
1 1

GPUs and the Heterogeneous
programming problem

Tim Mattson (Intel Labs)

Intel Labs 80 core Research
processor

Intel labs 48 core SCC processor

VRC

21
.4

m
m

26.5mm

System Interface + I/O

D
D

R
3

M
C

D
D

R
3

M
C

D
D

R
3

M
C

D
D

R
3

M
C

PLL

TILE

TILE

JTAG

IBM Cell Broadband engine processor

NVIDIA GTX 480 processor

Intel “Sandybridge” processor

NVIDIA Tegra 3 (quad Arm
Corex A9 cores + GPU)

Other than the Intel lab’s research processors. Die photos from UC Berkeley CS194 lecture notes Third party names are the property of their owners

An Intel MIC processor

2 2

Disclaimer
READ THIS … its very important

• The views expressed in this talk are those of the
speakers and not their employer.

• This is an academic style talk and does not address
details of any particular Intel product. You will learn
nothing about Intel products from this presentation.

• This was a team effort, but if we say anything really
stupid, it’s our fault … don’t blame our collaborators.

Slides marked with this symbol were produced-with Kurt
Keutzer and his team for CS194 … A UC Berkeley course
on Architecting parallel applications with Design Patterns.

Third party names are the property of their owners.

Outline

•  The SIMT platform
•  Understanding the GPU and GPGPU programming
•  The 100X GPU/CPU speedup Myth
•  The dream of performance portability
•  The future of the GPU

3

Hardware Diversity: Basic Building Blocks

ICache
Scheduler

CPU Core: one or more hardware threads sharing
an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a
single stream of instructions drives multiple data
elements.

SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More
threads than functional units. Over subscription to hide
latencies. Optimized for throughput.

Hardware Diversity: Combining building
blocks to construct nodes

LLC

LL
C

LLC

LLC

Multicore CPU

Heterogeneous: CPU+GPU
Heterogeneous:

Integrated CPU+GPU

Heterogeneous:
CPU + manycore coprocessor

Manycore CPU

The software platform debate!

6

Recall my earlier
comment … the

competing visions are
less about hardware
and more about the

programmers software
platform

*third party names are the property of their owners

The official strategy at Intel.

•  Everything is a
cluster of “shared
address space
multithreaded”
computers.

•  One programming
model from laptop to
supercomputer

7

What about the competing platform:
Single Instruction multiple thread (SIMT)?

•  Dominant as a proprietary solution based on CUDA and
OpenACC.

•  But there is an Open Standard response (supported to
varying degrees by all major vendors)

8

SIMT programming for CPUs, GPUs, DSPs, and FPGAs.
Basically, an Open Standard that generalizes the SIMT
platform pioneered by our friends at NVIDIA®

OpenMP 4.0 added target and device directives ... Based
on the same work that was used to create OpenACC.
Therefore, just like OpenACC, you can program a GPU
with OpenMP!!!

The long term viability of the SIMT platform depends on the user community
demanding (and using) the Open Standard alternatives!

*third party names are the property of their owners

Outline

•  The SIMT platform
•  Understanding the GPU and GPGPU programming
•  The 100X GPU/CPU speedup Myth
•  The dream of performance portability
•  The future of the GPU

9

Let’s take a deeper look at the GPU:
The vertex pipeline

10

Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

struct {
 float x,y,z,w;
 float r,g,b,a;
} vertex;

struct {
 vertex v0,v1,v2
} triangle;

struct {
 short int x,y;
 float depth;
 float r,g,b,a;
} fragment;

struct {
 int depth;
 byte r,g,b,a;
} pixel;

Frame buffer

Thanks to Kurt Akeley

Wouldn’t be cool if
these stages of the
graphics pipeline
programmable?

11/38

High-end GPUs have historically been
programmable

Silicon Graphics RealityEngine GPU
1993

Intel i860
RISC CPU

Custom ASIC
for processor
interconnect

•  I860 billed as a “Cray-on-a-chip”
0.80 micron technology
2.5M transistors

12/38

Programming GPUs

First paper on
GPGPU
programming I
could find dates to
1995 … though the
term GPGPU didn’t
appear in the
literature until
~2000.

The evolutions of the GPU

13

1st generation: Voodoo 3dfx (1996)

2nd Generation:
GeForce 256/Radeon 7500 (1998)

3rd Generation: GeForce3/Radeon 8500 (2001).
The first GPU to allow a limited programmability in
the vertex pipeline.

4th Generation: Radeon 9700/GeForce FX (2002):
The first generation of “fully-programmable”
graphics cards.

Third party names are the property of their owners

5th Generation: GeForce 8800/HD2900 (2006) and the
birth of CUDA

Understanding GPGPU programming:
SIMD Architecture
§ Single Instruction Multiple Data (SIMD)
§ Central controller broadcasts instructions to

multiple processing elements (PEs)
– Only requires one controller for whole array
– Only requires storage for one copy of

program
– All computations fully synchronized

Array
Controller

Inter-PE Connection Network

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

PE

M
e
m

Control
Data

Thinking Machines Corp CM-200
(early 90’s).

GPU Platform Model

•  The GPUs are driven by a CPU which …
–  Manages the code to execute on the GPUs
–  Maintains a queue of kernels to execute
–  Manages memory on the GPU and movement between the

CPU and the GPU

One or More GPUs

… … …

…
… … …

…
… … …

…
… … …

CPU

16

Kernel Parallelism

•  Kernel Parallelism:
–  Implement data parallel problems:

– Define an abstract index space that spans the problem domain.
– Data structures in the problem are aligned to this index space.
–  Tasks (e.g. work-items in OpenCL or “threads” in CUDA) operate on

these data structures for each point in the index space.

•  This approach was popularized for graphics applications
where the index space mapped onto the pixels in an image.
Since 2006, It’s been extended to General Purpose GPU
(GPGPU) programming.

Note: This is basically a fine grained extreme form of
the SPMD pattern.

An N-dimensional domain of work-items
•  Global Dimensions:

– 1024x1024 (whole problem space)

•  Local Dimensions:
– 128x128 (work-group, executes together)

•  Choose the dimensions that are “best” for your
algorithm

1024

10
24

Synchronization between
work-items possible only

within work-groups:
barriers and memory fences

Cannot synchronize
between work-groups

within a kernel

SIMT:	
 Single	
 Instruc1on,	
 Mul1ple	
 Thread	

•  SIMT	
 model:	
 Individual	
 scalar	
 instruc5on	
 streams	
 (OpenCL	
 work-­‐

item	
 or	
 CUDA	
 threads)	
 are	
 grouped	
 together	
 for	
 SIMD	
 execu5on	

on	
 hardware	

µT0 µT1 µT2 µT3 µT4 µT5 µT6 µT7
ld x
mul a
ld y
add
st y

A stream of
Scalar
instructions

SIMD execution scheduled across a fixed
number of SIMD Lanes … NVIDIA calls this
set of work-items a warp

Slide thanks to Krste Asanovic

What is an NVIDIA warp?

•  A group of 32 work-items that execute simultaneously
– Execution hardware is most efficiently utilized when all work-items

in a warp execute instructions from the same PC.
–  Identifiable uniquely by dividing the work-item ID by 32

•  In practical terms think or a warp as the minimum
granularity of efficient SIMD execution, and the maximum
hardware SIMD width in an NVIDIA GPU.
– Note: the corresponding concept on an AMD GPU is a wavefront ..

With 64 work-items in a wavefront.
– The corresponding concept on a Cpu’s vector unit is the number of

lanes on the SIMD unit.

19

Mapping OpenCL to Nvidia GPUs
•  OpenCL is designed to be functionally forgiving

–  First priority: make things work. Second: get performance.
•  However, to get good performance, one must understand how OpenCL maps onto

the hardware. For example, consider an NVIDIA GPU.

20

•  Work Groups:
–  Each Work Group is scheduled onto a

Streaming SIMD processor
–  Peak efficiency requires multiple work

groups per Streaming SIMD processor
•  Warps:

–  A work group is broken down into warps
that execute together.

–  A SIMD instruction acts on a “warp”
–  The NVIDIA Warp width is 32 elements:
LOGICAL SIMD width

•  Work-items:
–  each work-item is a SIMD vector lane and

runs on the processing element within a
Streaming SIMD processor

NVIDIA GPU: A
modest number (e.g.
16) of streaming
SIMD processors

A Streaming
SIMD processor
with 32 PE
(hence, warp
size is 32)

Outline

•  The SIMT platform
•  Understanding the GPU and GPGPU programming
•  The 100X GPU/CPU speedup Myth
•  The dream of performance portability
•  The future of the GPU

21

100X speedups from GPUS: a common myth

22

Triple digit
speedups? Really?
Is this a reasonable

goal?

Source: a great ESC’15 lecture by a smart person who made a mistake!!!

A high level view of performance

• Well optimized applications are either compute or
bandwidth bounded

• For compute bound applications:
Performance = Arch efficiency * Peak Compute Capability

• For bandwidth bound applications:
Performance = Arch efficiency * Peak Bandwidth Capability

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

Reasonable Speedup Expectations

• Chip A • Chip B

24

PerfB = EffB * PeakB(Comp or BW)

Speedup B
A
=
PerfB
PerfA

=
EffB
EffA

∗
PeakA (Comp_or _BW)
PeakB (Comp_or _BW)

PerfA = EffA * PeakA(Comp or BW)

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

Speedup expectations for well optimized code:
CPU vs. GPU

Core i7 960
•  Four OoO Superscalar

Cores, 3.2GHz
•  Peak SP Flop: 102GF/s
•  Peak BW: 30 GB/s

GTX 280
•  30 SMs (w/ 8 In-order SP

each), 1.3GHz
•  Peak SP Flop: 933GF/s*
•  Peak BW: 141 GB/s

25

Max Speedup:
GTX 280 over Core i7 960

Compute Bound Apps: (SP) 933/102 = 9.1x
Bandwidth Bound Apps: 141/30 = 4.7x

Assuming both Core i7 and GTX280 have the same efficiency:

* 933GF/s assumes mul-add and the use of SFU every cycle on GPU

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

A fair comparison of CPUs and GPUs:
Methodology

–  Start with previously best published code / algorithm
–  Validate claims by others
–  Optimize BOTH CPU and GPU versions
–  Collect and analysis performance data

Note: Only computation time on the CPU and GPU is measured. PCIe
transfer time and host application time are not measured for GPU. Including
such overhead will lower GPU performance

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

What was claimed

27

[C
hr

is
te

n0
8]

[E
gl

of
f0

8]

[G
en

ov
es

e0
9]

[N
ag

a0
7]

[V
ol

ko
v0

8]

[B
ai

le
y0

9]

[V
az

qu
ez

09
]

[S
at

is
h0

9]

[A
lc

an
ta

ra
09

]

[Y
an

g0
8]

[L
an

g0
7]

Geomean: 22x

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

What we measured

Geomean on our version: 2.5x

Source: Victor Lee et. al. “Debunking the 100X GPU vs. CPU Myth”, ISCA 2010

Sparse matrix vector product: GPU vs. CPU

29

0

1

2

3

4

5

6

7

8

9

 S
in

gl
e

Pr
ec

is
io

n
Sp

M
VM

FE
M

/c
an

t
 (

G
FL

O
PS

)

Source: Victor Lee et. al.
“Debunking the 100X GPU vs. CPU
Myth”, ISCA 2010

NVIDIA® GTX 280 GPU vs. an Intel® Core i7 960 CPU

GPU CPU
Baseline

8 threads
on 4
cores

Vectorize Register
tiling +

Pipelining

Cache
Blocking

•  [Vazquez09]: reported a 51X speedup for an NVIDIA® GTX295 vs. a Core
2 Duo E8400 CPU … but they used an old CPU with unoptimized code

•  Heavily optimized both the GPU kernels and the CPU code.
•  We did not include memory movement onto the GPU … even

though that would make the CPU look better!

Result: a 2:1 speedup … which makes
sense given better bandwidth of GDDR5

*third party names are the property of their owners

Common Mistakes when comparing a
CPU and a GPU

•  Compare the latest GPU against an old CPU
•  Highly optimized GPU code vs. unoptimized CPU code

–  I’ve seen numerous papers compare optimized CUDA vs. Matlab or
python

•  Parallel GPU code vs. serial, unvectorized CPU code.
•  Ignore the GPU penalty of moving data across the PCI bus

from the CPU to the GPU

30

GPUs are great and depending on the algorithm can show
two to four fold speedups. But not 100+ … that’s just

irresponsible and should not be tolerated!!

Outline

•  The SIMT platform
•  Understanding the GPU and GPGPU programming
•  The 100X GPU/CPU speedup Myth
•  The dream of performance portability
•  The future of the GPU

31

Whining about performance Portability

•  Do we have performance portability today?
– NO: Even in the “serial world” programs routinely deliver single digit

efficiencies.
–  If the goal is a large fraction of peak performance, you will need to

specialize code for the platform.

•  However there is a pretty darn good performance portable
language. It’s called OpenCL

Portable performance: dense matrix multiplication

void mat_mul(int N, float *A, float *B, float *C)
{
 int i, j, k;
 int NB=N/block_size; // assume N%block_size=0
 for (ib = 0; ib < NB; ib++)
 for (jb = 0; jb < NB; jb++)
 for (kb = 0; kb < NB; kb++)
 sgemm(C, A, B, …) // Cib,jb = Aib,kb * Bkb,jb

}

Note: sgemm is the name of the level three BLAS routine to multiply two matrices

= x

A(ib,:) B(:,jb) C(ib,jb)

Transform the
basic serial

matrix multiply
into

multiplication
over blocks

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 { //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Blocked matrix multiply: kernel
#define blksz 16
__kernel void mmul(
 const unsigned int N,
 __global float* A,
 __global float* B,
 __global float* C,
 __local float* Awrk,
 __local float* Bwrk)
{
 int kloc, Kblk;
 float Ctmp=0.0f;

 // compute element C(i,j)
 int i = get_global_id(0);
 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)
 int Iblk = get_group_id(0);
 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)
 // of block C(Iblk, Jblk)
 int iloc = get_local_id(0);
 int jloc = get_local_id(1);
 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B
 int Abase = Iblk*N*blksz; int Ainc = blksz;
 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk)
A(Iblk,Kblk)*B(Kblk,Jblk)
 for (Kblk = 0; Kblk<Num_BLK; Kblk++)
 { //Load A(Iblk,Kblk) and B(Kblk,Jblk).
 //Each work-item loads a single element of the two
 //blocks which are shared with the entire work-group

 Awrk[jloc*blksz+iloc] = A[Abase+jloc*N+iloc];
 Bwrk[jloc*blksz+iloc] = B[Bbase+jloc*N+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll
 for(kloc=0; kloc<blksz; kloc++)
 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;
 }
 C[j*N+i] = Ctmp;
}

Load A and B
blocks, wait for all
work-items to finish

Wait for
everyone to
finish before
going to next

iteration of Kblk
loop.

It’s getting the indices
right that makes this hard

Matrix multiplication … Portable Performance (in MFLOPS)

Case CPU Xeon Phi Core i7, HD
Graphics

NVIDIA
Tesla

Sequential C (compiled /O3) 224.4 1221.5
C(i,j) per work-item, all
global 841.5 13591 3721

C row per work-item, all
global 869.1 4418 4196

C row per work-item, A row
private 1038.4 24403 8584

C row per work-item, A
private, B local 3984.2 5041 8182

Block oriented approach
using local (blksz=16) 12271.3 74051

(126322*)
38348

(53687*) 119305

Block oriented approach
using local (blksz=32) 16268.8

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely
different results should you run these tests on your own system.

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB
* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla®	
 M2090	
 GPU	
 from	
 NVIDIA®	
 with	
 a	
 max	
 of	
 16	
 compute	
 units,	
 512	
 PEs	

•  Single Precision matrix multiplication (order 1000 matrices)

BUDE: Bristol University Docking Engine

One program running well on a wide range of platforms

Whining about performance Portability

•  Do we have performance portability today?
– NO: Even in the “serial world” programs routinely deliver single digit

efficiencies.
–  If the goal is a large fraction of peak performance, you will need to

specialize code for the platform.

•  However there is a pretty darn good performance portable
language. It’s called OpenCL

•  But this focus on mythical “Performance Portability” misses the
point. The issue is “maintainability”.
– You must be able maintain a body of code that will live for many years

over many different systems.
– Having a common code base using a portable programming

environment … even if you must fill the code with if-defs or have
architecture specific versions of key kernels … is the only way to
support maintainability.

Outline

•  The SIMT platform
•  Understanding the GPU and GPGPU programming
•  The 100X GPU/CPU speedup Myth
•  The dream of performance portability
•  The future of the GPU

39

Coprocessors to accelerate flops

•  The coprocessor: 8087 introduced in 1980.
– The first x87 floating point coprocessor for

the 8086 line of microprocessors.

– Performance enhancements: 20% to
500%, depending on the workload.

40 Intel C8087 Math Coprocessor. Source: http://www.cpu-collection.de/?l0=i&i=1698&sd=1

•  Related Standards:
–  Partnership between industry and academia led to IEEE 754 …. The most

important standard in the history of HPC. IEEE 754 first supported by x87.

•  Intel® 80486DX, Pentium®,
and later processors include
floating-point functionality in
the CPU … the end of the line
for the X87 processors.

Intel® 486DX2™
processor, March 1992. Intel® Pentium™

processor, Spring 1993.

Vector processing accelerators
•  Vector Coprocessor:

– Vector co-processor (from
Sky computer) for Intel
iPSC/2 MPP (~1987)

– Floating point systems array
processors (late 80s’s)

41

The Intel® i860 processor
(early 90’s) with integrated
vector instructions.

Source: http://www.cpu-collection.de/?
l0=co&l1=Intel&l2=i860 *third party names are the property of their owners

Absorbed
into the CPU

And now vector
instructions are a
ubiquitous element
of CPUs.

42 42

The absorption of the GPU into the CPU is
happening now

GMCH GPU

ICH

CPU CPU

DRAM

GMCH = graphics memory control hub,
ICH = Input/output control hub

•  A modern platform has:
– CPU(s)
– GPU(s)
– DSP processors
– … other?

• Current designs put
this functionality
onto a single chip …
mitigates the PCIe
bottleneck in
GPGPU computing!

Intel® Core™ i5-2500K Desktop Processor
(Sandy Bridge) Intel HD Graphics 3000 (2011)

Conclusion

•  The SIMT platform is here to stay … though the GPU is
likely to move from a discrete card to an IP block on
the CPU die.

•  Performance benefits are significant (two to four times)
but not silly (100+).

•  The more interesting question …
–  Is the SIMT platform as a software abstraction better than

multi-threading + vectorization?
– The corporate CPU world says “no” but they are not the final

judges of this fundamental programmability question. It’s up to
applications programmers to decide.

– So try both and see what you think … threads+vectorization or
SIMT?

43

