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GPUs and the Heterogeneous 
programming problem 

Tim Mattson (Intel Labs)  
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Disclaimer 
READ THIS … its very important 

• The views expressed in this talk are those of the 
speakers and not their employer. 

• This is an academic style talk and does not address 
details of any particular Intel product.  You will learn 
nothing about Intel products from this presentation.   

• This was a team effort, but if we say anything really 
stupid, it’s our fault … don’t blame our collaborators. 

 

Slides marked with this symbol were produced-with Kurt 
Keutzer and his team for CS194 … A UC Berkeley course 
on Architecting parallel applications with Design Patterns. 

Third party names are the property of their owners. 



Outline 

•  The SIMT platform 
•  Understanding the GPU and GPGPU programming 
•  The 100X GPU/CPU speedup Myth 
•  The dream of performance portability 
•  The future of the GPU 
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Hardware Diversity: Basic Building Blocks 

ICache 
Scheduler 

CPU Core:  one or more hardware threads sharing 
an address space. Optimized for low latencies. 

SIMD: Single Instruction Multiple Data. 
Vector registers/instructions with 128 to 512 bits so a 
single stream of instructions drives multiple data 
elements. 

SIMT: Single Instruction Multiple Threads. 
A single stream of instructions drives many threads. More 
threads than functional units.  Over subscription to hide 
latencies. Optimized for throughput.    



Hardware Diversity: Combining building 
blocks to construct nodes 

LLC 

LL
C

 

LLC 

LLC 

Multicore CPU 

Heterogeneous: CPU+GPU 
Heterogeneous:  

Integrated CPU+GPU 

Heterogeneous:  
CPU + manycore coprocessor 

Manycore CPU 



The software platform debate! 
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Recall my earlier 
comment … the 

competing visions are 
less about hardware 
and more about the 

programmers software 
platform 

*third party names are the property of their owners 



The official strategy at Intel. 

•  Everything is a 
cluster of “shared 
address space 
multithreaded” 
computers. 

•  One programming 
model from laptop to 
supercomputer 
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What about the competing platform:  
Single Instruction multiple thread (SIMT)? 

•  Dominant as a proprietary solution based on CUDA and 
OpenACC. 

•  But there is an Open Standard response (supported to 
varying degrees by all major vendors) 

8 

SIMT programming for CPUs, GPUs, DSPs, and FPGAs. 
Basically, an Open Standard that generalizes the SIMT 
platform pioneered by our friends at NVIDIA® 

OpenMP 4.0 added target and device directives ... Based 
on the same work that was used to create OpenACC.  
Therefore, just like OpenACC, you can program a GPU 
with OpenMP!!! 

The long term viability of the SIMT platform depends on the user community 
demanding (and using) the Open Standard alternatives! 

*third party names are the property of their owners 



Outline 

•  The SIMT platform 
•  Understanding the GPU and GPGPU programming 
•  The 100X GPU/CPU speedup Myth 
•  The dream of performance portability 
•  The future of the GPU 
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Let’s take a deeper look at the GPU: 
The vertex pipeline 
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Vertex assembly 

Primitive assembly 

Rasterization 

Fragment operations 

Display 

Vertex operations 

Application 

Primitive operations 

struct { 
  float x,y,z,w; 
  float r,g,b,a; 
} vertex; 

struct { 
  vertex v0,v1,v2  
} triangle; 

struct { 
  short int x,y; 
  float depth; 
  float r,g,b,a; 
} fragment; 

struct { 
  int depth; 
  byte r,g,b,a; 
} pixel; 

Frame buffer 

Thanks to Kurt Akeley 

Wouldn’t be cool if 
these stages of the 
graphics pipeline 
programmable? 
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High-end GPUs have historically been 
programmable

Silicon Graphics RealityEngine GPU 
1993 

Intel i860  
RISC CPU 

Custom ASIC 
for processor 
interconnect 

•  I860 billed as a “Cray-on-a-chip” 
0.80 micron technology 
2.5M transistors 
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Programming GPUs

First paper on 
GPGPU 
programming I 
could find dates to 
1995 … though the 
term GPGPU didn’t 
appear in the 
literature until 
~2000.



The evolutions of the GPU 
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1st generation: Voodoo 3dfx (1996) 

2nd Generation:  
GeForce 256/Radeon 7500 (1998) 

3rd  Generation: GeForce3/Radeon 8500 (2001). 
The first GPU to allow a limited programmability in 
the vertex pipeline.   

4th  Generation: Radeon 9700/GeForce FX (2002): 
The first generation of “fully-programmable” 
graphics cards. 

Third party names are the property of their owners 

5th Generation: GeForce 8800/HD2900 (2006) and the 
birth of CUDA 



Understanding GPGPU programming:  
SIMD Architecture 
§ Single Instruction Multiple Data (SIMD) 
§ Central controller broadcasts instructions to 

multiple processing elements (PEs) 
– Only requires one controller for whole array 
– Only requires storage for one copy of 

program 
– All computations fully synchronized 

Array 
Controller 

Inter-PE Connection Network 
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Thinking Machines Corp CM-200  
(early 90’s). 



GPU Platform Model 

•  The GPUs  are driven by a CPU which … 
–  Manages the code to execute on the GPUs 
–  Maintains a queue of kernels to execute 
–  Manages memory on the GPU and movement between the 

CPU and the GPU 

One or More GPUs 

… … … 

… 
… … … 

… 
… … … 

… 
… … … 

CPU 
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Kernel Parallelism 

•  Kernel Parallelism:   
–  Implement data parallel problems: 

– Define an abstract index space that spans the problem domain. 
– Data structures in the problem are aligned to this index space. 
–  Tasks (e.g. work-items in OpenCL or “threads” in CUDA) operate on 

these data structures for each point in the index space. 

•  This approach was popularized for graphics applications 
where the index space mapped onto the pixels in an image.   
Since 2006, It’s been extended to General Purpose GPU 
(GPGPU) programming. 

Note: This is basically a fine grained extreme form of 
the SPMD pattern. 



An N-dimensional domain of work-items 
•  Global Dimensions: 

– 1024x1024 (whole problem space) 

•  Local Dimensions: 
– 128x128 (work-group, executes together) 

•  Choose the dimensions that are “best” for your 
algorithm 

1024 

10
24

 

Synchronization between 
work-items possible only 

within work-groups: 
barriers and memory fences 

Cannot synchronize 
between work-groups 

within a kernel 



SIMT:	
  Single	
  Instruc1on,	
  Mul1ple	
  Thread	
  
•  SIMT	
  model:	
  Individual	
  scalar	
  instruc5on	
  streams	
  (OpenCL	
  work-­‐

item	
  or	
  CUDA	
  threads)	
  are	
  grouped	
  together	
  for	
  SIMD	
  execu5on	
  
on	
  hardware	
  

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7 
ld x 
mul a 
ld y 
add 
st y 

A stream of 
Scalar 
instructions 

SIMD execution scheduled across a fixed 
number of SIMD Lanes …  NVIDIA calls this 
set of work-items a warp 

Slide thanks to Krste Asanovic  



What is an NVIDIA warp? 

•  A group of 32 work-items  that execute simultaneously 
– Execution hardware is most efficiently utilized when all work-items 

in a warp execute instructions from the same PC. 
–  Identifiable uniquely by dividing the work-item ID by 32 

•  In practical terms think or a warp as the minimum 
granularity of efficient SIMD execution, and the maximum 
hardware SIMD width in an NVIDIA GPU. 
– Note: the corresponding concept on an AMD GPU is a wavefront .. 

With 64 work-items in a wavefront. 
– The corresponding concept on a Cpu’s vector unit is the number of 

lanes on the SIMD unit.  
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Mapping OpenCL to Nvidia GPUs 
•  OpenCL is designed to be functionally forgiving 

–  First priority: make things work. Second: get performance. 
•  However, to get good performance, one must understand how OpenCL maps onto 

the hardware.  For example, consider an NVIDIA GPU. 

20 

•  Work Groups: 
–  Each Work Group is scheduled onto a 

Streaming SIMD processor 
–  Peak efficiency requires multiple work 

groups per Streaming SIMD processor 
•  Warps: 

–  A work group is broken down into warps 
that execute together. 

–  A SIMD instruction acts on a “warp” 
–  The NVIDIA Warp width is 32 elements: 
LOGICAL SIMD width 

•  Work-items: 
–  each work-item is a SIMD vector lane and 

runs on the processing element within a 
Streaming SIMD processor 

NVIDIA GPU: A 
modest number (e.g. 
16) of streaming 
SIMD processors 

A Streaming 
SIMD processor 
with 32 PE 
(hence, warp 
size is 32) 



Outline 

•  The SIMT platform 
•  Understanding the GPU and GPGPU programming 
•  The 100X GPU/CPU speedup Myth 
•  The dream of performance portability 
•  The future of the GPU 
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100X speedups from GPUS: a common myth 

22 

Triple digit 
speedups? Really?  
Is this a reasonable 

goal? 

Source: a great ESC’15 lecture by a smart person who made a mistake!!! 



A high level view of performance 

• Well optimized applications are either compute or 
bandwidth bounded 

• For compute bound applications: 
Performance =  Arch efficiency * Peak Compute Capability 

• For bandwidth bound applications: 
Performance =  Arch efficiency * Peak Bandwidth Capability 

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010  



Reasonable Speedup Expectations 

• Chip A • Chip B 
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PerfB = EffB * PeakB(Comp or BW) 

Speedup B
A
=
PerfB
PerfA

=
EffB
EffA

∗
PeakA (Comp_or _BW )
PeakB (Comp_or _BW )

PerfA = EffA * PeakA(Comp or BW) 

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010  



Speedup expectations for well optimized code:  
CPU vs. GPU 

Core i7 960 
•  Four OoO Superscalar 

Cores, 3.2GHz 
•  Peak SP Flop: 102GF/s 
•  Peak BW: 30 GB/s 

GTX 280 
•  30 SMs (w/ 8 In-order SP 

each), 1.3GHz 
•  Peak SP Flop: 933GF/s* 
•  Peak BW: 141 GB/s 
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Max Speedup:  
GTX 280 over Core i7 960 

Compute Bound Apps: (SP) 933/102 = 9.1x 
Bandwidth Bound Apps: 141/30 = 4.7x 

Assuming both Core i7 and GTX280 have the same efficiency: 

* 933GF/s assumes mul-add and the use of SFU every cycle on GPU 

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010  



A fair comparison of CPUs and GPUs: 
Methodology 

–  Start with previously best published code / algorithm 
–  Validate claims by others 
–  Optimize BOTH CPU and GPU versions 
–  Collect and analysis performance data 

Note: Only computation time on the CPU and GPU is measured.  PCIe 
transfer time and host application time are not measured for GPU.  Including 
such overhead will lower GPU performance 

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010  



What was claimed 
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Geomean: 22x 

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010  



What we measured 

Geomean on our version: 2.5x 

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010  



Sparse matrix vector product: GPU vs. CPU 
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Source: Victor Lee et. al. 
“Debunking the 100X GPU vs. CPU 
Myth”, ISCA 2010  

NVIDIA® GTX 280 GPU vs. an Intel® Core i7 960 CPU 

GPU CPU 
Baseline 

8 threads 
on 4 
cores 

Vectorize Register 
tiling + 

Pipelining 

Cache 
Blocking 

•  [Vazquez09]: reported a 51X speedup for an NVIDIA® GTX295 vs. a Core 
2 Duo E8400 CPU … but they used an old CPU with unoptimized code 

•  Heavily optimized both the GPU kernels and the CPU code. 
•  We did not include memory movement onto the GPU … even 

though that would make the CPU look better! 

Result: a 2:1 speedup … which makes 
sense given better bandwidth of GDDR5 

*third party names are the property of their owners 



Common Mistakes when comparing a 
CPU and a GPU 

•  Compare the latest GPU against an old CPU 
•  Highly optimized GPU code vs. unoptimized CPU code 

–  I’ve seen numerous papers compare optimized CUDA vs. Matlab or 
python 

•  Parallel GPU code vs. serial, unvectorized CPU code. 
•  Ignore the GPU penalty of moving data across the PCI bus 

from the CPU to the GPU 

30 

GPUs are great and depending on the algorithm can show 
two to four fold speedups.  But not 100+ … that’s just 

irresponsible and should not be tolerated!! 



Outline 

•  The SIMT platform 
•  Understanding the GPU and GPGPU programming 
•  The 100X GPU/CPU speedup Myth 
•  The dream of performance portability 
•  The future of the GPU 
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Whining about performance Portability 

•  Do we have performance portability today?   
– NO: Even in the “serial world” programs routinely deliver single digit 

efficiencies. 
–  If the goal is a large fraction of peak performance, you will need to 

specialize code for the platform. 

•  However there is a pretty darn good performance portable 
language.  It’s called OpenCL 



Portable performance: dense matrix multiplication 

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;   
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++) 
   for (jb = 0; jb < NB; jb++) 
     for (kb = 0; kb < NB; kb++) 
       sgemm(C, A, B, …)   // Cib,jb = Aib,kb * Bkb,jb

 
 
 
} 

Note: sgemm is the name of the level three BLAS routine to multiply two matrices 

= x 

A(ib,:) B(:,jb) C(ib,jb) 

Transform the 
basic serial 

matrix multiply 
into 

multiplication 
over blocks 



Blocked matrix multiply: kernel 
#define blksz 16 
__kernel void mmul( 
                const unsigned int N, 
                __global float* A, 
                __global float* B, 
                __global float* C, 
                __local  float* Awrk, 
                __local  float* Bwrk) 
{ 
   int kloc, Kblk; 
   float Ctmp=0.0f; 
 
   //  compute element C(i,j) 
   int i = get_global_id(0); 
   int j = get_global_id(1); 
 
   // Element C(i,j) is in block C(Iblk,Jblk) 
   int Iblk = get_group_id(0); 
   int Jblk = get_group_id(1); 
 
   // C(i,j) is element C(iloc, jloc)  
   //  of block C(Iblk, Jblk) 
   int iloc = get_local_id(0); 
   int jloc = get_local_id(1); 
   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 
  int Abase = Iblk*N*blksz;   int Ainc  = blksz; 
  int Bbase = Jblk*blksz;      int Binc  = blksz*N; 
 

 // C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk) 
  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 
  {   //Load A(Iblk,Kblk) and B(Kblk,Jblk). 
      //Each work-item loads a single element of the two  
      //blocks which are shared with the entire work-group 
 

      Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; 
      Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      #pragma unroll 
      for(kloc=0; kloc<blksz; kloc++) 
  Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      Abase += Ainc;    Bbase += Binc; 
   } 
   C[j*N+i] = Ctmp; 
} 



Blocked matrix multiply: kernel 
#define blksz 16 
__kernel void mmul( 
                const unsigned int N, 
                __global float* A, 
                __global float* B, 
                __global float* C, 
                __local  float* Awrk, 
                __local  float* Bwrk) 
{ 
   int kloc, Kblk; 
   float Ctmp=0.0f; 
 
   //  compute element C(i,j) 
   int i = get_global_id(0); 
   int j = get_global_id(1); 
 
   // Element C(i,j) is in block C(Iblk,Jblk) 
   int Iblk = get_group_id(0); 
   int Jblk = get_group_id(1); 
 
   // C(i,j) is element C(iloc, jloc)  
   //  of block C(Iblk, Jblk) 
   int iloc = get_local_id(0); 
   int jloc = get_local_id(1); 
   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 
  int Abase = Iblk*N*blksz;   int Ainc  = blksz; 
  int Bbase = Jblk*blksz;      int Binc  = blksz*N; 
 

 // C(Iblk,Jblk) = (sum over Kblk) 
A(Iblk,Kblk)*B(Kblk,Jblk) 
  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 
  {   //Load A(Iblk,Kblk) and B(Kblk,Jblk). 
      //Each work-item loads a single element of the two  
      //blocks which are shared with the entire work-group 
 

      Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc]; 
      Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      #pragma unroll 
      for(kloc=0; kloc<blksz; kloc++) 
  Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 
 
      barrier(CLK_LOCAL_MEM_FENCE); 
 

      Abase += Ainc;    Bbase += Binc; 
   } 
   C[j*N+i] = Ctmp; 
} 

Load A and B 
blocks, wait for all 
work-items to finish 

Wait for 
everyone to 
finish before 
going to next 

iteration of Kblk 
loop. 

It’s getting the indices 
right that makes this hard 



Matrix multiplication … Portable Performance (in MFLOPS) 

Case CPU Xeon Phi Core i7, HD 
Graphics 

NVIDIA 
Tesla 

Sequential C (compiled /O3) 224.4 1221.5  
C(i,j) per work-item, all 
global 841.5 13591 3721 

C row per work-item, all 
global 869.1 4418 4196 

C row per work-item, A row 
private 1038.4 24403 8584 

C row per work-item, A 
private, B local 3984.2 5041 8182 

Block oriented approach 
using local (blksz=16) 12271.3  74051 

(126322*) 
38348 

(53687*) 119305 

Block oriented approach 
using local (blksz=32) 16268.8 

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler  64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3. 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 
different results should you run these tests on your own system. 

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB 
* The comp was run twice and only the second time is reported (hides cost of memory movement. 

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory.  ICC 2013 sp1 update 2. 
Tesla®	
  M2090	
  GPU	
  from	
  NVIDIA®	
  with	
  a	
  max	
  of	
  16	
  compute	
  units,	
  512	
  PEs	
  

•  Single Precision matrix multiplication (order 1000 matrices)   



BUDE: Bristol University Docking Engine 

One program running well on a wide range of platforms 



Whining about performance Portability 

•  Do we have performance portability today?   
– NO: Even in the “serial world” programs routinely deliver single digit 

efficiencies. 
–  If the goal is a large fraction of peak performance, you will need to 

specialize code for the platform. 

•  However there is a pretty darn good performance portable 
language.  It’s called OpenCL 

•  But this focus on mythical “Performance Portability” misses the 
point.  The issue is “maintainability”.   
– You must be able maintain a body of code that will live for many years 

over many different systems.  
– Having a common code base using a portable programming 

environment  … even if you must fill the code with if-defs or have 
architecture specific versions of key kernels … is the only way to 
support maintainability.   



Outline 

•  The SIMT platform 
•  Understanding the GPU and GPGPU programming 
•  The 100X GPU/CPU speedup Myth 
•  The dream of performance portability 
•  The future of the GPU 
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Coprocessors to accelerate flops 

•  The coprocessor:  8087 introduced in 1980. 
– The first x87 floating point coprocessor for 

the 8086 line of microprocessors.  

– Performance enhancements: 20% to 
500%, depending on the workload. 

40  Intel C8087 Math Coprocessor.    Source: http://www.cpu-collection.de/?l0=i&i=1698&sd=1 

•  Related Standards: 
–  Partnership between industry and academia led to IEEE 754 …. The most 

important standard in the history of HPC.  IEEE 754 first supported by x87. 

•  Intel® 80486DX, Pentium®, 
and later processors include 
floating-point functionality in 
the CPU … the end of the line 
for the X87 processors. 

Intel® 486DX2™ 
processor, March 1992. Intel® Pentium™ 

processor, Spring 1993. 



Vector processing accelerators 
•  Vector Coprocessor: 

– Vector co-processor  (from 
Sky computer) for Intel 
iPSC/2 MPP (~1987) 

– Floating point systems array 
processors (late 80s’s) 
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The Intel® i860 processor 
(early 90’s) with integrated 
vector instructions.   

Source: http://www.cpu-collection.de/?
l0=co&l1=Intel&l2=i860 *third party names are the property of their owners 

Absorbed 
into the CPU 

And now vector 
instructions are a 
ubiquitous element 
of CPUs.  
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The absorption of the GPU into the CPU is 
happening now 

GMCH GPU 

ICH 

CPU CPU 

DRAM 

GMCH = graphics memory control hub,   
ICH = Input/output control hub 

•  A modern platform has: 
– CPU(s) 
– GPU(s) 
– DSP processors 
– … other? 

• Current designs put 
this functionality 
onto a single chip … 
mitigates the PCIe 
bottleneck in 
GPGPU computing! 

Intel® Core™ i5-2500K Desktop Processor  
(Sandy Bridge)  Intel HD Graphics 3000 (2011) 



Conclusion 

•  The SIMT platform is here to stay … though the GPU is 
likely to move from a discrete card to an IP block on 
the CPU die. 

•  Performance benefits are significant (two to four times) 
but not silly (100+). 

•  The more interesting question … 
–  Is the SIMT platform as a software abstraction better than 

multi-threading + vectorization? 
– The corporate CPU world says “no” but they are not the final 

judges of this fundamental programmability question.  It’s up to 
applications programmers to decide.  

– So try both and see what you think … threads+vectorization or 
SIMT? 
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