APl

A “Hands-on” Introduction to MPI

Tim Mattson Intel Corp. timothy.g.mattson@ intel.com

* The name “MPI” is the property of the MPI forum (http://www.mpi-forum.org). 1



Disclaimer
READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if we say anything really
stupid, it's our fault ... don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 ... A UC Berkeley course on
Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.




Our MPI progression

Topic Exercise concepts

I. MPI introduction mpiexec hello world Running programs on clusters
Il. Group+context = MPI hello world The organization of processes
communicator in an MPI program.

lll. The Bulk MPI Pi Program Collective communications

Synchronous pattern.

IV. Scaling

Running the MPI Pi
program

Weak vs. Strong scaling

V. Message passing:
basics

Ring program with
send receive

How messages move through
the MPI runtime

VI. Message passing
diversity in MPI

Different versions of
the ring program

Data environment details,
software optimization

VIl. Geometric
decomposition

Matrix transpose

Using MPI for geometric
decomposition problems

VIIl. Wrap-up

The 12 fundamental MPI
constructs




Outline

=) « The Distributed memory platform
 MPI and the Bulk Synchronous Pattern
« Scalability in Parallel Computing
* Message Passing
» Geometric Decomposition
« Some closing thoughts



Programming Model: Message Passing

* Program consists of a collection of named processes.

— Number of processes almost always fixed at program startup time
— Local address space per node -- NO physically shared memory.

— Logically shared data is partitioned over local processes.

* Processes communicate by explicit send/receive pairs
— Coordination is implicit in every communication event.

— MPI (Message Passing Interface) is the most commonly used SW

receive Pn,s

send P1,s

Private
memory



Parallel API's: MPI
the Message Passing Interface

MPI Type contiguous MPI Recv 1init
MPI Bcast
MPT—6 size
S MPI: An API for Writing Clustered
Applications DRLD
MPT |
— A library of routines to coordinate the |"""°
” execution of multiple processes. o
—Provides point to point and collective
MPT communication in Fortran, C and C++ | ..
—Unifies last 25 years of cluster
MPT| computing and MPP practice ck)

MPI Sendrecv replace MPT Ssend MPI Waitall

MPI Alltoallv MPI Send



An MPI program at runtime

» Typically, when you run an MPI| program, multiple processes
all running the same program are launched ... working on their
own block of data.

1 V11 1 1




SPMD: Single Program Mulitple Data

* Run the same program on P processing elements where P
can be arbitrarily large.

* Use the rank ... an ID ranging from 0 to (P-1) ... to select
between a set of tasks and to manage any shared data
structures.

This pattern 1s very general and has been used to support most (1f
not all) the algorithm strategy patterns.

MPI programs almost always use this pattern ... 1t 1s probably
the most commonly used pattern in the history of parallel
programming.



Running SPMD programs

 MP| implementations include a way to start “P processes” on
the system.

« For MPIch (the most common MPI implementation, this is
done with the mpiexec command:

> mpiexec —n P ./a.out Run the program locally as P processes

* There are many options for mpiexec.

» mpiexec —f hostfile -n P ./a.out | p..1 the program as P processes on the

nodes from hostfile. A hostfile has node
name on each line followed by a colon
> mpiexec —h and the number of available poceeworsr

Ask mpieec for information about how to
use the mpiexec commnds.




Exercise: Hello world part 1

» Goal
— To confirm that you can run a program in parallel.

* Program

— Add MPI to your path. In your “.bashrc file” add the line
— PATH=$PATH:/usr/lib64/mpich/bin

— Write a program that prints “hello world” to the screen.
— Use mpiexec to run multiple copies of the program.
— Run them on your shared memory node
— Run them across the nodes of a cluster (hint: you'll need a hostfile)

— To run 3 processes on one node and 4 on another, my hostfile would
be:
esc-33:3
esc-35:4

To run the executable hello on 2 processes on my local machine type:
> mpiexec —h 4 ./a.out

To run the executable hello on 7 processes on my two node clusster:
> mpiexec —f hostfile —n 7 ./a.out




An MPI program at runtime

 Typically, when you run an MPI| program, multiple processes
all running the same program are launched ... working on their
own block of data.

Qe

The collection of processes involved in a computation is called “a
process group”




An MPI program at runtime

 Typically, when you run an MPI program, multiple processes
all running the same program are launched ... working on their
own block of data.

You can dynamically split a process group into multiple subgroups to
manage how processes are mapped onto different tasks

MPI functions work within a “context™ ... events in different contexts ... even
if they share a process group ... cannot interfere with each other.




MPI Hello World

#include <stdio.h>

#include <mpi.h>

int main (int argc, char **argv){
int rank, size;
MPI Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );

MPI_Finalize();
return 0;




Initializing and finalizing MPI

int MPI Init (int* argc, char* argv([])

= |nitializes the MPI library ... called before any
other MPI functions.

= agrc and argv are the command line args passed

#include <stdio.h> from main()
#include <mpi.h>
int main (int argc, char **argv){
int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",
rank, size );

MPI_Finalize();

return 0; “\\\\~int MPI Finalize (void)
" Frees memory allocated by the MPI library ... close
every MPI program with a call to MPI_Finalize




How many processes are involved?

int MPI Comm size (MPI Comm comm, int* size)

= MPI_ Comm, an opaque data type called a communicator. Default
context: MPI_COMM_WORLD (all processes)

= MPI Comm_size returns the number of processes in the process

Eincl. group associated with the communicator
include <mpi.h>

int main (int argc, char **argv){

int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

printf( "Hello from process %d of %d\n",
rank, size );

MPI_Finalize();

return O;

Communicators consist of
two parts, a context and a
process group.

The communicator lets me
control how groups of
messages interact.

The communicator lets me
write modular SW ... 1.e. I can
give a library module its own
communicator and know that
it’s messages can’t collide with
messages originating from
outside the module




Which process “am |I” (the rank)

MPI_COMM_WORLD (all processes)

int MPI Comm rank (MPI Comm comm, int* rank)
= MPI_ Comm, an opaque data type, a communicator. Default context:

= MPI Comm rank An integer ranging from O to “(num of procs)-1”

Eincll
include <mpi.h>

int main (int argc, char **argv){
int rank, size;
MPI_Init (&argc, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
printf( "Hello from process %d of %d\n",

rank, size );
MPI_Finalize();
return O;

Note that other than init() and

finalize(), every MPI function
has a communicator.

This makes sense .. You need a
context and group of processes
that the MPI functions impact
... and those come from the
communicator.




Running the program

® On a4 node cluster, I'd run this
program (hello) as:
> mpiexec —n 4 hello

® What would this program would output?

tinclude <stdio.h>

include <mpi.h>

int main (int argc, char **argv){

int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

printf( "Hello from process %d of %d\n",
rank, size );

MPI_Finalize();

return O;




Exercise: Hello world

» Goal
— To confirm that you can run an MP| program on our cluster
* Program

— Write a program that prints “hello world” to the screen.

— Modify it to run as an MPI program ... with each process in the process group
printing “hello world” and its rank

#include <mpi.h>

int size, rank, argc; char **argv;
MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();

To run the executable hello on 2 processes on my local node:
> mpiexec —n 4 a.out




Running the program

® On a 4 node cluster, I’d run this
program (hello) as:
> mpirun —n 4 hello
Hello from process 1 of 4

tinclude <stdio.h> Hello from process 2 of 4
include <mpi.h> Hello from process 0 of 4
int main (int argc, char **argv){ Hello from process 3 of 4

int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

printf( "Hello from process %d of %d\n",
rank, size );

MPI_Finalize();

return O;




Outline

* The Distributed memory platform
=) « MPI and the Bulk Synchronous Pattern
« Scalability in Parallel Computing
* Message Passing
» Geometric Decomposition
« Some closing thoughts

20



Sending and Receiving Data

int MPI Send (void* buf, int count,
MPI Datatype datatype, int dest,
int tag, MPI Comm comm)

int MPI Recv (void* buf, int count,
MPI Datatype datatype, int source,
int tag, MPI Comm comm,
MPI Status* status)

- MPI_Send performs a blocking send of the specified data (“count” copies
of type “datatype,” stored in “buf”) to the specified destination (rank “dest”
within communicator “comm”), with message ID “tag”

" MPI_Recv performs a blocking receive of specified data from specified
source whose parameters match the send; information about transfer
is stored in “status”

By “blocking” we mean the functions return as soon as the buffer, “buf”, can be safely
used.



MPI Data Types for C

MPI Data Type C Data Type

MPI BYTE

MPI CHAR signed char MPI provides

MPI DOUBLE double predefined data

MPI FLOAT float types that must be
- int specified when

MPl_INT | passing messages.

MPI LONG long

MPI LONG DOUBLE long double

MPI PACKED

MPI SHORT short

MPI UNSIGNED SHORT unsigned short

MPI UNSIGNED unsigned int

MPI UNSIGNED LONG unsigned long

MPI UNSIGNED CHAR unsigned char




A typical pattern with MPIl Programs

« Many MPI applications have few (if any) sends and

receives. They use the following very common pattern: Time
» Use the Single Program Multiple Data
pattern
= Each process maintains a local view of (g 5 %
the global data
= A problem broken down into phases each Collective comm.
of which is composed of two subphases: é

- Compute on local view of data

- Communicate to update global view
on all processes (collective
communication).

= Continue phases until complete

Collective comm.

Py Py P, Py

This 1s a subset or the SPMD pattern sometimes Processes

referred to as the Bulk Synchronous pattern.




MPI Collective Routines

 Collective communications: called by all processes in the group
to create a global result and share with all participating

processes.

— Allgather, Allgatherv, Allreduce, Alltoall,
Alltoallv, Bcast, Gather, Gatherv, Reduce,
Reduce scatter, Scan, Scatter, Scatterv

* Notes:

— Allreduce, Reduce, Reduce scatter, and Scan use the same
set of built-in or user-defined combiner functions.

— Routines with the “A11” prefix deliver results to all participating
processes

— Routines with the “v” suffix allow chunks to have different sizes
» Global synchronization is available in MPI
— MPI Barrier( comm )
 Blocks until all processes in the group of the communicator
comm call it.



Collective Data Movement

Take a value from PO
and give a copy to P1,
P2 and P3

Scatter an array on P0
to P1, P2, and P3

Gather values from P1,
P2, and P3 into an array
on PO

PO
Pl

P2
P3

PO
Pl

P2
P3

AL
RN
RN
HEEE

A BlCID

Broadcast

Scatter

n
>

Gather

Al L
Al L
Al L
Al

Al L
Bl | |
cl | |
Dl | |



More Collective Data Movement

Take a chunk from each P
and gather into a single
array on each P

Take arrays on each P and
spread them out to arrays on
each P

PO
Pl

P2
P3

PO

P2
P3

Al L1

Bl | |
cl | |
Dl | |

AOATA2A3
BO/B1[B2B3
cociic2c3
DOD1D2D3

Allgather

Alltoall

A|BIC|D
A|BIC|D
A|BIC|D
A|BIC|D

AQBOICOIDO
ALBIICIDI
A2B2/C2D2
A31B3C3D3



Collective Computation

PO
Take Yalues on egch P and p1 E Reduce
combine them with an op
(such as add) into a single P2
value on one P. P3 m

PO
Take values on each P and
combine them with a scan Pl

Scan

operation and spread the P2
scan array out among all P.

El = E1E

P3




Reduction

int MPI Reduce (void* sendbuf,
void* recvbuf, int count,
MPI Datatype datatype, MPI Op op,
int root, MPI Comm comm)

- MPI_Reduce performs specified reduction operation on specified data
from all processes in communicator, places result in process “root” only.

« MPI_Allreduce places result in all processes (avoid unless necessary)

Operation | Function Operation | Function

MPI_ SUM Summation MPI BAND Bitwise AND

MPI PROD Product MPI LOR Logical OR

MPI MIN Minimum value MPI BOR Bitwise OR

MPI MINLOC | Minimum value and location MPI LXOR Logical exclusive OR

MPI MAX Maximum value MPI BXOR Bitwise exclusive OR

MPI MAXLOC | Maximum value and location User-defined It is possible to define new
VDT LAND Logical AND reduction operations




MPI_REDUCE Example

#include <mpi.h> MPI_COMM_WORLD

int main(int argc, char* argv[]) {
int msg, sum, nprocs, myrank;

MPI Init(&argc, &argv);
MPI_Comm size (MPI_COMM WORLD, &nprocs); Mn
MPI Comm rank (MPI_COMM WORLD, &myrank);

sum = 0;
msg = myrank;

do0Nddy IdW

MPI Reduce (&msg, &sum, 1, MPI INT,

MPI SUM, 0 MPI COMM WORLD) ; m

MPI Finalize();




Exercise 2: Pi Program

» Goal
— To write a simple Bulk Synchronous, SPMD program

* Program

— Start with the provided “pi program” and using an MPI reduction, write a parallel
version of the program. Explore its scalability on your system.

int MPI Reduce (void* sendbuf, void* recvbuf, int count,
MPI Datatype datatype, MPI Op op, int root, MPI Comm comm)

Operation Function

MPI SUM Summation MPI Data C Data

MPT PROD Product Type Type
#include <mp;.h> MPI DOUBLE double
int size, rank, argc; char **argv; MPI FLOAT float
MPI_Init (&argc, &argv); MPI INT int
MPI_Comm_rank (MPI_COMM_WORLD, &rank); MPI LONG long
MPI_Comm_size (MPI_COMM_WORLD, &size);
MPI_Finalize();




Example Problem: Numerical Integration

Mathematically, we know that:

1

4.0 1= ‘\\ 40
N f (14x2) =T
A\ 0
N
\ We can approximate the
integral as a sum of
207 rectangles:

F(x) = 4.0/(1+x2)

N
| E F(x)Ax = TT
i=0

- Where each rectangle has
>0 X width Ax and height F(x;) at
the middle of interval i.



Pl Program: an example

static long num_steps = 100000;

double step;
void main ()
{ Inti; double x, pi, sum = 0.0;
step = 1.0/(double) num_steps;
x = 0.5 * step;
for (i=0;i<= num_steps; i++){
x+=step;

sum += 4.0/(1.0+x*x);

}

pi = step * sum;



Pi program in MPI

#include <mpi.h>
void main (int argc, char *argv[])

d

int 1, my_id, numprocs; double x, pi1, step, sum = 0.0 ;

step = 1.0/(double) num_steps ;

MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_ WORLD, &my id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my steps = num_steps/numprocs ;

for (1I=my _1d*my_steps; i<(my_id+1)*my_steps ; i++)

d

x = (1+0.5)*step; .
sum += 4.0/(1.0+x*x); Sum values in “sum” from
} ‘ ‘ ’ each process and place it in
*— gt “pi” on process 0
sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI_ DOUBLE, MPI SUM, 0,
MPI_ COMM_WORLD)



MPI Pi program performance

{

e P~

int i my_id, numprocs: double x, pi. step. sum
step = 1.0/(double) num_steps ;

AN AN

MPI_Init(&arge, &argy) ;

AAAAAAA DA

MPI_Comm_ Rank(MPI_COMM_WORLD,

A

MPI_ Comm_Size(MPI COMM _WORLD, 4§

A

for (=my_id: i<num_steps; : =itnumprocs)

{ i
x = (1+0.5)*step;

Thread | OpenMP | OpenMP MPI
Or procs SPMD PI Loop
critical
1 0.85 0.43 0.84
2 0.48 0.23 0.48
3 0.47 0.23 0.46
4 0.46 0.23 0.46

sum +=4.0/(1.0+x*x);

}

sum *= step ;

A

MPI_COMM_WORLD)

MPI Reduce(&sum, &pi, 1, MPI DOUBLE, MPI_SUM, 0,

*Intel compiler (icpc) with —O3 on Apple OS X 10.7.3 with a dual core (four HW thread) Intel®

Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

Note: OMP loop used a
Blocked loop distribution.
The others used a cyclic
distribution. Serial .. 0.43.




Outline

* The Distributed memory platform

 MPI and the Bulk Synchronous Pattern
=) . Scalability in Parallel Computing

* Message Passing

» Geometric Decomposition

« Some closing thoughts

35



Amdahl’ s Law

e What is the maximum speedup you can expect from a parallel program?

e Approximate the runtime as a part that can be sped up with additional
processors and a part that is fundamentally serial.

parallel  fraction
P
= If serial_fraction is a and parallel_fraction is (1- o) then the speedup is:

Time (P)=(serial fraction +

par

)*Time,,,

Time,, Time,,
S(P)= Z Z

Time,, (P) (g4 1;)05) *Time,, o+ ! ;oc

= If you had an unlimited number of processors: P — oo

1 Amdahl’ s
= The maximum possible speedup is: S =— <— [ aw
o




What if the problem size grows

» Consider the dense linear algebra problems.

* A key feature of many of these operations between
matrices (such as LU factorization or matrix multiplication)
... work scales as the cube of the order of the matrix.

* Assume we can parallelize the linear algebra operation
(O(N3)) but not the loading of the matrices from memory
(O(N?)). How does the serial fraction vary with matrix order
(assume loading from memory is much slower than a
floating point op).

What would plots of runtime vs. problem size look like
for the N squared and N cubed terms?

What would plots of serial fraction vs. problem size look
like for the N squared and N cubed terms?




What if the problem size grows

» Consider the dense linear algebra problems.

» A key feature of many of these operations between matrices (such as LU
factorization or matrix multiplication) ... work scales as the cube of the order of
the matrix.

« Assume we can parallelize the linear algebra operation (O(N?)) but not the
loading of the matrices from memory (O(N2)). How does the serial fraction
vary with matrix order (assume loading from memory is much slower than a
floating point op).

700000
600000 - Runtime vs.
matrix order

1.2
Serial fraction

1 .
500000 vS. matrix order
400000 0.8
300000 0-6
0.4
200000
——0(N"2) 0.2
100000 —8-0(NA3) 0
0 0 20 40 60 80

0 20 40 60 80



What if the problem size grows

» Consider the dense linear algebra problems.

» A key feature of many of these operations between matrices (such as LU
factorization or matrix multiplication) ... work scales as the cube of the order of
the matrix.

« Assume we can parallelize the linear algebra operation (O(N?)) but not the
loading of the matrices from memory (O(N2)). How does the serial fraction
vary with matrix order (assume loading from memory is much slower than a

floating point op).
6E+09 1.2

Runtime vs. 1 Serial fraction vs.
matrix order matrix order

5E+09

AE+09 0.8
3E+09 =—0(N~2) 0.6
2E+09 —-O(N"3) 0.4
1E+09 0.2
—_—
0 — — —¢ 0 —
0 500 1000 1500 2000 0 500 1000 1500 2000

-1E+09

For much larger Matrix orders ...



Weak Scaling: a response to Amdhal

« Gary Montry and John Gustafson (1988, Sandia National
Laboratories) observed that for many problems the serial
fraction of a function of the problem size (N) decreases:

7. ()
S(P,N) = : li N)=0
(a(Vy+ = Mysr v AN)

" In other words ... if parallelizable computations asymptotically dominate the
runtime, then you can increase a problem size until limitations due to
Amdahl’s law can be ignored. This is an easier form of scalability for a
programmer to meet ... so its called “weak scaling”:

® Weak Scaling: Performance of an application when the problem size
increases with the number of processors (fixed size problem per node)




Example of weak scaling

HELIUM Weak Scaling Peﬁonnénée'om

* Local block size fixed to 20 gnd units

IBM Blue Gene P,
0.85 GHz,
PowerPC 450, 4-
way processors

£

4

=

Execution time (secs)

8

8

HELIUM weak scaling performance on IBM BGP (JUGENE)
Block size = 20 grid units

-~

/

—

P

|+ Execution ﬂmo]

15000
Cores

5000 10000 20000

A time dependent
Quantum
simulation of
helium atoms
with 20 grid units
per processing
element.

May. 13,10 | NAMD & HELIUM Enabling Work on the PRACE IBM Prototypes l

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf




Example of weak scaling

HELIUM Weak Scaling Perfonnancedm

* Local block size fixed to 20 gnd units

IBM Blue Gene P,
0.85 GHz,
PowerPC 450, 4-
way processors

§

Execution time (secs)

4

=

8

g

HELIUM weak scaling performance on IBM BGP (JUGENE)
Block size = 20 grid units

A time dependent
Quantum

—— simulation of

/ helium atoms
with 20 grid units

—

per processing

P

element.

What does ideal scaling look
on the time vs. cores plot when
you have ideal weak scaling?

JT
1

10000

15000 20000 25000
Cores

May.13,10° . "\ NAMD & HELIUM Enabling Work on the PRACE IBM Prototypes l

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf




Example of weak scaling

HELIUM Weak Scaling Perfonnanée'dm

* Local block size fixed to 20 gnd units

IBM Blue Gene P,
0.85 GHz,
PowerPC 450, 4-
way processors

£

4

=

Execution time (secs)

8

g

HELIUM weak scaling performance on IBM BGP (JUGENE)
Block size = 20 grid units

A time dependent
Quantum

—— simulation of

helium atoms
with 20 grid units

per processing

element.

For a “perfectly scalable”
application, the trend line for
weak scaling should be flat.

|+ Execution tlmo]

10000

15000
Cores

20000 25000

May. 13,10 NAMD & HELIUM Enabling Work on the PRACE IBM Prototypes k

http://www.spscicomp.org/ScicomP16/presentations/PRACE_ScicomP.pdf



Outline

* The Distributed memory platform
 MPI and the Bulk Synchronous Pattern
« Scalability in Parallel Computing

m=) « Message Passing
» Geometric Decomposition
« Some closing thoughts

44



Buffers

® Message passing has a small set of primitives, but there are subtleties
= Buffering and deadlock
= Deterministic execution
= Performance

® When you send data, where does it go? One possibility is:
Process 0 Process 1

User data

User data

Derived from: Bill Gropp, UIUC 45



Blocking Send-Receive Timing Diagram

\ (Receive before Send)
send side receive side
— T0: MPI_Recv

MPI_Send: TI D

Once receive

is called @ TO,

i ~ Local buffer unavailable
MPI_Send returns T2 ~ - to user
~
= -

Lol — T3: Transfer Complete
buffer can — T4: MPI_Recv returns
be reused

v v Local buffer filled and
_ . available to user
time time

It is important to post the receive before
sending, for highest performance. 46




J \ Sources of Deadlocks

® Send a large message from process 0 to process 1

= |f there is insufficient storage at the destination, the send
must wait for the user to provide the memory space (through
a receive)

®  What happens with this code?

Process 0 Process 1
Send (1) Send (0)
Recv (1) Recv (0)

e This code could deadlock ... it depends on the
availability of system buffers in which to store the data
sent until it can be received

Slide source: based on slides from Bill Gropp, UIUC 47



Some Solutions to the “deadlock’ Problem

® Order the operations more carefully:

Process 0 Process 1
Send (1) Recv (0)
Recv (1) Send (0)

e Supply receive buffer at same time as send:

Process O Process 1

Sendrecv(l) Sendrecv (0)

Slide source: Bill Gropp, UIUC 48



More Solutions to the “unsafe” Problem

" Supply a sufficiently large buffer in the send function

Process O Process 1
Bsend (1) Bsend (0)
Recv (1) Recv (0)
Use non-blocking operations:

Process O Process 1
Isend (1) Isend (0)
Irecv (1) Irecv (0)
Waitall Waitall

Slide source: Bill Gropp, UIUC

49



Non-Blocking Communication

® Non-blocking operations return immediately and pass “request handles”
that can be waited on and queried

- MPIL_Isend( start, count, datatype, dest, tag, comm, request )
- MPL_Irecv( start, count, datatype, src, tag, comm, request )
- MPI_Wait( request, status )
® One can also test without waiting using MPI_TEST
- MPIl_Test( request, flag, status )

® Anywhere you use MPI_Send or MPI_Recv, you can use the pair of
MPI_Isend/MPI_Wait or MPI_Irecv/MPI_Wait

Non-blocking operations are extremely important ... they
allow you to overlap computation and communication.

50



send side receive side

— T0: MPI _Irecv
MPI_Isend T2 — — T1: MPI Irecv Returns

MPI Isend returns T3 — \ buffer unavailable
to user
buffer unavailable / N

to user N — T4: MPI_Wait called
MPI_Wait TS — N\
N\
Sender completes T6 — “\
MPI_Wait returns T9 — xA

— T7: transfer finishes

to user v v receive buffer
filled and available

time time
to the user
51

— T&: MPI_Wait returns
buffer available '\




xample: shift messages around a ring

(part 1 of 2)

#include <stdio.h>
#include <mpi.h>

int main(int argc, char **argv)

{
int num, rank, size, tag, next, from;
MPI_Status status1, status2;
MPI_Request req1, req2;

MPI1_Init(&argc, &argv);

MPI_Comm_rank( MPI_COMM_WORLD, &rank);

MPI_Comm_size( MPI_COMM_WORLD, &size);

tag = 201;

next = (rank+1) % size;

from = (rank + size - 1) % size;

if (rank == 0) {
printf("Enter the number of times around the ring: ");
scanf("%d", &num);

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPI_INT, next, tag, MPI_COMM_WORLD,&req1);
MPI_Wait(&req1, &status1);

) 52



messages aroun

nart 2 of 2

do {
MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req?2);
MPI_Wait(&reqg2, &status?2);
printf("Process %d received %d from process %d\n", rank, num, from);

if (rank == 0) {

num--;

printf("Process 0 decremented number\n");
}

printf("Process %d sending %d to %d\n", rank, num, next);
MPI_Isend(&num, 1, MPIl_INT, next, tag, MPI_COMM_WORLD, &req1);
MPI_Wait(&req1, &status1);

} while (num != 0);

if (rank == 0) {
MPI_Irecv(&num, 1, MPI_INT, from, tag, MPI_COMM_WORLD, &req?2);
MPI_Wait(&req2, &status2);

}

MPI1_Finalize();
return O;



Exercise 3: Ring program

» Goal
— Explore other modes of message passing in MPI

* Program

— Start with the basic ring program we provide. Run it for a range of message
sizes and notes what happens for large messages.
— It may deadlock if the network stalls due to there being no place to put a
message (i.e. no receives in place to the send that is blocking on when its buffer
can be reused hangs).

— Try to make it more stable for large messages by:
— Split-phase ... have the nodes “send than receive” while the other half “receive
then send”.
— Sendrecyv ... a collective communication send/receive.
This is any integer ... it must be the same on matched sends and receives

v 4

double *buff; int buff count, to, from, tag=3; MPI Status stat;

MPI_Recv (buff, buff count, MPI DOUBLE, from, tag, MPI COMM_ WORLD, &stat);
MPI_Send (buff, buff count, MPI DOUBLE, to, tag, MPI COMM_ WORLD);
MPI Sendrecv (snd buff, buff count, MPI DOUBLE, to, tag,

rcv_buf, buff count, MPI DOUBLE, to, tag, MPI COMM WORLD, &stat);




Outline

* The Distributed memory platform
 MPI and the Bulk Synchronous Pattern
« Scalability in Parallel Computing
* Message Passing

BE) . Geometric Decomposition
« Some closing thoughts

95



" S ‘
Example: finite difference methods” / %

m Solve the heat diffusion equation in 1 D:
u(x,t) describes the temperature field 0°u  ou
We set the heat diffusion constant to one P R

ox® ot
Boundary conditions, constant u at endpoints.
m  map onto a mesh with stepsize h and k X; =X, +1ih b =1y +ik
m Central difference approximation for spatial ’u U —2u;+u,
derivative (at fixed time) FYC PR

m Time derivative at t = t"*1 R

56



" J
Example: Explicit finite differences

m Combining time derivative expression using spatial derivative at t = t"

n+l n n n n
k h’
m Solve for u at time n+1 and step |
n+l n n n
w?" =(1=2rw +ru’ +ru, "=%

m The solution att=t_,,is determined explicitly from the solution att =t
(assume u[t][0] = u[t][N] = Constant for all t).

for (int t = @; t < N_STEPS-1; ++t)
for (int x = 1; x < N-1; ++x)
u[t+1][x] = u[t][x] + r*(u[t][x+1] - 2*u[t][x] + u[t][x-1]);

m Explicit methods are easy to compute ... each point updated based on

nearest neighbors. Converges for r<1/2.
57



"
Heat Diffusion equation

infinitesimally narrow rod (~one D)

T1 MIIIDTITOIIIIIIIITITIITIITT1]

“infinite” heat “infinite” heat
bath (fixed bath (fixed
temperature, T1) temperature, T2)

58



" J
Heat Diffusion equation

infinitesimally narrow rod (~one D)

T1 MIIIIILLIITIITITITIITI 1]
CLIO—

OTTTTTIT T TTIITTTITITTITT I

Pictorially, you are sliding a three
point “stencil” across the domain (u[t])
and computing a new value of the
center point (u[t+1]) at each stop.

59



Heat Diffusion equation

T1 MIMIMIOIITITTITITTIITTITITTTTT1]
[(IT}—

int main()
{ Note: | don’t need the

H H “ ” I
malloc (sizeof(double) * (N)); mter:n?dlate ult]” values

hence “u” is just indexed by x.
malloc (sizeof(double) * (N));

double *u
double *upl

initialize data(uk, ukpl, N, P); // init to zero, set end temperatures
for (int t = ©; t < N_STEPS; ++t){
for (int x = 1; x < N-1; ++Xx)
upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

A well known trick with 2 arrays so |
@ upl = u; u = @ don’t overwrite values from step k-1
} as | fill in for step k

return 0;

60



Heat Diffusion equation

T1 MIMIMIOIITITTITITTIITTITITTTTT1]
[(IT}—

int main() How would

{ ( ( ) . you parallelize
double *u malloc (sizeof(double) * (N)); : "
double *upl = malloc (sizeof(double) * (N)); this program

initialize data(uk, ukpl, N, P); // init to zero, set end temperatures
for (int t = ©; t < N_STEPS; ++t){
for (int x = 1; x < N-1; ++Xx)
upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

temp = upl; upl = u; u = temp;
}

return 0;

61



Heat Diffusion equation

® Start with our original picture of the problem ... a one dimensional
domain with end points set at a fixed temperature.

T1 IIIIIIIIIIIIIIIIIIIIII.

62



software

" These seven strategies for parallelizing software give us:
= Names: so we can communicate better
» Categories: so we can gather and share information
= A palette (like an artist’s palette) of approaches that is:
* Necessary: we should consider them all and

« Sufficient: once we have considered them all then we don’t’
have to worry that we forgot something

Parallel Algorithm Strategy Patterns Discrete-Event

Task-Parallelism Data-Parallelism I Geometric-Decomposition I
Divide and Conquer Pipeline Speculation

63



Heat Diffusion equation

® Break it into chunks assigning one chunk to each process.

T1

Po P, P, P3

64



Heat Diffusion equation

® Each process works on it’'s own chunk ... sliding the stencil across
the domain to updates its own data.

T1

O OO OO Oo—
P0 ID’I P2 I:)3

65



Heat Diffusion equation

® What about the ends of each chunk ... where the stencil will run off the
end and hence have missing values for the computation?

11 OId
IIT}— M1}

T1 OII11
OI1T1—

66



Heat Diffusion equation

® We add ghost cells to the ends of each chunk, update them with the
required values from neighbor chunks at each time step ... hence giving
the stencil everything it needs on any given chunk to update all of its
values.

T1 OOIII1IT:

Ghost cell

Ghost cell

67



Geometric Decomposition

 Use when:

— The problem is organized around a central data structure that can be
decomposed into smaller segments (chunks) that can be updated
concurrently.

e Solution

— Typically, the data structure is updated iteratively where a new value
for one chunk depends on neighboring chunks.

— The computation breaks down into three components: (1) exchange
boundary data, (2) update the interiors or each chunk, and (3) update
boundary regions. The optimal size of the chunks is dictated by the
properties of the memory hierarchy.

* Note:

— This pattern is often used with the Structured Mesh and linear algebra
computational strategy pattern.

AR



SPMD: Single Program Mulitple Data

/A

® Run the same program on P processing elements where
P can be arbitrarily large.

® Use the rank ... an ID ranging from 0 to (P-1) ... to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support
most (if not all) the algorithm strategy patterns.

MPI| programs almost always use this pattern ... itis
probably the most commonly used pattern in the history of
parallel programming.

69



How do people use MPI?

A sequential program
working on a data set

The SPMD Design Pattern

Replicate the program.
Add glue code
Break up the data

-

*A single program working on a
decomposed data set.

*Use Node ID and numb of nodes to
split up work between processes

* Coordination by passing messages.




Heat Diffusion MPI Example

MPI Init (&argc, &argv);
MPI_Comm_size (MPI_COMM_WORLD, &P);
MPI_Comm_rank (MPI_COMM_WORLD, &myID);
double *u malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *upl = malloc (sizeof(double) * (2 + N/P)); // to hold values
// from my neighbors

initialize_data(uk, ukpl, N, P);
for (int t = @; t < N_STEPS; ++t){
if (myID !'= @) MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, ©, MPI_COMM_WORLD);
if (myID != P-1) MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD, &status);
if (myID != P-1) MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD);
if (myID != @) MPI_Recv (&u[©], 1, MPI_DOUBLE, myID-1, ©,MPI_COMM_WORLD, &status);

//* for (int x = 2; x < N/P; ++x) ﬂ\\
upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]); ) .
if (myID 1= 0) We write/explain
upl[1] = u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[1-1]); this part first and
if (myID != P-1)
upl[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]); then addreSS the

k temp = upl; upl = u; u = temp; / communication and
data structures

} // End of for (int t ...) loop

MPI_Finalize();
return 9;

71



Heat Diffusion MPI Example

// Compute interior of each “chunk”
for (int x = 2; x < N/P; ++X)

Update array values using local data
and values from ghost cells.

upl[x] = u[x] + (k / (h*h)) * (u[x+1] - 2*u[x] + u[x-1]);

// update edges of each chunk keeping the two far ends fixed
// (first element on Process © and the last element on process P-1).

if (myID != 0)
uplf1]

if (myID != P-1)

u[1] + (k / (h*h)) * (u[1+1] - 2*u[1] + u[l1l-1]); u[0] and u[N/P+1]

are the ghost cells

upl[N/P] = u[N/P] + (k/(h*h)) * (u[N/P+1] - 2*u[N/P] + u[N/P-1]);

// Swap pointers to prepare for next iterations

temp = upl; upl = u; u = temp;

} // End of for (int t ...) loop

MPI Finalize();
return 0;

Note | was lazy and assumed N was evenly
divided by P. Clearly, I'd never do this in a
“real” program.

72



" N H

eat Diffusion MPI Example

MPI Init (&argc, &argv); 1D PDE solver ... the simplest “real” message
MPI_Comm_size (MPI_COMM_WORLD, &P); passing code | can think of. Note: edges of
MPT_Comm rank (MPI_COMM WORLD, &myID); domain held at a fixed temperature
double *u = malloc (sizeof(double) * (2 + N/P)) // include "Ghost Cells"
double *upl = malloc (sizeof(double) * (2 + N/P)); // to hold values

// from my neighbors

initialize data(uk, ukpl, N, P);
for (int t = ©; t < N_STEPS; ++t){
if (myID != 0) — Send my “left” boundary value to the neighbor on my “left’
MPI_Send (&u[1], 1, MPI_DOUBLE, myID-1, ©, MPI_COMM WORLD);

if (myID != P-1) —| Receive my “right” ghost cell from the neighbor to my “right’
MPI_Recv (&u[N/P+1], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD, &status);

if (myID != P-1) ,— Send my “right” boundary value to the neighbor to my “right’
MPI_Send (&u[N/P], 1, MPI_DOUBLE, myID+1, ©, MPI_COMM_WORLD);

if (myID != @) ,_—] Receive my “left” ghost cell from the neighbor to my “left”

MPI_Recv (&u[@©], 1, MPI_DOUBLE, myID-1, ©,MPI_COMM_WORLD, &status);
/* continued on previous slide */ 73




J\' The Geometric Decomposition Pattern

® This is an instance of a very important design pattern ... the Geometric
decomposition pattern.

®  We will cover this pattern in more detail in a later lecture.

T1 OOIII1IT:

Ghost cell

Ghost cell

74



Partitioned Array Pattern

® Problem:

» Arrays often need to be partitioned between multiple UEs. How can we
do this so the resulting program is both readable and efficient?

" Forces
= |Large number of small blocks organized to balance load.
= Able to specialize organization to different platforms/problems.
» Understandable indexing to make programming easier.
" Solution:
= Express algorithm in blocks

» Abstract indexing inside mapping functions ... programmer works in an
index space natural to the domain, functions map into distribution
needed for efficient execution.

» The text of the pattern defines some of these common mapping
functions (which can get quite confusing ... and in the literature are
usually left as “an exercise for the reader”).

75



Partitioned Arrays

Realistic problems are 2D or
3D; require move complex
data distributions.

We need to parallelize the
computation by partitioning
this index space

Example: Consider a 2D
domain over which we wish
to solve a PDE using an
explicit finite difference
solver . The figure shows a
five point stencil ... update a
value based on its value and
its 4 neighbors.

Start with an array 2>

aso

as1

aso

ass

ase

as

Q40

Q41

Q42

Q43

Q46

Ay 7

Q50

as1

as 2

as 3

as 6

Qs 7

Qg0

Qg1

Qg 2

Qg3

Qg5

Qg6

Qg7

a7o

arq

aq o

aq3

aqs

a6

aq 7

76




® Split the non-unit-stride dimension (P-1) times to produce P chunks, assign
the it" chunkto P, WthN=n*n,P=p*p

®" In a 2D finite-differencing program (exchange edges), how much do we
have to communicate? 2*n = 2*sqrt(N) messages per processor

P is the
# of
processors

Qo,0 | Q0,1 Qo2 | A0,3 Qo4 | Q05 Qo6 | A0,7
a1,0 | 211 Q12| 21,3 a14 | 215 Q16 | Q1,7
Qa0 | @21 Qg2 | Q23 Qg4 | Q25 Qog | Q27
azo | 43,1 G392 | A33 ass Q36 | 43,7
Quo | @41 Qg2 Que | Qa7
A50 | @51 Q592 | 53 as 5 As56 | A57
Q6,0 | 26,1 Qg2 | 96,3 Qg4 | Q6,5 Q66 | 6,7
Q70 | @71 Q79 | Q73 a74 | Q75 Q76 | Q77
UE(0) UE() UE(2) UE(3)

UE = unit of
execution ... think of
it as a generic term
for “process or
thread”

77



J \ Partitioned Arrays: Block distribution

" If we parallelize in both dimensions, then we have (n/p)? elements per
processor, and we need to send 4*(n/p) = 4 *sqrt(N/P) messages from
each processor. Asymptotically better than 2*sqrt(N).

UE(0, 0) UEQ, 1)
Qo0 | @0,1 | Q0,2 | 0,3 Qo4 | Q05 | 0,6 | Q0,7
Q10| @11 | Q12 | 213 Q14 | 15 | Q16 | Q1,7
Qa0 | Q21 | Q22 | 23 Qo4 | Q25 | Q26 | Q27
Q30| Q3,1 |a32 | @33 1@ ags | 43,6 | 43,7

Qg0 | A4,1 | Q42 (@43 Ay 4 )l(a45 )04,6 Q47

55 | @56 | 45,7

50 | @51 | @52 | A53 1“54)| a
P is the @60 | @61 | 6,2 | %63 Qg4 | Q65 | Q66 | V6,7
# of

Q70 | Q71 | Q72 | Q73 74 | Q75 | Q76 | Q77
processors

UE(1, 0) UE(, 1) 78



Partitioned Arrays:

block cyclic distribution

® LU decomposition (A= LU) .. Move
down the diagonal transform rows to | 00 [ %1 | | %02 %03 | | %04 ]%5) |%6 | %07
“zero the column” below the diagonal. |, |, | S SN o || e
* bl AO,O AO,l AO,2 A0,3
O\ * * * % * %
0 * \x* *ox @20 | @21 A2 | @23 Q24 | A25 Q26 | A2,7
00 | * * * %
000 o aso | 23,1 azo | 33 34 | 235 36 | 23,7
0 00 *
000 * A Ay Az Az
0O 0 O|* * =*
oy - . . a a a a a a a a
" Zeros fill in the right lower triangle of | *° | ™" B ol il
the matrix ... less work to do. s | @51 | |ass|ass| | asa|ass| | ase|asg
® Balance load with cyclic distribution n n " n
. 2,0 2,1 2,2 2,3
of blocks of A mapped onto a grid of
nodes (2x2 in this case ... colors S . S | e || e e ||
show the mapping to nodes).
a70 | 7,1 a72 | Q13 A4 | Q15 76 | 1,7




Exercise 4: Transpose

» Goal
— Explore interaction of partitioned arrays and message passing

* Program

— We provide a matrix transposition program ... which is one of the
simplest examples of a program based on partitioned arrays.

— Notice how the SPMD pattern interacts with the partitioned array
pattern.

— Modify the program to use isend/irecv and overlap communication
with local transpose to maximize aggregate bandwidth

double *buff; int buff count, to, from, tag=3; MPI Status stat; MPI Requests req, r req;

MPI Irecv (buff, buff count, MPI DOUBLE, from, tag, MPI COMM _ WORLD, &r req);
MPI Isend (buff, buff count, MPI DOUBLE, to, tag, MPI COMM WORLD, &s req);
MPI Wait(&recv_req, &stat)
MPI Wait(&send req, &stat)




Outline

* The Distributed memory platform
 MPI and the Bulk Synchronous Pattern
« Scalability in Parallel Computing
* Message Passing
» Geometric Decomposition

==) « Some closing thoughts

81



The 12 core functions in MPI

 MPI Init
 MPI Finish

« MPI Comm_size
« MPI Comm_rank
« MPI Send

e MPI Recv

« MPI Reduce

« MPI Isend

e MPI Irecv
 MPI Wait

e MPI Wtime

* MPI Bcast

82



10
The 31Zcore functions in MPI

 MPI Init

 MPI Finish

« MPI Comm_size

« MPI Comm_rank
=S ehd—
* =Rt —

« MPI Reduce

« MPI Isend

e MPI Irecv

« MPI Wait

e MPI Wtime
* MPI Bcast

Real Programmers always try to overlap
communication and computation .. Post your
receives using MPI Irecv() then where
appropriate, MPI_Isend().

83



Does a shared address space make
programming easier?

Extra work upfront, but easier
optimization and debugging means
overall, less time to solution

1043

Time
s L But difficult debugging and
initial paral_ltellzat|on can be optimization means overall
g quite easy roject takes longer
Time

Proving that a shared address space program using semaphores is
race free is an NP-complete problem™

*P. N. Klein, H. Lu, and R. H. B. Netzer, Detecting Race Conditions in Parallel Programs that Use Semaphores, Algorithmica, vol. 35 pp. 321-345, 2003




Closing comments

e Question conventional wisdom.

— Do we really need cache coherence? If the memory hierarchy can’t be
hidden, isn’t it better to expose the hierarchy so | can control it?

— Debugging and Maintenance costs more than coding. So extra work up
front to organize a problem to exploit the concurrency (e.g. decomposing
and distributing data structures) shouldn’t be such a big deal.

— SW lives longer than HW. So why would anyone use a non-portable, non-
standard programming model? That’s just nuts!!

* As you move forward through the course ....

— Notice that the patterns used in creating parallel code only weakly depend
on the programming model. | can do loop parallelism with MPI, message
passing with pthreads, kernel parallelism with OpenMP.

— So learn multiple programming models and enjoy them ... but don’t obsess
about them. Ultimately, it's the design patterns and learning how to apply
them to different problems that matter.



MPI References

 The Standard itself:

— at http://www.mpi-forum.org
— All MPI official releases, in both postscript and HTML

e Other information on Web:

— at http://www.mcs.anl.gov/mpi

— pointers to lots of stuff, including other talks and
tutorials, a FAQ, other MPI pages




Books for learning MPI

« Using MPI-2: Portable Parallel Programming

Using MPI-2

with the Message-Passing Interface, by Gropp,

Message-Passing Interface

Lusk, and Thakur, MIT Press, 1999..

" Parallel Programming with MPI, by Peter Pacheco,
Morgan-Kaufmann, 1997.

PATTERNS
FOR PARALLEL
PROGRAMMING

" Patterns for Parallel Programing, by Tim Mattson,
Beverly Sanders, and Berna Massingill.

. serrwane sarren



MIXING MPI AND OPENMP

88



89

How do people mix MPI and OpenMP?

A sequential program
working on a data set

Replicate the program.
Add glue code
Break up the data

*Create the MPI program with
its data decomposition.

* Use OpenMP inside each
MPI process.




Pi program with MPI and OpenMP

Get the MPI
part done
first, then add
OpenMP
pragma
where it
makes sense
to do so

90

#include <mpi.h>

#include “omp.h”

void main (int argc, char *argv[])

{
int 1, my_1d, numprocs; double x, pi, step, sum = 0.0 ;
step = 1.0/(double) num_ steps ;
MPI_Init(&argc, &argv) ;
MPI_Comm_Rank(MPI_COMM_WORLD, &my id) ;
MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
my_steps = num_ steps/numprocs ;

#pragma omp parallel for reduction(+:sum) private(x)
for (1I=my_id*my_steps; i<(m_id+1)*my _steps ; i++)

{

x = (1+0.5)*step;

sum += 4.0/(1.0+x*x);
h
sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD) ;

90



_

)\ Key issues when mixing OpenMP and MPI

1. Messages are sent to a process not to a particular thread.
= Not all MPIs are threadsafe. MPI 2.0 defines threading modes:
« MPI_Thread_Single: no support for multiple threads
MPI_Thread_Funneled: Mult threads, only master calls MPI

MPI_Thread_Serialized: Mult threads each calling MPI, but they
do it one at a time.

MPI_Thread_Multiple: Multiple threads without any restrictions
= Request and test thread modes with the function:
MPI_init_thread(desired_mode, delivered_mode, ierr)

2. Environment variables are not propagated by mpirun.
You’ll need to broadcast OpenMP parameters and set them
with the library routines.

91 91



)\ Dangerous Mixing of MPl and OpenMP

92

" The following will work only if MPI_Thread_Multiple is supported ... a
level of support | wouldn’t depend on.

MPI Comm_Rank(MPI COMM_ WORLD, &mpi 1d) ;

#pragma omp parallel

{

int tag, swap_neigh, stat, omp_id = omp_thread num();
long buffer [BUFF_SIZE], incoming [BUFF_SIZE];
big_ugly calc1(omp_id, mpi_id, buffer);
// Finds MPI id and tag

SO
neighbor(omp _id, mpi_id, &swap_neigh, &tag); // messages don’t conflict

MPI_Send (buffer, BUFF_SIZE, MPl_LONG, swap_neigh,
tag, MPI_COMM_WORLD);

MPI1_Recv (incoming, buffer _count, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical
consume(buffer, omp_id, mpi_id); 92



93

Messages and threads

® Keep message passing and threaded sections of your program
separate:

» Setup message passing outside OpenMP parallel regions
(MPI_Thread_funneled)

= Surround with appropriate directives (e.g. critical section or master)
(MPI_Thread_Serialized)

= For certain applications depending on how it is designed it may not
matter which thread handles a message. (MPI_Thread_Multiple)

- Beware of race conditions though if two threads are probing on
the same message and then racing to receive it.

93



94

Safe Mixing of MPl and OpenMP

Put MPI in sequential regions

MPI_Init(&arge, &argv) ;  MPI Comm Rank(MPI COMM_ WORLD, &mpi id) ;
// a whole bunch of initializations

#pragma omp parallel for
for (I=0;I<N;l++) {

U[l] = big_calc(l);
}

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD);
MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

#pragma omp parallel for
for (I=0;I<N;l++) {

U[l] = other_big_calc(l, incoming); - -
} Technically Requires

MPI_Thread_funneled, but |
have never had a problem with
this approach ... even with pre-
MPI-2.0 libraries.

consume(U, mpi_id);

O A

I



95

MPI_Init(&arge, &argv) ;  MPI Comm Rank(MPI COMM WORLD, &mpi id) ;

// a whole bunch of initializations

#pragma omp parallel Technically Requires

{ MPI_Thread_funneled, but |
#pragma omp for _ have never had a problem with
for (I=0;1<N;l++) - U[l] = big_calc(l); this approach ... even with pre-
#pragma master MPI-2.0 libraries.
{
MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD);
MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD,
&stat);
¥

#pragma omp barrier
#pragma omp for
for (1=0;I<N;l++) U[l] = other_big_calc(l, incoming);

#pragma omp master
consume(U, mpi_id);

}

95



Hybrid OpenMP/MPI works, but is it worth it?

® Literature* is mixed on the hybrid model: sometimes its better,
sometimes MPI alone is best.

" There is potential for benefit to the hybrid model

= MPI algorithms often require replicated data making them less memory
efficient.

= Fewer total MPlI communicating agents means fewer messages and less
overhead from message conflicts.

= Algorithms with good cache efficiency should benefit from shared caches
of multi-threaded programs.

= The model maps perfectly with clusters of SMP nodes.

® But really, it’s a case by case basis and to large extent depends on the
particular application.

*L. Adhianto and Chapman, 2007 o5
96



