| (IRFEFHEY

DDR3 MC

NVIDIA GTX 480 processor

Intel labs 48 core SCC processor

, gl 1 NVIDIA Tegra 3 (quad Arm
Systeii Interface + 16 EEG—— Corex A9 cores + GPU) An Intel MIC processor

GPUs and the Heterogeneous

programming problem
Tim Mattson (Intel Labs)

; Processor
Graphics

It%zttlud If lw i
Shared L3 Cache**

Bk ey

i§
= 5% = o
L

System

Agent & |
Memory (|
Controller (|}

including ’

| DMI, Dlsplay

and Misc. 1/0

= Memory Controller 1/0

Intel Labs 80 core Research R o
processor Intel “Sandybridge” processor

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes

Cell Broadband Engine Processor

gl

IR TE
e IR

of. ‘T‘d}w
A

#olj0.

T

%«,.

Y
w1

R

IBM Cell Broadband engine processor

Third party names are the property of their owners

Disclaimer intel)
READ THIS ... its very important

e The views expressed in this talk are those of the
speakers and not their employer.

e This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

e This was a team effort, but if we say anything really
stupid, it's our fault ... don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 ... A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Outline

=) - The SIMT platform
» Understanding the GPU and GPGPU programming
* The 100X GPU/CPU speedup Myth
* The dream of performance portability
* The future of the GPU

Hardware Diversity: Basic Building Blocks

s CPU Core: one or more hardware threads sharing
W . . .
an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a
single stream of instructions drives multiple data

elements.
TCaohe | SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More

threads than functional units. Over subscription to hide
latencies. Optimized for throughput.

e

Hardware Diversity: Combining building

LLC

Multicore CPU

el [erfa e

blocks to construct nodes

Manycore CPU

|| ICache ||| ICache |
Scheduler

Sl

[iCache || [ICache |

Scheduler Scheduler

SEEEla

Heterogeneous: CPU+GPU

010 010 0010 0010 011
]
010 OO OO 0110 011 9 4==)
T I I
01T M O 0110 011
7 2
0 010 OO 010 01

Heterogeneous:
CPU + manycore coprocessor

Jor
Scheduler
O

| R

Heterogeneous:
Integrated CPU+GPU

The software platform debate!

Recall my earlier
comment ... the

competing visions are
less about hardware
and more about the

’ Instruction Cache
’ Instruction scheduler/dispatch ‘ 2 Instruction scheduleridispatch
| Multithreaded SIMD Processor & Memory I g [Memory Multithreaded SIMD Processor
o
L Multithreaded SIMD Processor & Memory I § [Memory Muireaded SIMD Processor]
Ml
=
o
[Memory Muithreaded SIMD Processor]
GDDR Memory

programmers software = ————— HSW
ulfered switc
—_— '
platform wsw) (rsw asw)
| wswlll["2 |flsw][wswilll 3o (| asw]
: L3 L3
[HSW Cache HSW][HSW Eache HSW]
(45MB)

[HSW HSW][HSW HSW]

\) buffered switch HSW

~ - — Mem
[Memory Controller][Controller

88

83

It’s really about competing software platforms

GPU

;. *» Single Instruction multiple

threads.
« turn loop bodies into kernels.
* HW intelligently schedules kernels
to hide latencies.
« Dogma:. a natural way to express huge
amounts of data parallelism

CPU

« Shared Address space, multi-
threading.

« Many threads executing with
coherent shared memory.

» Dogma: The legacy programming
model people already know. Easier
than alternatives.

* Examples: OpenMP, Pthreads, C++11

*third party names are the property of their owners

The official strategy at Intel.

.
-
-
-
-

- -
~

Everything is a
cluster of “shared
address space
multithreaded”
computers.

One programming
model from laptop to
supercomputer

High Performance Parallel Programming -

One Toolset from Multicore to Many-core to
Heterogeneous Computing

Compiler

Libraries
Parallel Models

Archite
Co-proc

Use Standard Programming Models Today.
Scale Forward Tomorrow.

What about the competing platform:
Single Instruction multiple thread (SIMT)?

« Dominant as a proprietary solution based on CUDA and
OpenACC.

« But there is an Open Standard response (supported to
varying degrees by all major vendors)

..t \?‘ SIMT programming for CPUs, GPUs, DSPs, and FPGAs.
&= ‘ Basically, an Open Standard that generalizes the SIMT

platform pioneered by our friends at NVIDIA®

OpenMP 4.0 added target and device directives ... Based

OpenMP on the same work that was used to create OpenACC.

Therefore, just like OpenACC, you can program a GPU
with OpenMP!!!

The long term viability of the SIMT platform depends on the user community

demanding (and using) the Open Standard alternatives!
*third party names are the property of their owners

Outline

* The SIMT platform
== . Understanding the GPU and GPGPU programming
* The 100X GPU/CPU speedup Myth
* The dream of performance portability
* The future of the GPU

Let’s take a deeper look at the GPU:
The vertex pipeline

struct {
float x,vy,2z,w;
float r,qg,b,a;
} vertex;

struct {
vertex vO0,vl,v2
} triangle;

struct {
short int x,vy;
float depth;
float r,qg,b,a;
} fragment;

struct {
int depth;
byte r,g,b,a;
} pixel;

Application
v
Vertex assembly
— v
Vertex operations

v

Primitive assembly
—l V
Primitive operations

v

Rasterization
q ¢
Fragment operations

vt

=P _ Frame buffer _>
v

Display

Thanks to Kurt Akeley

Wouldn’t be cool if
these stages of the
graphics pipeline
programmable?

10

programmable

RISC CPU _ P
Interconnect

System Bus -

Command
Processor

geometry

Geometry

—

Engines

Triangle Bus —*

Fragment .
Generators

Image

Engines

raster memory board raster memory board
display generator board l => > video

Silicon Graphics RealityEngine GPU * 800 billed as a "Cray-on-a-chip”

0.80 micron technology

1993 -
2.5M transistors 11/38

Programming GPUs

First paper on
GPGPU
programming |
could find dates to
1995 ... though the
term GPGPU didn’t
appear in the
literature until
~2000.

Accelerated Volume Rendering and Tomographic Reconstruction Using
Texture Mapping Hardware

Brian Cabral, Nancy Cam, and Jim Foran
Silicon Graphics Computer Systems*

Abstract

Volume rendering and reconstruction centers around solving two
related integral equations: a volume rendering integral (a general-
ized Radon transform) and a filtered back projection integral (the
inverse Radon transform). Both of these equations are of the same
mathematical form and can be dimensionally decomposed and ap-
proximated using Riemann sums over a series of resampled images.
When viewed as a form of texture mapping and frame buffer accu-
mulation, enormous hardware enabled performance acceleration is
possible.

1 Introduction

Volume Visualization encompasses not only the viewing but also
the construction of the volumetric data set from the more basic pro-
jection data obtained from sensor sources. Most volumes used in
rendering are derived from such sensor data. A primary example
being Computer Aided Tomographic (CAT) x-ray data. This data
is usually a series of two dimensional projections of a three di-
mensional volume. The process of converting this projection data
back into a volume is called tomographic reconstruction.* Once a
volume is tomographically reconstructed it can be visualized using
volume rendering techniques.[5, 7, 13, 15, 16, 17]

These two operations have traditionally been decoupled, being
handled by two separate algorithms. It is, however, highly benefi-
cial to view these two operations as having the same mathematical
and algorithmic form. Traditional volume rendering techniques can
be reformulated into equivalent algorithms using hardware texture
mapping and summing buffer. Similarly, the Filtered Back Pro-
jection CT algorithm can be reformulated into an algorithm which
also uses texture mapping in combination with an accumulation or
summing buffer.

The mathematical and alocornthmice cimilarsty of thece two Oaner.

[x(), (1))

Figure 1: The Radon transform represents a generalized line
integral projection of a 2-D (or 3-D) function f(z,y, z) onto a
line or plane.

der and reconstruct volumes at rates of 100 to 1000 times faster than
CPU based techniques.

2 Background: The Radon and Inverse Radon
Transform

We begin by developing the mathematical basis of volume rendering
and reconstruction. The most fundamental of which is the Radon

The evolutions of the GPU

1st generation: Voodoo 3dfx (1996)

2nd Generation:
GeForce 256/Radeon 7500 (1998)

3rd Generation: GeForce3/Radeon 8500 (2001).
The first GPU to allow a limited programmability in
the vertex pipeline.

4th Generation: Radeon 9700/GeForce FX (2002):

(4

The first generation of “fully-programmable
graphics cards.

5% Generation: GeForce 8800/HD2900 (2006) and the
birth of CUDA

Third party names are the property of their owners

13

Understanding GPGPU programming:
SIMD Architecture

® Single Instruction Multiple Data (SIMD)

® Central controller broadcasts instructions to
multiple processing elements (PEs)

— Only requires one controller for whole array | |

— Only requires storage for one copy of
program

— All computations fully synchronized

Thinking Machines Corp CM-200

(early 90’s).
.
Array [¢P| Inter-PE Connection Network
Controller I I I I
> > - PE [PE [PE [PE [N

Control =—>
Data <>

3«:34—»341-»

302 «> 3§ >
302 > § >
S0 >

302 «> § >

S0 =2 &>
S0 =2 &>
S0 =2 &>

GPU Platform Model

mﬁﬁ” H
Moo [
.ﬁnLnﬂﬂ ﬁ H M/7
||—||i||:|| - er CPU

00

-

Il

One or More GPUs

|:|ZIIIE

/

 The GPUs are driven by a CPU which ...

— Manages the code to execute on the GPUs
— Maintains a queue of kernels to execute

— Manages memory on the GPU and movement between the
CPU and the GPU

Kernel Parallelism

 Kernel Parallelism:

— Implement data parallel problems:
— Define an abstract index space that spans the problem domain.
— Data structures in the problem are aligned to this index space.

— Tasks (e.g. work-items in OpenCL or “threads” in CUDA) operate on
these data structures for each point in the index space.

« This approach was popularized for graphics applications
where the index space mapped onto the pixels in an image.
Since 2000, It's been extended to General Purpose GPU
(GPGPU) programming.

Note: This is basically a fine grained extreme form of
the SPMD pattern.

16

An N-dimensional domain of work-items

* Global Dimensions:
- 1024x1024 (whole problem space)

* Local Dimensions:
— 128x128 (work-group, executes together)

‘ 1024 Synchronization between
- ‘;;;::: work-items possible only

within work-groups:
barriers and memory fences

1024

Cannot synchronize
between work-groups
within a kernel

* Choose the dimensions that are “best” for your
algorithm

SIMT: Single Instruction, Multiple Thread

e SIMT model: Individual scalar instruction streams (OpenCL work-
item or CUDA threads) are grouped together for SIMD execution
on hardware

MTO pT1 pT2 uT3 pT4 pTS pTe uT7

1d x
Astreamof | mul a
Scalar 1d y
instructions add

st y

<€ >

SIMD execution scheduled across a fixed
number of SIMD Lanes ... NVIDIA calls this
set of work-items a warp

Slide thanks to Krste Asanovic

What is an NVIDIA warp?

« A group of 32 work-items that execute simultaneously

— Execution hardware is most efficiently utilized when all work-items
in a warp execute instructions from the same PC.

— ldentifiable uniquely by dividing the work-item ID by 32

* In practical terms think or a warp as the minimum
granularity of efficient SIMD execution, and the maximum
hardware SIMD width in an NVIDIA GPU.

— Note: the corresponding concept on an AMD GPU is a wavefront ..
With 64 work-items in a wavefront.

— The corresponding concept on a Cpu’s vector unit is the number of
lanes on the SIMD unit.

19

Mapping OpenCL to Nvidia GPUs

* OpenCL is designed to be functionally forgiving
— First priority: make things work. Second: get performance.

« However, to get good performance, one must understand how OpenCL maps onto
the hardware. For example, consider an NVIDIA GPU.

s 1 1 [1 [¥ [¥ 7 4 7 4 [4 [9
=

» Work Groups:

— Each Work Group is scheduled onto a SR
Streaming SIMD processor i

— Peak efficiency requires multiple work
groups per Streaming SIMD processor

« Warps: memsmm—m—mm e
— A work group is broken down into warps NVIDIA GPU: A
that execute together. modest number (e.g.

— A SIMD instruction acts on a “warp” 16) of streaming

_ The NVIDIA Warp width is 32 elements: > VD Processors
LOGICAL SIMD width

R YNNG

» Work-items: A Streaming
_ _ SIMD processor
— each work-item is a SIMD vector lane and with 32 PE

runs on the processing element within a

hence, war
Streaming SIMD processor (P

sizeis 32)

Outline

* The SIMT platform

« Understanding the GPU and GPGPU programming
=) - The 100X GPU/CPU speedup Myth

* The dream of performance portability

* The future of the GPU

21

100X speedups from GPUS: a common myth

Computer Architecture and Performance Tuning

CPU / GPU co-existence

Triple digit
? ?
What | would like to see happen to a (possibly dusty, spec?dups ? Really”
sequential) x86 application: Is this a reasonable
oal?
A strong porting effort to move it to the GPU J

= A good “kernel-oriented design” that aims fo{a triple-digit
speed-up

Then, a solid port back to the CPU servers
= Exploiting vectors and cores

Outcome:

= Applications that can profit from new breakthroughs on
either side of the fence

Source: a great ESC'15 lecture by a smart person who made a mistake!!! "

A high level view of performance

*Well optimized applications are either compute or
bandwidth bounded

* For bandwidth bound applications:
Performance = Arch efficiency * Peak Bandwidth Capability

* For compute bound applications:
Performance = Arch efficiency * Peak Compute Capability

Source: Victor Lee et. al. "Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

Reasonable Speedup Expectations

. Chip A . Chip B

Perf, = Eff, * Peak,(Comp or BW) Perfg = Effg * Peakg(Comp or BW)

Speedup B _ Perfy, Lffy . Peak ,(Comp _or _BW)

A Perf, Eff, Peak,(Comp_or_BW)

Source: Victor Lee et. al. "Debunking the 100X GPU vs. CPU Myth”, ISCA 2010 24

Speedup expectations for well optimized code:
CPU vs. GPU

Core i7 960 GTX 280
e Four OoO Superscalar « 30 SMs (w/ 8 In-order SP
Cores, 3.2GHz each), 1.3GHz
« Peak SP Flop: 102GF/s « Peak SP Flop: 933GF/s*
« Peak BW: 30 GB/s « Peak BW: 141 GB/s

Assuming both Core i7 and GTX280 have the same efficiency:

Max Speedup:

GTX 280 over Core 17 960
Compute Bound Apps: (SP) 933/102 =9.1x
Bandwidth Bound Apps: 141/30 =4.7x

* 933GF/s assumes mul-add and the use of SFU every cycle on GPU

Source: Victor Lee et. al. "Debunking the 100X GPU vs. CPU Myth”, ISCA 2010 25

A fair comparison of CPUs and GPUs:
Methodology

— Start with previously best published code / algorithm
— Validate claims by others

— Optimize BOTH CPU and GPU versions

— Collect and analysis performance data

Note: Only computation time on the CPU and GPU is measured. PCle
transfer time and host application time are not measured for GPU. Including
such overhead will lower GPU performance

Source: Victor Lee et. al. "Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

What was claimed

Claims: GPU Speedup over CPU

1000
100
Q.
-
©
Q
Q >
& g 5
©
10 3 =
~ ©
— 3 o
2 > — & <
© O o) S
(e} — n fa— [— (@) <
c © o N~ (o) N L
) o > o (@]) ©
- = (@] o] > >
® o c) @ o 25
£ = = 5 T S
S i} o, Z @ s .
1 T T T T T T

T

SGEMM MC Convol FFT SAXPY LBM SpMV Sort Search

T

Hist

Bilat

Source: Victor Lee et. al. "Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

27

What we measured

GPU Speedup over CPU

m Claims B Ours Optimized
1000

Geomean on our version: 2.5x
100

SGEMM MC Convol FFT

Speedup

SAXPY LBM SpMV Sort Search Hist Bilat

0.1
Apps. SGEMM | MC | Conv | FFT | SAXPY | LBM | Solv | SpMV | GJK | Sort | RC | Search | Hist | Bilat
Core 17-960 94 08 1250 | 714 16.8 85 103 49 67 250 5 50 1517 83
GTX280 364 14 | 3500 | 213 88.8 426 52 9.1 1020 | 198 | 8.1 90 2583 475

Source: Victor Lee et. al. "Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

Sparse matrix vector product: GPU vs. CPU
» [Vazquez09]: reported a 51X speedup for an NVIDIA® GTX295 vs. a Core

2 Duo E8400 CPU ... but they used an old CPU with unoptimized code

n

a 9

Q NVIDIA® GTX 280 GPU vs. an Intel® Core i7 960 CPU

&ui 8 « Heavily optimized both the GPU kernels and the CPU code.

7 - : 'd not |

4% though that would make the CPU look better!

W Result: a 2:1 speedup ... which makes

§ sense given better bandwidth of GDDR5

= 4

A

C 3

RS,

)]

D

(o 1

Q

£ 0

N GPU CPU 8 threads Vectorize Register Cache
Source: Victor Lee et. al. Baseline on 4 tiling + Blocking
“Debunking the 100X GPU vs. CPU cores Pipelining

Myth” ISCA 2010

*third party names are the property of their owners

29

Common Mistakes when comparing a
CPU and a GPU

« Compare the latest GPU against an old CPU
 Highly optimized GPU code vs. unoptimized CPU code

— I've seen numerous papers compare optimized CUDA vs. Matlab or
python

* Parallel GPU code vs. serial, unvectorized CPU code.

* Ignore the GPU penalty of moving data across the PCI bus
from the CPU to the GPU

GPUs are great and depending on the algorithm can show
two to four fold speedups. But not 100+ ... that’s just
iIrresponsible and should not be tolerated!!

30

Outline

* The SIMT platform
» Understanding the GPU and GPGPU programming
* The 100X GPU/CPU speedup Myth
mm) - The dream of performance portability
* The future of the GPU

31

Whining about performance Portability

* Do we have performance portability today?

— NO: Even in the “serial world” programs routinely deliver single digit
efficiencies.

— If the goal is a large fraction of peak performance, you will need to
specialize code for the platform.

« However there is a pretty darn good performance portable
language. It's called OpenCL

Portable performance: dense matrix multiplication

void mat mul(int N, float *A, float *B, float *C)
{

int i, j, k;

int NB=N/block size; // assume N%block size=0

for (ib = 0; ib < NB; ib++)

for (jb = 0; jb < NB; jb++)
for (kb = 0; kb < NB; kb++)
sgemm(C, A, B, ..) // Cip sp = Aip,xp * Bip,ip

C(ib,jb) A(ib,:) B(:,jb)

Transform the
- basic serial
X matrix multiply
into
} multiplication
over blocks

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

Blocked matrix multiply: kernel

#define blksz 16

{

: // upper-left-corner and inc for A and B

kernel Voégr?;{“u”;gigned Nt int Abase = Iblk*N*blksz; int Ainc = blksz;
_gIObaI f|Oat* A, |nt Bbase = Jblk*blkSZ, |nt B|nC - bIkSZ*N,
__global float* B, // C(Iblk,Jblk) = (sum over Kblk)
__global float* C, A(Iblk,Kblk)*B(Kblk,Iblk)
__local float* Awrk, for (Kblk = 0; Kblk<Num_BLK; Kblk++)
__local float* Bwrk) { //Load A(Iblk,Kblk) and B(Kblk,Jblk).

//Each work-item loads a single element of the two

int kloc, Kblk; //blocks which are shared with the entire work-group

float Ctmp=0.0f;
Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];

// compute element C(i,j) Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];
int i = get_global_id(0);
int j = get_global_id(1); barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)
Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

// Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group_id(0);
int Jblk = get_group_id(1);

1/ C(i,3) is element C(iloc, jloc) barrier(CLK_LOCAL_MEM_FENCE);

// of block C(Iblk, Jblk) Abase += Ainc; Bbase += Binc;
int iloc = get_local_id(0); by
int jloc = get_local_id(1); C[j*N+i] = Ctmp;

int Num_BLK = N/blksz; ¥

Blocked matrix multiply: kernel

#define blksz 16

{

kernel void mmul(
const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
_ _local float* Awrk,
__local float* Bwrk)

It’s getting the indices
right that makes this hard

// upper-left-corner and inc for A and B
int Abase = Iblk*N*blksz; int Ainc = blksz;
int Bbase = Jblk*blksz; int Binc = blksz*N;

// C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)

for (Kblk = 0; Kblk<Num_BLK; Kblk++)
{ //Load A(Iblk,Kblk) and B(Kblk,Jblk).

Load A and B
blocks, wait for all
work-items to finish

int kloc, Kblk;
float Ctmp=0.0f;

//blocks which are shared with the entire work-group

Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];

// compute element C(i,j)
int i = get_global_id(0);
int j = get_global_id(1);

// Element C(i,j) is in block C(Iblk,Jblk)|

int Iblk = get_group_id(0);
int Jblk = get_group_id(1);

// C(i,j) is element C(iloc, jloc)
// of block C(Iblk, Jblk)

int iloc = get_local_id(0);

int jloc = get_local_id(1);

int Num_BLK = N/blksz;

//Each work-item loads a single element of the two

Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

J

barrier(CLK_LOCAL_MEM_FENCE);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)
Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

Wait for
everyone to
finish before
going to next

iteration of Kblk
loop.

barrier(CLK_LOCAL_MEM_FENCE);

Abase += Ainc;

)
C[j*N+i] = Ctmp;

Bbase += Binc;

}

Matrix multiplication ... Portable Performance (in MFLOPS)

 Single Precision matrix multiplication (order 1000 matrices)

Case CPU Xeon Phi Core i7, .HD NVIDIA
Graphics Tesla

Sequential C (compiled /O3) 224 .4 1221.5

C(1,)) per work-item, all 415 13591 3791

global '

C row per work-item, all

global 869.1 4418 4196

C.row per work-item, A row 1038 4 24403 2584

private

C row per work-item, A 3984.2 5041 8182

private, B local

Block oriented approach 74051 38348

using local (blksz=16) 22713 q26320%) (53687%) 119305

Block oriented approach

using local (blksz=32) 16268.8

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB =4 MB
* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs These are not official benchmark results. You may observe completely

Third party names are the property of their owners. different results should you run these tests on your own system.

BUDE: Bristol University Docking Engine

One program running well on a wide range of platforms

Sustained TFLOP/s

N
n

15

1.0

0.5

0.0

46%

O\

/

42%

42%

id

0.68

0.35

Intel Xeon Phi Intel
SE10P E5-2687W (x2)

NVIDIA GTX NVIDIAGTX NVIDIA Tesla AMD Radeon AMD Radeon AMD FirePro

680

780 Ti

K20c

HD7970

2.13

R9 290X

2.50

$10000

- 50%

45%

. 33%437%7%%74 40%

35%

30%

Aduanyy3

Whining about performance Portability

» Do we have performance portability today?

— NO: Even in the “serial world” programs routinely deliver single digit
efficiencies.

— If the goal is a large fraction of peak performance, you will need to
specialize code for the platform.

 However there is a pretty darn good performance portable
language. It's called OpenCL

 But this focus on mythical “Performance Portability” misses the
point. The issue is “maintainability”.

— You must be able maintain a body of code that will live for many years
over many different systems.

— Having a common code base using a portable programming
environment ... even if you must fill the code with if-defs or have
architecture specific versions of key kernels ... is the only way to
support maintainability.

Outline

* The SIMT platform
» Understanding the GPU and GPGPU programming
* The 100X GPU/CPU speedup Myth
* The dream of performance portability
m=) - The future of the GPU

39

Coprocessors to accelerate flops

* The coprocessor: 8087 introduced in 1980.

— The first x87 floating point coprocessor for
the 8086 line of microprocessors.

— Performance enhancements: 20% to
500%, depending on the workload.

» Related Standards:
— Partnership between industry and academia led to IEEE 754 The most
important standard in the history of HPC. IEEE 754 first supported by x87.

. Intel® 80486DX, Pentium®, intels
and later processors include
floating-point functionality in
the CPU ... the end of the line
for the X87 processors.

Intel® 486DX2™
processor, March 1992,

Intel® Pentium™
processor, Spring 1993.

Intel C8087 Math Coprocessor. Source: http://www.cpu-collection.de/?I0=i&i=1698&sd=1 40

Vector processing accelerators

* Vector Coprocessor:

— Vector co-processor (from
Sky computer) for Intel
IPSC/2 MPP (~1987)

— Floating point systems array

processors (late 80s’s)

8*8 bit Int
4*32 bit FP
2*%64 bit FP

Horizontal ops

< < <€ <€
U

Absorbed
into the CPU
The Intel® i860 processor
(early 90’s) with integrated
vector instructions.
8%32 bit FP
And now vector
3 operand instructions are a
256 bit Int ops, ubiquitous element
Gather of CPUs.

512 bit

. . S : http: .cpu-collection.de/?
*third party names are the property of their owners ource: http://www.cpu-collection.de/

10=co&l1=Intel&I2=i860 41

The absorption of the GPU into the CPU is

e A modern platform has:
- CPU(s)
- GPU(s)
— DSP processors
- ... other?

e Current designs put
this functionality bkl 5l 3 B
Onto a Slngle Chlp . Processor ‘f:' : _~ s » ?4%?:;5 |
mltlgates the PCle " Graphics ¢ |08 TR M s Controller
bottleneck in T 1 : f'_ ‘ e e i oo
GPGPU computing! [| e MR

y |

and Misc. /0

GMCH = graphics memory control hub, Intel® Core™ i5-2500K Desktop Processor
ICH = Input/output control hub (Sandy BI‘IdgE) Intel HD Graphlcs 3000 (2011)

Conclusion

* The SIMT platform is here to stay ... though the GPU is
likely to move from a discrete card to an IP block on
the CPU die.

* Performance benefits are significant (two to four times)
but not silly (100+).

* The more interesting question ...

— Is the SIMT platform as a software abstraction better than
multi-threading + vectorization?

— The corporate CPU world says “no” but they are not the final
judges of this fundamental programmability question. It's up to
applications programmers to decide.

— So try both and see what you think ... threads+vectorization or
SIMT?

43

