order, 4 threads,

In Order, 4 SIMD-16
threads, SIMD-16 1$ D$

1$ D$

Memory Controller

In Order, 4 In Order, 4 threads,

threads, SIMD-16 SIMD-16
1$ D$ 1$ D$

Memory Controller

78

Computer Architecture and Performance Tuning

Next generation: “Knights Landing”

79

Being prepared for (late?) 2015 using 14 nm
technology. 3 Tflops peak.

Both as PCl-based coprocessor and bootable single-
socket system

New ATOM based (out-of-order) core [72 in total]

Memory: A combination of eDRAM (fast, small) and
DDR4 (slow, large)

High-bandwidth In-Package Memory

Near Memory Far Memory

Mesh fabric interconnect
= Rather than ring bus

High
Bandwidth

Converged instruction set i
= AVX-512 [aka AVX3.1]

Computer Architecture and Performance Tuning

NVIDIA roadmap

= A promise of continued growth:

o
]
i
©
£
o
o
=z
=
~
L
Q
v

T

'] Fermi

Adapted from Nvidia

Computer Architecture and Performance Tuning

GPU Accelerators : Nvidia Kepler

= Made available in
4Q2012

= GK110 GPU

= 3x DP performance:
= 1 Teraflops

= |[nnovative design:

= SMX (streaming GK110 GPU
multiprocessors)

= Dynamic parallelism
for spawning new

threads 18’688 such accelerators are used
= Hyper-Q enables in the world’s second-fastest
multiple CPU cores to supercomputer (Titan Cray XK7)

utilise CUDA cores

81 Adapted from Nvidia

h Computer Architecture and Performance Tuning

Some

Recommendations

(Will be expanded in Lectures later on

this week)

82

]

Computer Architecture and Performance Tuning

HEP programming paradigm

= Event-level parallelism has been used for decades

= And, we should not lose this advantage:

= Large jobs can be split into N efficient “chunks”, each
responsible for processing M events

= Has been our “forward scalability”

= Disadvantage with current approach:

= Memory must be made available to each process

= A dual-socket server with eight-core processors needs 32 — 48 GB (or
more)

= The double (64 — 96 GB), if hardware multithreading is enabled!

Although large memories are now coming, we must not let
memory limitations decide our ability to compute efficiently!

83

Computer Architecture and Performance Tuning

HEP Event Processing (Gaudi framework)

84

- v

Traditionally Each event is
processed by a “pipeline” of

Transient Event

‘Data Store

Data T1 H
, algorithms
Algorithm 9
~ Data 712,713 q
Data T2
Data T3
Data T2
Algorithm
- Data T4 (B
Data T3, T4 Data T4
Algorithm
Data T5 C ¢:'_:‘:’
Real dataflow
Af—

Data T5

Computer Architecture and Performance Tuning

Concurrency in High Energy Physms

= We are “blessed” with lots of it:
= Entire events

= Particles, hits, tracks, vertices, jets..

= Detectors, volumes, sensors, channels,
pixels

= Physics processes (event classification)

= |/O streams (ROOT trees, branches)

= Buffer handling (also data compaction, etc.)
= Fitting variables

= histograms

= and many others

= Usable for both data and task parallelism!
85

Computer Architecture and Performance Tuning

A proposal for “agile” software:

1) Seek out parallelism at all levels
a. Events, among algorithms, inside algorithms...

b. Perform “chunk” processing:
= From Pipeline to Direct-Acyclic-Graph

2) Build forward scalability

3) Create compute-intensive kernels

4) Optimise the Memory Hierarchy

5) Create Performance-oriented Code
6) Combine broad programming talents
7) Use best-of-breed tools

86

Computer Architecture and Performance Tuning

From Nested Parallelism to DAG Tasks

I'# Tilustration from PLASMA Project /M

Nested fork- join parallelism (e.g., Cilk, TBB)
= iy -l T = ——

—;‘—-

Ry OEeEECE

Arbitrary DAG scheduling (e.g., PLASMA,

SuperMatrix)

87

Computer Architecture and Performance Tuning

The holy grail: Forward scalability

88

Not only should a program be written in such a way that it
extracts maximum performance from today’s hardware

On future processors, performance should scale
automatically

= In the worst case, one would have to recompile or relink

Additional CPU/GPU hardware, be it cores/threads or
vectors, would automatically be put to good use

Scaling would be as expected:

= |f the number of cores (or the vector size) doubled:
= Scaling would be close to 2x, but certainly not just a few percent

We cannot afford to “rewrite” our software for every
hardware change!

Computer Architecture and Performance Tuning

Limit of Scalability

= Maximum speedup defined by Amdahl’s law:

= n=#threads, p=parallel fraction

= Which just state the obvious:

= A bare 10% non-parallel fraction limits the speedup to a
factor 10! (and 1% to 100: less then current Xeon-Phi)

89

Computer Architecture and Performance Tuning

Kernel-oriented Programming

= Take the whole program and its execution behaviour
into account

= Get yourself a global overview as soon as possible
= Via early prototyping with realistic algorithms/data

= |Influence early the design and definitely the implementation

= Foster clear split:

Heavy compute
= Prepare to compute e

= Do the heavy computation

= |n kernels, where you go after all the available parallelism

= Often, a single kernel is not sufficient
= A sequence of kernels may be needed

The 90 — 10 rule

90

Computer Architecture and Performance Tuning

CPU / GPU co-existence

What | would like to see happen to a (possibly dusty,
sequential) x86 application:

= A strong porting effort to move it to the GPU

= A good “kernel-oriented design” that aims for a triple-digit
speed-up

= Then, a solid port back to the CPU servers
= Exploiting vectors and cores

= Qutcome:

= Applications that can profit from new breakthroughs on
either side of the fence

91

Computer Architecture and Performance Tuning

Data layout: SoA versus AoS

= |n general, both GPUs and
CPUs prefer the former!

= Structure of Arrays (SoA): e 1) Xo [X5 [X5 [Xy [X5 [Xg

= Array of Structures (AoS):

SP1 SP2 SP3 SP4

SP5

X.Y,

92

Computer Architecture and Performance Tuning

Performance-oriented code

93

= C++ for performance
= Use light-weight C++ constructs

= Minimize virtual functions
' nenever importan

= Optimize the use of math functions Use vector
- SQRT, DIV o

— LOG, EXP, POW possible,
- SIN, COS, ATAN2 bt master
accuracy!

Learn to inspect the compiler-generated assembly,
especially of kernels

Computer Architecture and Performance Tuning

Performance tools

= Surround yourself with good tools:
= Compilers (not just one!

- L i b ra ri eS " Locate Memory Problems Intel Inspector XE 2013

& Target|| " Analysis Type || B2 Collection Log

[]
[| P rOfI I e rS Problem Sources Modules Object Size State

Mismatched allocation/deallocat... find_and_fix_ memory_errors.cpp find_and_fix_memory_errors.exe R New
Invalid memory access find_and_fix_ memory_errors.cpp find_and_fix_memory_errors.exe
Memory leak api.cpp; asctime.c; util.cpp; vide... MSVCR100D.dIl; find_and_fix_me... F Confirmed
. D e b e rS Memory leak find_and_fix_memory_errors.cpp find_and_fix_ memory_errors.exe 784 Deferred
l l
gg 410 10f2 b Code Locati d men
Description Source Function Module Object Size Offset
Allocation site find_and_fix_memory_errors.cpp:163 operator() find_and_fix_memory_errors.exe 112
[| I h read 161 unsigned int serial=l1; find and fix memory errors.exe!operator() -
162 unsigned int mboxsize = sizeof(unsigned int)*(max_obj ||find_and_fix_memory errors.exe!execute - par
163 unsigned int * local_mbox = (unsigned int *) malloc(m||tbb_debug.dll!local_wait_for_all - custom_sc
164 tbb_debug.dll!local_spawn_root_and wait - sc
C eC e rS 165 for (unsigned int i=0;i<=(mboxsize/(sizeof (unsigned i ||tbb_debug.dll!spawn root_and wait - schedule

Write find_and_fix_memory_errors.cpp:166 operator() find_and_fix_ memory_errors.exe 112

164 find and fix memory errors.exe
exe

0
Lo for (unsigned int i=0;i<=(mboxsize/(sizeof (unsigned i [|find and fix memory errors.exe!execute - par
[| I I lread 166 local_mbox[i]=0; //Memory Error: C declared array|tbb_debug.dll!local_wait_for all - custom_sc

tbb_debug.dll!local_spawn_root_and_wait - sc
f. I

for (int ¥y = r.begin(); v != r.end(); ++y) { tbb_debug.dll!spawn_roo
94 Image: software.intel.com

and wait - schedule

Computer Architecture and Performance Tuning

Broad Programming Talent

= In order to cover as many layers as possible

Problem

Solution Algorithms, abstraction
specialists

P Source program

- Compiled code, libraries
System architecture
Instruction set
u-architecture
Circuits
Electrons

_ Technology
specialists

95

96

Computer Architecture and Performance Tuning

Summing Up

Computer Architecture and Performance Tuning

So, what does it all mean?

= Here is what we tried to say Iin these lectures:

97

You must make sure your data and
instructions come from caches (not main
memory)

You must parallelise across all “CPU slots”
= Hardware threads, Cores, Sockets

You must get your code to use vectors

You must understand if your ILP is seriously

limited by serial code, complex math
functions, or other constructs

10x — 100x

2x, 4x, 8x, 16x

1x - 10x

Computer Architecture and Performance Tuning

If you think that all of this is “crazy”

= Please read:

= “Optimizing matrix multiplication for a short-vector
SIMD architecture — CELL processor”

= J.Kurzak, W.Alvaro, J.Dongarra
= Parallel Computing 35 (2009) 138-150

In this paper, single-precision matrix multiplication kernels
are presented implementing the C = C — A x BT operation and
the C = C — A x B operation for matrices of size 64x64
elements. For the latter case, the performance of 25.55 Gflop/
s is reported, or 99.80% of the peak, using as little as 5.9 kB
of storage for code and auxiliary data structures.

98

Computer Architecture and Performance Tuning

Concluding remarks

= The aim of these lectures was to help understand:
= Changes in modern computer architecture

= Impact on our programming methodologies

= Keeping in mind that there is not always a straight
path to reach (all of) the available performance by
our programming community.

= Will you be ready for 1000 cores and long vectors?
= Are you thinking “parallel, parallel, parallel” ?

* |t helps to have a good overview of the complexity
of the hardware and the seven hardware
dimensions in order to get close to the best
software design !

99

Computer Architecture and Performance Tuning

Further reading:

100

“Designing and Building Parallel Programs”, I. Foster, Addison-Wesley,
1995

“Foundations of Multithreaded, Parallel and Distributed Programming”, G.R.
Andrews, Addison-Wesley, 1999

“Computer Architecture: A Quantitative Approach”, J. Hennessy and D.
Patterson, 3" ed., Morgan Kaufmann, 2002

“Patterns for Parallel Programming”, T.G. Mattson, Addison Wesley, 2004

“Principles of Concurrent and Distributed Programming”, M. Ben-Ari, 2nd
edition, Addison Wesley, 2006

“The Software Vectorization Handbook”, A.J.C. Bik, Intel Press, 2006

“The Software Optimization Cookbook”, R. Gerber, A.J.C. Bik, K.B. Smith
and X. Tian; Intel Press, 2"d edition, 2006

“Intel Threading Building Blocks: Outfitting C++ for Multi-core Processor
Parallelism”, J. Reinders, O’Reilly, 1st edition, 2007

“Inside the Machine”, J. Stokes, Ars Technica Library, 2007

Computer Architecture and Performance Tuning

Thank you!

101

