OpenMP

A “Hands-on” Introduction to
OpenMP’

Tim Mattson
Intel Corp.

timothy.g.mattson@ intel.com

Acknowledgements: J.Mark Bull (EPCC), Larry Meadows (Intel), Bronis de Supinski (LLNL), Barbara Chapman
(UH), and many others have contributed to these slides over the years.

1
* The name “OpenMP” is the property of the OpenMP Architecture Review Board.



Preliminaries: Part 1

e Disclosures

— The views expressed in this tutorial are those of the
people delivering the tutorial.
— We are not speaking for our employers.
— We are not speaking for the OpenMP ARB

* We take these tutorials VERY seriously:

— Help us improve ... tell us how you would make this
tutorial better.



Preliminaries: Part 2

 Our plan .. Active learning!
— We will mix short lectures with short exercises.
— You will use your laptop to connect to a multiprocessor
server.
* Please follow these simple rules

— Do the exercises that we assign and then change things
around and experiment.
— Embrace active learning!

—Don’t cheat: Do Not look at the solutions before you
complete an exercise ... even if you get really frustrated.




Our OpenMP progression

Topic

Exercise

concepts

. OMP introduction

Install sw, hello_world

Parallel regions

Il. Creating threads

Pi_spmd_simple

Parallel, default data
environment, runtime library
calls

lll. Synchronization

Pi_spmd_final

False sharing, critical, atomic

IV. Parallel loops

Pi_loop

For, schedule, reduction,

V. Odds and ends

No Exercise

Single, sections, master,
runtime libraries, environment
variables, synchronization, etc.

VI. Data environment

Mandelbrot set area

Data environment details,
software optimization

VII. OpenMP tasks

Simple tasks, Pi_recur

Explicit tasks in OpenMP

VIIl. Wrap-up

Challenge problems

Putting full range of concepts
together with more complex
problems




Outline

=) « |Introduction to OpenMP

 Creating Threads
— A brief theoretical interlude: Speedup and Amdahl’s law

e Synchronization

 Parallel Loops
— Loop schedules and vectorization

» Synchronize single masters and stuff
« Data environment

* Tasks

« Challenge Problems



OpenMP’ overview:

CSOMP FLUSH fpragma omp critical

CSOMP THREADPRIVATE (/ABC/) CALI. QOMP SET NIUM THREADS (10)

~sof OpenMP: An API for Writing Multithreaded
Applications

CSOl =A set of compiler directives and library routines for
parallel application programmers
CS =Greatly simplifies writing multi-threaded (MT) programs fp

in Fortran, C and C++

C . . . N
=Standardizes established SMP practice + vectorization and
40 heterogeneous device programming
C$OMP PARALLEL COPYIN (/blk/) CSOMP DO lastprivate (XX)

Nthrds = OMP GET NUM PROCS () omp set lock (lck)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.



OpenMP basic definitions: Basic Solution stack

)

g

2

= Application

o Compiler variables
% OpenMP Runtime library

-

% OS/system support for shared memory and threading
%)

=

T

Shared Address Space




OpenMP basic definitions: NUMA Solution stack

Supported with first touch policies plus
End User newer constructs such as places,

omp proc bind, teams, and more
Application

Compiler variables
OpenMP Runtime library

OS/system support for shared memory and threading

Shared Address Space | Shared Address Space Shared Address Space

Shared Address Space



OpenMP basic definitions: Target solution stack

Core Core Core Core

PCle

Supported (since OpenMP 4.0) e
with target, teams, distribute,
and other constructs

L2 ’ L2

L2

L2

| 1
GDDR MC | Liod [Laod .- Lmod [aod GDDR Mc|

GDDR MC| jarT jfarT - - fjarT  rart GDDR M|
- )

21 21 21 21 ‘

3J0) 3J0) 3l0) 2J0)

.

Compiler variables

OpenMP Runtime library
OS/system support for shared memory and threading

Target Device: Intel® Xeon Phi™ coprocessor

DRAMI/F
d/NAY™A

Shared Address Space | Shared Address Space Shared Address Space

Shared Address Space S S m—— E—————— m—

d/NAY¥Aa

\2-[e]

E|

N1 2-(e]

Target Device: GPU



OpenMP core syntax

* Most of the constructs in OpenMP are compiler directives.
#pragma omp construct [clause [clause]...]
— Example
#pragma omp parallel num_threads(4)

« Function prototypes and types in the file:
#include <omp.h>
use omp_lib

« Most OpenMP™* constructs apply to a “structured block”.

— Structured block: a block of one or more statements with
one point of entry at the top and one point of exit at the
bottom.

—It's OK to have an exit() within the structured block.

10



Exercise 1, Part A: Hello world
Verify that your environment works

* Write a program that prints “hello world”.

#include<stdio.h>
int main()

{

int ID = 0;

printf(“ hello(%d) *, ID);
printf(“ world(%d) \n”, ID);

11



Exercise 1, Part B: Hello world
Verify that your OpenMP environment works

* Write a multithreaded program that prints “hello world”.

Switches for compiling and linking

#include <omp.h>
#include <stdio.h>

int main() pgcc -mp pgi
{

#pragma omp parallel
( icc —fopenmp intel (linux)

gcc -fopenmp Linux, OSX
icl /Qopenmp intel (windows)

ntID = 0: Icc —qopenmp intel ver 16 and beyond

printf(“ hello(%d) *, ID);
printf(“ world(%d) \n”, ID);

j
}

12



Exercise 1: Solution
A multi-threaded “Hello world” program

* Write a multithreaded program where each thread prints

“hello world”.
#include <omp.h> €— OpenMP include file
#include <stdio.h> I
int main
{ d S Sample Output:
Parallel region with
#pragma omp parallel &~ | default number of threads | hello(1) hello(0) world(1)
{ world(0)
int ID = omp_get_thread_num(); hello (3) hello(2) world(3)
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID); world(2)

Runtime library function to
return a thread ID.

}
}
End of the Parallel region

13



OpenMP overview:
How do threads interact?

* OpenMP is a multi-threading, shared address model
— Threads communicate by sharing variables.

« Unintended sharing of data causes race conditions:

— Race condition: when the program’s outcome changes as the threads
are scheduled differently.

* To control race conditions:
— Use synchronization to protect data conflicts.

« Synchronization is expensive so:

— Change how data is accessed to minimize the need for
synchronization.

14



Outline

* Introduction to OpenMP
m=) « Creating Threads

— A brief theoretical interlude: Speedup and Amdahl’s law
e Synchronization

 Parallel Loops
— Loop schedules and vectorization

» Synchronize single masters and stuff
« Data environment

* Tasks

« Challenge Problems

15



OpenMP programming model:

Fork-Join Parallelism:

¢ Master thread spawns a team of threads as needed.

¢ Parallelism added incrementally until performance goals are met,
l.e., the sequential program evolves into a parallel program.

Parallel Regions

— |

A Nested
Parallel

Master

Thread

in red _,‘
~ ‘7 b /’, \

region

Sequential Parts

16



Thread creation: Parallel regions

* You create threads in OpenMP* with the parallel construct.
* For example, To create a 4 thread Parallel region:

double A[1000]; Runtime function to
Each thread omp_set num_threads(4); < request a certain
executes a #pragma omp parallel number of threads
copy of the {
code within int ID = omp_get thread _num();
the pooh(ID,A);

E’:(r)ucc:ured } \ Runtime function
returning a thread ID

e Each thread calls pooh(ID,A) for ID = 0 to 3

* The name “OpenMP” is the property of the OpenMP Architecture Review Board 17



Thread creation: Parallel regions

* You create threads in OpenMP* with the parallel construct.
* For example, To create a 4 thread Parallel region:

clause to request a certain

double A[1000]; number of threads
Each thread
executes a #pragma omp parallel num_threads(4)
copy of the {
code within int ID = omp_get _thread _num();
the pooh(ID,A);

E’:(r)ucc:ured } \ Runtime function
returning a thread ID

e Each thread calls pooh(ID,A) for ID = 0 to 3

* The name “OpenMP” is the property of the OpenMP Architecture Review Board

18



Thread creation: Parallel regions example

double A[1000];
omp_set _num_threads(4);

#pragma omp parallel

» Each thread executes the
same code redundantly.

{
int ID = omp_get thread _num();
double A[1000]; pooh(ID, A);
}
omp_set num_threads(4) printf(“all done\n”);

A single
copy of Ais
shared _~ pooh(0,A)  pooh(1,A) pooh(2,A) pooh(3,A)
between all
threads.

printf(“all m Threads wait here for all threads to finish
before proceeding (i.e., a barrier)

* The name “OpenMP” is the property of the OpenMP Architecture Review Board



Exercises 2 to 4:
Numerical integration

4.0 T=<
N
N
\\
AN
N
& \
X
+
—
~ 20
=
q—
1]
x
LL
0.0 1.0
X

Mathematically, we know that:

1
0
We can approximate the integral as a
sum of rectangles:

4.0
(1+x

N
| E F(x)AXx = TT
i=0

Where each rectangle has width Ax and
height F(x;) at the middle of interval i.

20



Exercises 2 to 4: Serial Pl program

static long num_steps = 100000;

double step;
. . « #pragma omp parallel.
int main () . .
T , — intomp_get num_threads();
{ int i; double x, pi, sum = 0.0;
— intomp_get _thread _num();
step = 1.0/(double) num_steps; — double omp_get_wtime();

— omp_set_num_threads();
for (i=0;i< num_steps; i++){
x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

}

pi = step * sum;

See OMP_exercises/pi.c

21



Exercise 2

» Create a parallel version of the pi program using a parallel

construct:
#pragma omp parallel.

« Pay close attention to shared versus private variables.

 |[n addition to a parallel construct, you will need the runtime

library routines

Number of threads in the team

—int omp_get_num_threads();/

—int omp_get thread num()'g
—double omp_get _wtime()
—omp_set_num_threads( )

pd

Request a number of
threads in the team

Thread ID or rank

Time in Seconds since a
fixed point in the past

22



Exercise 2 (hints)

» Use a parallel construct:
#pragma omp parallel.

* The challenge is to:

— divide loop iterations between threads (use the thread ID and the
number of threads).

— Create an accumulator for each thread to hold partial sums that you
can later combine to generate the global sum.
 |[n addition to a parallel construct, you will need the runtime
library routines
— int omp_set_num_threads();
— int omp_get_num_threads();
— int omp_get thread_num();
— double omp_get wtime();

23



Results*

 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.
. Example: A simple Parallel pi program |

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS]; threads Ist
step = 1.0/(double) num_steps; SPMD
omp_set num_threads(NUM_THREADS);

#pragma omp paraliel
{

1.86
1.03
1.08
0.97

inti, id.nthrds;

WA AARAAAAAAAAAT
double x;

id =omp_get_thread num();
nthrds = omp _get num_threads();
if (id —0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
X = (i+0.5)*step;
sumlid] +=4.0/(1.0+x*X);

AW N

}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum(i] * step;

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 24



An Example of Parallel Computing

Compute N independent tasks on one processor

Load Data Compute T, T Compute Ty, Consume Results

Timeseq(1) = Tload + N*Ttask + Tconsume

Compute N independent tasks with P processors

Compute T, Ideally Cut
Load Data . Consume Results runtime by ~1/P

Compute T, (Note: Parallelism
only speeds-up the
concurrent part)

Timepar(P) = Tload + (NIP)*Ttask + Tconsume

25



Talking about performance

e Speedup: the increased
performance from running on P
Processors.

= Perfect Linear Speedup:
happens when no parallel
overhead and algorithm is
100% parallel.

= Super-linear Speedup: typically
due to cache effects ... i.e. as P
grows, aggregate cache size
grows so more of the problem
fits in cache




Amdahl’ s Law

e What is the maximum speedup you can expect from a parallel program?

e Approximate the runtime as a part that can be sped up with additional
processors and a part that is fundamentally serial.

parallel  fraction
P
= If serial_fraction is a and parallel_fraction is (1- o) then the speedup is:

Time (P)=(serial fraction +

par

)*Time,,,

Time,, Time,,
S(P)= Z Z

Time,, (P) (g4 1;)05) *Time,, o+ ! ;oc

= If you had an unlimited number of processors: P — oo

1 Amdahl’ s
= The maximum possible speedup is: S =— <— [ aw
o




So now you should understand my silly introduction slide.

Introduction

Photo © by Greg Clopton, 2014

We measure our success
as parallel programmers
by how close we come to
ideal linear speedup.

To support my kayaking habit I
work as a parallel programmer

Which means I know how to turn
math into lines on a speedup plot

A good parallel
programmer always
figures out when you
fall off the linear
speedup curve and
why that has occurred.

4 ]

28



Collect results and plot speedup vs
number of threads

” Speed up vs number of threads

10

1 2 4

—Series 1 Series 2



Why such poor scaling? False sharing

« If independent data elements happen to sit on the same cache line, each
update will cause the cache lines to “slosh back and forth” between threads

... This is called “false sharing”.

HW thrd. O HW thrd. 1 HW thrd. 2 HW thrd. 3

L‘_‘—L ‘l L1 $ lines ] L‘_‘—L \
\ II II
S 1 S 2 S 3 S 0 S 1 S 3

= v

Shared last level cache and connection to I/O and DRAM

* If you promote scalars to an array to support creation of an SPMD
program, the array elements are contiguous in memory and hence share

cache lines ... Results in poor scalability.
» Solution: Pad arrays so elements you use are on distinct cache lines.

30



#define PAD 8

Example: Eliminate false sharing by padding the sum array
#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2
void main ()

int i, nthreads; double pi, sum[NUM_THREADS][PAD];

{

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel

{

int i, id,nthrds;

double x;

id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;

/[ assume 64 byte L1 cache line size

AN

Pad the array so
each sum value is
in a different
cache line

for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {

X = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*x);
}

for(i=0, pi=0.0;i<nthreads;i++)pi += sum|i][0] * step;

31



Results™: pi program padded accumulator
 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.

#include <omp.h>

static long num_steps = 100000; double step;

#idefine PAD 8 /I assume 64 byte L1 cache line size
#define NUM_THREADS 2

void main ()

{ int i, nthreads; double pi, sum[NUM_THREADS]PAD};

step = 1.0/(double) num_steps;
omp_set num_threads(NUM_THREADS);
#pragma omp parallel

{

inti, id,nthrds;
double x;
id=omp_get _thread num();
nthrds =omp_get num_threads();
if id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
X = (i+0.5)*step;
sum[id][0] += 4.0/(1.0+x*X);

}

for(i=0, pi=0.0;i<nthreads:i++)pi += Sum[[0] * step:
}

' Example: eliminate False sharing by padding the sum array

threads 15t 15t
SPMD SPMD
padded
1 1.86 1.86
2 1.03 1.01
3 1.08 0.69
4 0.97 0.53

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

32



Outline

* Introduction to OpenMP

 Creating Threads
— A brief theoretical interlude: Speedup and Amdahl’s law

) . Synchronization

 Parallel Loops
— Loop schedules and vectorization

» Synchronize single masters and stuff
« Data environment

* Tasks

« Challenge Problems

33



Synchronization

Synchronization is used to
Impose order constraints and
to protect access to shared
 High level synchronization: data

—critical
—atomic
—barrier
—ordered
* Low level synchronization
—flush
—locks (both simple and nested)

Discussed later

34



Synchronization: critical

« Mutual exclusion: Only one thread at a time can enter a

critical region.

Threads wait
their turn — only
one at a time
calls consume()

float res;
#pragma omp parallel
{ floatB; inti, id, nthrds;
id = omp_get _thread _num();
nthrds = omp_get num_threads();
for(i=id;i<niters;i+=nthrds){
B = big_job(i);

#pragma omp critical
res += consume (B);

35



Synchronization: atomic

« Atomic provides mutual exclusion but only applies to the update
of a memory location (the update of X in the following example)

#pragma omp parallel

{
double tmp, B;

B = DOIT():

tmp = big_ugly(B);

#pragma omp atomic
X += tmp;

Atomic only protects the
read/update of X

}

36



Exercise 3

* |[n exercise 2, you probably used an array to create space for
each thread to store its partial sum.

* |f array elements happen to share a cache line, this leads to

false sharing.

— Non-shared data in the same cache line so each update invalidates the
cache line ... in essence “sloshing independent data” back and forth
between threads.

« Modify your “pi program” from exercise 2 to avoid false
sharing due to the sum array.
— #pragma omp parallel
— #pragma omp critical
— #pragma omp atomic
— void omp_set_num_threads(int);
— int omp_get_num_threads();
— int omp_get thread num();

— double omp_get_wtime();
37



Pi program with false sharing®

. Orlglnal Serial p| program with 100000000 steps ran |n 1.83 seconds.
. Example: A simple Parallel pi program

_ Recall that promoting sum to an
#include <omp.h> )
static long num_steps = 100000; double step; array made the codlng casy, but led
#define NUM_THREADS 2 .
void main ( to false sharing and poor
{ int i, nthreads; double pi, sum[NUM_THREADS]; performance.
step = 1.0/(double) num_steps;

omp_set num_threads(NUM_THREADS);

#pragma omp paraliel
{
inti, id,nthrds;
double x;
id =omp get thread_num();
nthrds = num_threads(); threads Ist
|f(|d —0) nthreads nthrds;
for (i=id, sum[ld] =0.0i< num_steps; i=i+nthrds) { SPMD
X = (i+0.5)*step; 1 1.86
sum[id] +=4.0/(1.0+x*X); .
} } 2 1.03
‘ for(i=0, pi=0.0;i<nthreads;i++)pi += sum(i] * step; 3 1.08
) VARSI .
4 0.97

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. 38



Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

Create a scalar local

{ o | - to each thread to
int I, id, nthrds; double x, sum; accumulate partial

id = omp_get_thread_num();

sums.
nthrds = omp_get_num_threads();
if (id ==0) nthreads = nthrds;
for (i=id, sum=0.0;i< num_steps; i=i+nthrds) { No array, so
X = (i+0.5)*step; no fglse
sum +=4.0/(1.0+x*x); Sl
}
#pragma omp critical Sum goes “out of scope” beyond the parallel
pi += sum * step; &= region ... so you must sum itin here. Must
} protect summation into pi in a critical region so
} updates don'’t conflict

39



Results*: pi program critical section
 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.

Exam ple: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;
#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{
inti, id, nthrds; double x, sum;
id = omp_get_thread_num();
nthrds = omp_get_num_threads();
if (id == 0) nthreads = nthrds;
for (i=id, sum=0.0;i< num_steps; i=i+nthrds) {
x = (i+0.5)*step;
sum += 4.0/(1.0+x*x);
}
#pragma omp critical
pi += sum * step;
}
}

threads I st Ist SPMD
SPMD SPMD critical
padded
1 1.86 1.86 1.87
2 1.03 1.01 1.00
3 1.08 0.69 0.68
4 0.97 0.53 0.53

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW
thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.




Example: Using a critical section to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel
{ prag PP Be careful where you

int i, id,nthrds; double x; put a critical section

id = omp_get_thread_num();

nthrds = omp_get_num_threads();

if (id ==0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthreads){
X = (i+0.5)*step;
#pragma omp critical €&
pi += 4.0/(1.0+x*x);

What would happen if
you put the critical
section inside the
loop?

pi *= step;

41



Example: Using an atomic to remove impact of false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ int nthreads; double pi=0.0; step = 1.0/(double) num_steps;

omp_set_num_threads(NUM_THREADS);

#pragma omp parallel Create a scalar local to
{ each thread to

int i, id,nthrds; double x, sum; €™ accumulate partial

id = omp_get_thread_num(); sums.

nthrds = omp_get_num_threads();
if (id ==0) nthreads = nthrds;

for (i=id, sum=0.0;i< num_steps; i=i+nthrds){ No array, so
x = (i+0.5)"step; no false
sum +=4.0/(1.0+x*X); €— sharing.

}

sum = sum*step;. Sum goes “out of scope” beyond the parallel
#pragm_a omp atomic region ... SO you must sum it in here. Must
pI +=sum ; protect summation into pi so updates don't
} conflict

42



Outline

* Introduction to OpenMP

 Creating Threads
— A brief theoretical interlude: Speedup and Amdahl’s law

e Synchronization
=) « Parallel Loops

— Loop schedules and vectorization
» Synchronize single masters and stuff
e Data environment
» Tasks
« Challenge Problems

43



SPMD vs. worksharing

A parallel construct by itself creates an SPMD or “Single
Program Multiple Data” program ... i.e., each thread
redundantly executes the same code.

* How do you split up pathways through the code between
threads within a team?

— Worksharing constructs

* Loop construct

= Sections/section constructs
» Single construct

+~Task constructs

|
Discussed later

44



The loop worksharing constructs

* The loop worksharing construct splits up loop iterations

among the threads in a team

#pragma omp parallel

{

#pragma omp for
for (I=0;I1<N;I++){

NEAT STUFF(I);
} \
}

Loop construct name:
«C/C++: for

Fortran: do

The variable | is made “private” to each
thread by default. You could do this
explicitly with a “private(l)” clause

45



Loop worksharing constructs
A motivating example

Sequential code

OpenMP parallel
region

OpenMP parallel
region and a
worksharing for
construct

for(i=0;i<N;i++) { a[i] = a[i] + b[i];}

#pragma omp parallel

{

int id, 1, Nthrds, istart, iend;

id = omp_get _thread _num();

Nthrds = omp_get num_threads();

istart =id * N / Nthrds;

iend = (id+1) * N / Nthrds;

if (id == Nthrds-1)iend = N;
for(i=istart;i<iend;i++) { ali] = a[i] + bl[i];}

#pragma omp parallel
#pragma omp for
for(i=0;i<N;i++) { a[i] = a[i] + D[i];}




Loop worksharing constructs:
The schedule clause

« The schedule clause affects how loop iterations are mapped onto threads
— schedule(static [,chunk])
— Deal-out blocks of iterations of size “chunk” to each thread.
— schedule(dynamic[,chunk])

— Each thread grabs “chunk” iterations off a queue until all iterations have
been handled.

— schedule(guided[,chunk])

— Threads dynamically grab blocks of iterations. The size of the block starts
large and shrinks down to size “chunk” as the calculation proceeds.

— schedule(runtime)

— Schedule and chunk size taken from the OMP_SCHEDULE environment
variable (or the runtime library).

— schedule(auto)

— Schedule is left up to the runtime to choose (does not have to be any of the
above).

47



loop work-sharing constructs:
The schedule clause

Schedule Clause

When To Use

STATIC

Pre-determined and
predictable by the
programmer

hd

Least work at
runtime :

scheduling done
at compile-time

DYNAMIC

Unpredictable, highly
variable work per
iteration

N

GUIDED

Special case of dynamic
to reduce scheduling
overhead

Most work at
runtime ;

complex
scheduling logic
used at run-time

AUTO

When the runtime can
“learn” from previous
executions of the same

loop

48



Combined parallel/worksharing construct

* OpenMP shortcut: Put the “parallel” and the
worksharing directive on the same line

double res|MAX]; int1; double resf]MAX]; int i;
#pragma omp parallel #pragma omp parallel for
d for (i=0;i< MAX; i++) {

#pragma omp for res[i] = huge();
for (1=0;1< MAX; 1++) { !

res[i] = huge();
h

} . /‘
These are equivalent I

49



Working with loops

« Basic approach

— Find compute intensive loops

— Make the loop iterations independent ... So they can safely execute in
any order without loop-carried dependencies

— Place the appropriate OpenMP directive and test

Note: loop index

int i, j, AIMAX]; 17

1s private by

i=5: default

for (1=0;1< MAX; 1++) {

J+=2
Ali] = bigN
§

inti, AIMAX];
Nfgﬂ)ragma omp parallel for
r (1=0;1< MAX; 1++) {

intj=5+2*@1+1);

Remove loop
carried
dependence

Al1] = big());
h

20



Nested loops

e For perfectly nested rectangular loops we can parallelize

multiple loops in the nest with the collapse clause:

#pragma omp parallel for collapse(2)
for (int 1=0; “\\\

for

(1nt 73=0;

1<N;

J<M;

1++) |

J++)

{

w

Number of loops
to be
parallelized,
counting from
the outside

* Will form a single loop of length NxM and then parallelize

that.

« Useful if N is O(no. of threads) so parallelizing the outer loop
makes balancing the load difficult.

o1



Reduction
e How do we handle this case?

double ave=0.0, AIMAX]; inti;
for (1=0;1< MAX; i++) {
ave +=A[1];

h
ave = ave/MAX;

* We are combining values into a single accumulation variable
(ave) ... there is a true dependence between loop iterations
that can'’t be trivially removed

* This is a very common situation ... it is called a “reduction”.

» Support for reduction operations is included in most parallel
programming environments.

92



Reduction

* OpenMP reduction clause:
reduction (op : list)

* Inside a parallel or a work-sharing construct:

— A local copy of each list variable is made and initialized depending
on the “op” (e.g. 0 for “+").
— Updates occur on the local copy.

— Local copies are reduced into a single value and combined with
the original global value.

* The variables in “list” must be shared in the enclosing
parallel region.

double ave=0.0, AIMAX]; inti;
#pragma omp parallel for reduction (+:ave)
for (1=0;1< MAX; 1++) {
ave + = A[1];

h
ave = ave/MAX;

93



OpenMP: Reduction operands/initial-values

« Many different associative operands can be used with reduction:
« Initial values are the ones that make sense mathematically.

Operator | Initial value
+ 0
* 1 Fortran Only
- 0 Operator | Initial value
min Largest pos. number "AND. true.
max Most neg. number OR. false.
.NEQV. false.
C/C++ only
0 t Initial | JEOR. 0
perator | initia (\)/a ue IOR. 0
& - J1AND. All bits on
| 0 .EQV. true.
A 0
&& 1
| 0

H4



Exercise 4: Pi with loops

« Go back to the serial pi program and parallelize it with a loop
construct

* Your goal is to minimize the number of changes made to the
serial program.
— #pragma omp parallel
— #pragma omp parallel for
— #pragma omp for reduction(op:list)
— #pragma omp atomic
— void omp_set _num_threads(int);
— int omp_get_num_threads();
— int omp_get thread _num();
— double omp_get_wtime();

95



Example: Pi with a loop and a reduction

#include <omp.h>

static long num_steps = 100000; double step;
void main ()
{ Int I; double X, pl, sum = OO’ Create a team of threads ...
step = 10/(double) num_ steps; without a parallel construct, you'll
- never have more than one thread

#pragma omp parallel <

{

double x; <€

Create a scalar local to each thread to hold
value of x at the center of each interval

#pragma omp for reduction(+:sum)
for (i=0;i< num_steps; i++){

x = (i+0.5)*step;

Break up loop iterations

sum = sum + 4_0/(1 O0+Xx*X ’ and assign them to

pi = step * sum;

threads ... setting up a
reduction into sum. Note
... the loop index is local to
a thread by default.

56



Results*: pi with a loop and a reduction
 QOriginal Serial pi program with 100000000 steps ran in 1.83 seconds.

Example: Pi with a| threads Ist Ist SPMD PI Loop
SPMD SPMD critical
#include <omp.h> padded
static long num_steps = 1000
VOId ma”?() ,,,,,,,,,,,,,,,,,,,,,, p 1 186 186 187 1.91
{ inti; double x, pi, s 2 1.03 1.01 1.00 1.02
step = 1.0/(double) num_s¢
#prggma c(>mp pa)rallelu 3 1.08 0.69 0.68 0.80
{ 4 0.97 0.53 0.53 0.68
double x;
#pragma omp for reduction(+:sum)
for (i=0;i< num_steps; i++){ [ turned off all optimization to
x = (i+0.5)*step; collect these numbers.
sum = sum + 4.0/(1.0+x7x); Hence, the vector units on the
, CPU where not utilized.
pi = step * sum;
¥

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW

thread) Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz. -



MPI Pi program
performance

For these numbers, I used —O3 and hence enabled
autovectorization from the compiler

Serial time = 0.43

{

AAARAANSAAAAASAA

AR T WWWVERAY T AR AN

A A A AR AN AAAAAAAAAAAAAAAAAAAAAA

for (Fmy_id: i<oum_steps: :i=itnumprocs)

{

x = (1+0.5)*step;
sum += 4.0/(1.0+x*x);

}

sum *= step ;

Al T SR~ DA Al

MPI_COMM_WORLD)

Thread | OpenMP | OpenMP MPI
Or procs SPMD PI Loop

critical

1 0.85 0.43 0.84

2 0.48 0.23 0.48

3 0.47 0.23 0.46

4 0.46 0.23 0.46
|

Can you explain the odd

cases?

performance behavior
between these different

*Intel compiler (icpc) with —O3 on Apple OS X 10.7.3 with a dual core (four HW thread) Intel®

Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.




Vectorization before OpenMP 4.0

* Programmers had to rely on automatic-compiler-vectorization...
* ...or to use vendor-specific extensions

— Programming models (e.g., Intel® Cilk™ Plus)

— Compiler pragmas (e.g., #pragma vector)

— Low-level constructs (e.g., mm add pd())

You had to trust
#pragma omp parallel for the compiler to

#pragma vector always .0 ®
#pragma ivdep
for (int 1 = 0;

ali] = b1

do the “right”
thing.

; 1 < N; 1++) |
]+ ...



OpenMP SIMD Loop Construct

« Vectorize a loop nest
— Cut loop into chunks that fit a SIMD vector register

fpragma omp simd [clause[[,] clause],..]
for-1oops

vold sprod(float *a, float *b, int n) {
float sum = 0.0f;

#pragma omp simd reduction (+:sum)
for (int k=0; k<n; k++)

sum += alk] * blk];
return sum;

Gectorize
HEEEEEREEEEREEEEEEREREREEREEE N




Data Sharing Clauses

* private(var-1list):
Uninitialized vectors for variables in var-list

e firstprivate(var-list):
Initialized vectors for variables in var-list

Xi| 42 | w42 42 42 42

* reduction(op:var-1list):
Create private variables for var-list and apply reduction operator op at the end of
the construct

12 5 8 17 éX! 42




SIMD Loop Clauses

safelen (length)

— Maximum number of iterations that can run concurrently without breaking a
dependence

— in practice, maximum vector length

linear (list[:linear-step])

— The variable’s value is in relationship with the iteration number
X; = Xorig + 17 linear-step
aligned (list[:alignment])

— Specifies that the list items have a given alighment

— Default is alignment for the architecture

collapse (n)



SIMD Worksharing Construct

« Parallelize and vectorize a loop nest
— Distribute a loop’s iteration space across a thread team
— Subdivide loop chunks to fit a SIMD vector register

* #pragma omp for simd [clause[[,] clause],..]
for-loops

vold sprod(float *a, float *b, int n) {
float sum = 0.0f;
#pragma omp parallel |for] simd reduction (+:sum)
for (int k=0; k<n; k++)
sum += alk] * bl[k];
return sum;

parallelize
Thread O Thread 1 Thread 2




SIMD Function Vectorization

» Declare functions to be compiled for calls from a SIMD-parallel loop

#fpragma omp declare simd [clause[[,] clause],..]

function—-definition-or—-declaration

#pragma omp declare simd vec8 min v (vec8 a, vec8 b) {
float min(float a, float b) {

return a < b ? a b; —— return a < b ? a : b;
} }
#pragma omp declare simd
float distsg(float x, float y) { vec8 distsg_v(vec8 x, vec8 y) |

return (x - y) * (x = Vy); —— } return (x - y) * = y);
}
vold example () {
#pragma omp parallel for simd

for (1i=0; i<N; i++) {

d[i1] = min(distsg(ali], b[1]), cl[1]):

}

}
vd = min v (distsqg v(va, vb, vc))




Performance of the SIMD Constructs

5.00x
4.50x
4.00x
S'E 3.50x
o5
®Y 3.00x
o
¥
g .‘Eﬂ 2.50x
=
[
2.00x
1.50x
1.00x
0.50x
0.00x

H|CC auto-vec
4.34x

H|CC SIMD directive

Mandelbrot Volume BlackScholes  Fast Walsh Perlin Noise SGpp
Rendering

M. Klemm, A. Duran, X. Tian, H. Saito, D. Caballero, and X. Martorell. Extending OpenMP with Vector Constructs for Modern
Multicore SIMD Architectures. In Proc. of the Intl. Workshop on OpenMP, pages 59-72, Rome, Italy, June 2012. LNCS 7312.



Outline

* Introduction to OpenMP

 Creating Threads
— A brief theoretical interlude: Speedup and Amdahl’s law

e Synchronization

 Parallel Loops
— Loop schedules and vectorization

) . Synchronize single masters and stuff
« Data environment
* Tasks
« Challenge Problems

66



Synchronization: Barrier
e Barrier: Each thread waits until all threads arrive.

double A[big], B[big], C[big];

#pragma omp parallel

{

int id=omp_get thread _num();

A[id] - big—Ca_|C1 (id); implicit barrier at the end of a for
#pragma omp barrier worksharing construct
#pragma omp for

for(i=0;i<N;i++){C[i]=big_calc3(i,A

):}
#pragma omp for nowait
for(i=0;i<N;i++){ B[i]=big_calc2(C, i); }

A[id] = big_calc4(id); \

J implici ' implicit barrier
~——____| implicit barrier at the end no imp :
of a parallel region due to nowait

67



Master construct

* The master construct denotes a structured block that is only
executed by the master thread.

* The other threads just skip it (no synchronization is implied).

#pragma omp parallel
{
do_many_things();
#pragma omp master
{ exchange boundaries(); }
#pragma omp barrier
do_many_other_things();
}

68



Single worksharing construct

* The single construct denotes a block of code that is
executed by only one thread (not necessarily the master
thread).

A barrier is implied at the end of the single block (can
remove the barrier with a nowait clause).

#pragma omp parallel

{
do_many_things();

#pragma omp single
{ exchange boundaries(); }
do_many_other_things();

69



Runtime library routines

 Runtime environment routines:
— Modify/Check the number of threads

—omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num(), omp_get _max_threads()
— Are we in an active parallel region?

—omp_in_parallel()

— Do you want the system to vary the number of threads dynamically
from one parallel construct to another?

—omp_set_dynamic(), omp_get_dynamic();
— How many processors in the system?
—omp_num_procs()

...plus a few less commonly used routines.

10



Environment Variables

e Set the default number of threads to use.
- OMP_NUM_THREADS int literal

« Control how “omp for schedule(RUNTIME)” loop iterations
are scheduled.

- OMP_SCHEDULE “schedule[, chunk_size]”

* Process binding is enabled if this variable is true ... i.e., if
true the runtime will not move threads around between
Processors.

- OMP_PROC_BIND true | false

... Plus several less commonly used environment variables.

I



Outline

* Introduction to OpenMP

 Creating Threads
— A brief theoretical interlude: Speedup and Amdahl’s law

e Synchronization

 Parallel Loops
— Loop schedules and vectorization

» Synchronize single masters and stuff
=) - Data environment

* Tasks

« Challenge Problems

12



Data environment:
Default storage attributes

» Shared memory programming model:
— Most variables are shared by default

* Global variables are SHARED among threads
— Fortran: COMMON blocks, SAVE variables, MODULE variables
— C: File scope variables, static
— Both: dynamically allocated memory (ALLOCATE, malloc, new)

* But not everything is shared...

— Stack variables in subprograms(Fortran) or functions(C) called
from parallel regions are PRIVATE

— Automatic variables within a statement block are PRIVATE.

13



Data sharing: Examples

double A[10]; extern double A[10];
int main() { void work(int *index) {
int index[10]; double temp[10];
#pragma omp parallel static int count;
work(index);
printf(“%d\n”, index[0]); }
}

A, index, count

A, index and count are
shared by all threads.

temp temp temp

temp is local to each
thread

A, index, count



Data sharing:
Changing storage attributes

* One can selectively change storage attributes for constructs
using the following clauses”

- SHARED All the clauses on this page apply
- PRIVATE to the OpenMP construct NOT to
— FIRSTPRIVATE the entire region.

* The final value of a private variable inside a parallel loop can
be transmitted to the shared variable outside the loop with:
- LASTPRIVATE
* The default attributes can be overridden with:
— DEFAULT (PRIVATE | SHARED | NONE)

DEFAULT(PRIVATE) is Fortran only

*All data clauses apply to parallel constructs and worksharing
constructs except “shared”, which only applies to parallel constructs



Data sharing: Private clause

 private(var) creates a new local copy of var for each thread.
— The value of the private copies is uninitialized
— The value of the original variable is unchanged after the region

void wrong() {
int tmp = 0;
#pragma omp parallel for private(tmp)

for (intj = 0; j < 1000; ++j) tmp was not
_— '.4— — 0 onc .
tmp +=; initialized

printf(“%d\n”, tmp);

‘ tmp is O here I

16



Data sharing: Private clause
When is the original variable valid?

* The original variable’s value is unspecified if it is referenced

outside of the construct
— Implementations may reference the original variable or a copy ..... a
dangerous programming practice!
— For example, consider what would happen if the compiler inlined

work()?
int tmp;
void danger() { extern int tmp;
tmp = 0; void work() {
#pragma omp parallel private(tmp) tmp = 5;
work(); }
printf(“%d\n’, tmp);

} unspecified which
‘ tmp has unspecified value I copy of tmp

77



Firstprivate clause

 Variables initialized from a shared variable
« C++ objects are copy-constructed

incr = 0;
#pragma omp parallel for firstprivate(incr)
for (i=0; i <= MAX; i++) {

if ((i%2)==0) incr++;

A[l] = incr;
) T |

Each thread gets its own copy of
incr with an initial value of 0




Lastprivate clause

 Variables update a shared variable using value from the
(logically) last iteration

« C++ objects are updated as if by assignment

void sqg2(int n, double *lastterm)

{
double x; int i;
#pragma omp parallel for lastprivate(x)
for (i=0;i<n; i++)
x = al[i]*a[i] + b[i]*bli];
b[i] = sqrt(x);
} “X” has the value it held for
“lastterm = X; <€ —the “|3st sequential” iteration

(i.e., for i=(n-1))

}.




Data sharing:
A data environment test

» Consider this example of PRIVATE and FIRSTPRIVATE

variables: A=1,B=1,C =1
#pragma omp parallel private(B) firstprivate(C)

» Are A,B,C private to each thread or shared inside the parallel region?
« What are their initial values inside and values after the parallel region?

Inside this parallel region ...
e “A’ is shared by all threads; equals 1
e “B” and “C” are private to each thread.
— B’s initial value is undefined
— C’s initial value equals 1
Following the parallel region ...
e B and C revert to their original values of 1
e Ais either 1 or the value it was set to inside the parallel region

80



Data sharing: Default clause

* The default storage attribute is DEFAULT(SHARED)
(so no need to use it)
— Exception: #pragma omp task
« To change default: DEFAULT(PRIVATE)

— each variable in the construct is made private as if specified in a
private clause

— mostly saves typing
« DEFAULT(NONE): no default for variables in static

extent. Must list storage attribute for each variable in
static extent. Good programming practice!

Only the Fortran API supports default(private).

C/C++ only has default(shared) or default(none).

81



Data sharing: Default clause example

itotal = 1000

C$OMP PARALLEL PRIVATE(np, each)
np = omp_get num_threads()
each = itotal/np

C$OMP END PARALLEL These two code
fragments are
equivalent

itotal = 1000

C$OMP PARALLEL DEFAULT(PRIVATE) SHARED(itotal)
np = omp_get num_threads()
each = itotal/np

CSOMP END PARALLEL

82



Exercise 5: Mandelbrot set area

* The supplied program (mandel.c) computes the area of a
Mandelbrot set.

* The program has been parallelized with OpenMP, but we
were lazy and didn’t do it right.

* Find and fix the errors (hint ... the problem is with the data
environment).

* Once you have a working version, try to optimize the
program.
— Try different schedules on the parallel loop.

— Try different mechanisms to support mutual exclusion ... do the
efficiencies change?



Outline

* Introduction to OpenMP

 Creating Threads
— A brief theoretical interlude: Speedup and Amdahl’s law

e Synchronization

 Parallel Loops
— Loop schedules and vectorization

» Synchronize single masters and stuff
« Data environment

B « Tasks

« Challenge Problems

84



What are tasks?

« Tasks are independent units of work >

» Tasks are composed of:
— code to execute
— data to compute with
* Threads are assigned to perform the
work of each task.

Serial Parallel

Mark Bull of EPCC provided this set of tasking slides



OpenMP tasks

 The task construct includes a structured block of code

 Inside a parallel region, a thread encountering a task
construct will package up the code block and its data for
execution

« Some thread in the parallel region will execute the task at
some point in the future
— note: could be encountering thread, right now

« Tasks can be nested: i.e. a task may itself generate
tasks.



task directive

Syntax:
Fortran:
'SOMP TASK [clauses]
structured block
'SOMP END TASK
C/C++:

#pragma omp task [clauses]

structured-block



Example

#pragma omp parallel «———

{

#pragma omp master _

Create some threads

Thread 0 packages

{
#pragma omp task

fred() ;
#pragma omp task

daisy () ;
#pragma omp task

billy () ;

}

}\ All tasks complete

before this barrier is
released

tasks

Tasks executed by
some thread in some
order




When/where are tasks complete?

At thread barriers (explicit or implicit)

— applies to all tasks generated in the current parallel region up to the
barrier

At taskwait directive
— i.e. Wait until all tasks defined in the current task have completed.
— Fortran: 'SOMP TASKWAIT
— C/C++. #pragma omp taskwait

— Note: applies only to tasks generated in the current task, not to
“descendants” .

— The code executed by a thread in a parallel region is considered a task
here



When/where are tasks complete?

At the end of a taskgroup region
— Fortran:

| SOMP TASKGROUP
structured block

1 SOMP END TASKGROUP
- C/C++:
#pragma omp taskgroup
structured-block
—wait until all tasks created within the taskgroup have
completed

—applies to all “descendants”



Example

#pragma omp parallel
{

#pragma omp master

{
#pragma omp task

fred() ;

#pragllna omp task fred() and daisy ()
daisy () ;

/ must complete before
#pragma taskwait billy () starts

#pragma omp task
billy();



Exercise 6: Simple tasks

« Write a program using tasks that will “randomly” generate one of two
strings:
— | think race cars are fun
— | think car races are fun

» Hint: use tasks to print the indeterminate part of the output (i.e. the “race
cars” or “car races” part).

« This is called a “Race Condition”. It occurs when the result of a program
depends on how the OS schedules the threads.

« NOTE: A “data race” is when threads “race to update a shared variable”.
They produce race conditions and programs containing data races are
undefined (in OpenMP but also ANSI standards C++'11 and beyond).

#pragma omp parallel
#pragma omp task
#pragma omp master
#pragma omp single

92



Linked list traversal

p = listhead ;
while (p) {
process (p) ;
p=next (p) -
}

 Classic linked list traversal

* Do some work on each item in the list

» Assume that items can be processed independently
« Cannot use an OpenMP loop directive



Parallel linked list traversal

#pragma omp parallel

{

#pragma omp master

{
p = listhead

while (p) {

Only one thread

‘///////////////// packages tasks

#pragma omp task firstprivate (p)

{

process (p);

}
p=next (p)

}

°
4

makes\a copy of p
when the task is
packaged




Parallel linked list traversal

Thread O: Other threads:

p = listhead ;

while (p) {

< package up task >
p=next (p) while (tasks to do) {

} < execute task >

}

while (tasks_to do) {
< execute task >

}

< barrier > < barrier >




Parallel pointer chasing on multiple lists

#pragma omp parallel

{ -

#pragma omp for private (p)

All threads package
tasks

for ( int i =0; i <numlists; i++) {

p = listheads[i] ;
while (p ) {

#pragma omp task firstprivate (p)

{

process (p) ;

}
p=next (p) ;

}




Data scoping with tasks

 Variables can be shared, private or firstprivate with respect to
task

* These concepts are a little bit different compared with
threads:

— |f a variable is shared on a task construct, the references to it inside
the construct are to the storage with that name at the point where the
task was encountered

— |f a variable is private on a task construct, the references to it inside
the construct are to new uninitialized storage that is created when the
task is executed

— |f a variable is firstprivate on a construct, the references to it inside the
construct are to new storage that is created and initialized with the
value of the existing storage of that name when the task is
encountered



Data scoping defaults

« The behavior you want for tasks is usually firstprivate, because the task
may not be executed until later (and variables may have gone out of
scope)

— Variables that are private when the task construct is encountered are firstprivate by
default

» Variables that are shared in all constructs starting from the innermost
enclosing parallel construct are shared by default

#pragma omp parallel shared(A)
private (B)

{
#pragma omp task A iIs shared
{ B is firstprivate
int C; / C is private
compute (A, B, C);
}



Example: Fibonacci numbers

int fib (int n)

{ ° Fn - Fn—l T Fn-2
nt X,y; * Inefficient O(n?) recursive
if (n <2) return n; implementation!

x = fib(n-1);
y = fib (n-2);
return x+vy);

;

Int main()

{
int NW = 5000;
fib(NW);

;



Parallel Fibonacci
int fib (int n)
{ 1f1r(11tlx<yz) return n: * Binary tree of tasks

* Traversed using a recursive
#pragma omp task shared(x)

function

x = fib(n-1);
#pragma omp task shared(y) * Atask cannot complete until all

y = fib (n-2); | tasks below it in the tree are
#ipragma omp taskwait complete (enforced with taskwait)

return x+y);
} * x,y are local, and so by default

. they are private to current task

Int. main() — must be shared on child tasks so they
{ int NW = 5000; don’t create their own firstprivate

#pragma omp parallel copies at this level!

d

#pragma omp master
fib(NW);
h



Using tasks

» Getting the data attribute scoping right can be quite tricky
— default scoping rules different from other constructs
— as ever, using default (none) is a good idea

* Don'’t use tasks for things already well supported by OpenMP
—e.g. standard do/for loops
—the overhead of using tasks is greater

* Don’t expect miracles from the runtime

— best results usually obtained where the user controls the
number and granularity of tasks



Exercise 6: Pi with tasks

« Consider the program Pi_recur.c. This program implements
a recursive algorithm version of the program for computing pi
— Parallelize this program using OpenMP tasks

#pragma omp parallel
#pragma omp task
#pragma omp taskwait
#pragma omp master
#pragma omp single

double omp_get wtime()

int omp_get_thread_num();
int omp_get_num_threads();

= 102



Outline

* Introduction to OpenMP

 Creating Threads
— A brief theoretical interlude: Speedup and Amdahl’s law

e Synchronization

 Parallel Loops
— Loop schedules and vectorization

» Synchronize single masters and stuff
« Data environment
* Tasks

=) . Challenge Problems

103



Challenge problems

* Long term retention of acquired skills is best supported by
“‘random practice”.

- i.e., a set of exercises where you must draw on multiple facets of the
skills you are learning.

* To support “Random Practice” we have assembled a set of
“challenge problems”

1.

a s b

Parallel molecular dynamics

Monte Carlo “pi” program and parallel random number generators
Optimizing matrix multiplication

Traversing linked lists in different ways

Recursive matrix multiplication algorithms

104



Challenge 1: Molecular dynamics

* The code supplied is a simple molecular dynamics
simulation of the melting of solid argon

« Computation is dominated by the calculation of force pairs in
subroutine forces (in forces.c)

 Parallelise this routine using a parallel for construct and
atomics; think carefully about which variables should be
SHARED, PRIVATE or REDUCTION variables

« Experiment with different schedule kinds

105



Challenge 1: MD (cont.)

* Once you have a working version, move the parallel region
out to encompass the iteration loop in main.c

— Code other than the forces loop must be executed by a single thread
(or workshared).

— How does the data sharing change?

* The atomics are a bottleneck on most systems.

— This can be avoided by introducing a temporary array for the force
accumulation, with an extra dimension indexed by thread number

— Which thread(s) should do the final accumulation into ?

106



Challenge 1 MD: (cont.)

* Another option is to use locks
— Declare an array of locks
— Associate each lock with some subset of the particles

— Any thread that updates the force on a particle must hold the
corresponding lock

— Try to avoid unnecessary acquires/releases
— What is the best number of particles per lock?

107



Challenge 2: Monte Carlo calculations

Using random numbers to solve tough problems

« Sample a problem domain to estimate areas, compute probabilities,

find optimal values, etc.

« Example: Computing 1T with a digital dart board:

7
-

N=10 m=2.8
N=100 m=23.16
N=1000 1 =3.148

e Throw darts at the circle/square.

e Chance of falling in circle is
proportional to ratio of areas:

A =r>*m
A, = (2°r) * (2*r) =4 * r?
P=AJ/A,= /4

e Compute 1 by randomly
choosing points; 1 is four times
the fraction that falls in the circle

108



Challenge 2: Monte Carlo pi (cont)

* We provide three files for this exercise
— pi_mc.c: the Monte Carlo method pi program
— random.c: a simple random number generator
— random.h: include file for random number generator

 Create a parallel version of this program without changing
the interfaces to functions in random.c

— This is an exercise in modular software ... why should a user of your
parallel random number generator have to know any details of the
generator or make any changes to how the generator is called?

— The random number generator must be thread-safe.

o Extra Credit:

— Make your random number generator numerically correct (non-
overlapping sequences of pseudo-random numbers).

109



Challenge 3: Matrix multiplication

 Parallelize the matrix multiplication program in the file
mm_testbed.c

« Can you optimize the program by playing with how the loops
are scheduled?

 Try the following and see how they interact with the
constructs in OpenMP
— Cache blocking
— Loop unrolling
— Vectorization

« Goal: Can you approach the peak performance of the
computer?

110



Challenge 4: Traversing linked lists

» Consider the program linked.c

— Traverses a linked list, computing a sequence of Fibonacci numbers
at each node

 Parallelize this program two different ways
1. Use OpenMP tasks
2. Use anything you choose in OpenMP other than tasks.
* The second approach (no tasks) can be difficult and may

take considerable creativity in how you approach the
problem (why its such a pedagogically valuable problem)

111



Challenge 5: Recursive matrix multiplication

» The following three slides explain how to use a recursive
algorithm to multiply a pair of matrices

« Source code implementing this algorithm is provided in the
file matmul_recur.c

 Parallelize this program using OpenMP tasks

112



Challenge 5: Recursive matrix multiplication

* Quarter each input matrix and output matrix
* Treat each submatrix as a single element and muiltiply
« 8 submatrix multiplications, 4 additions

A2,2
A B C
Cl,l :Al,l'Bl,l + A1,2'B2,1 C1,2 :AI,I'B1,2 +A1,2'B2,2
C2,1 :Az,l'Bl,l +A2,2'B2,1 Cz,z :Az,l'Bl,z +A2,2'B2,2

113



Challenge 5: Recursive matrix multiplication
How to multiply submatrices?

« Use the same routine that is computing the full matrix
multiplication

— Quarter each input submatrix and output submatrix
— Treat each sub-submatrix as a single element and multiply

Al,l B1,1 C1,1
C1,1 :Al,l'Bl,l JrAl,z'Bz,l

Cll,,=All, -Bll,, +All,,Bll,, +
A12, 'B21,, +Al2,,'B21,,

114



Challenge 5: Recursive matrix multiplication
Recursively multiply submatrices

QJ:AuIﬁf“MJBm Qg:AuIﬁf“MJBm
C2,1 - Az,l'Bl,l + A2,2'B2,1 Cz,z - Az,l'Bl,z + Az,z'Bz,z

e Need range of indices to define each submatrix to be used

void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
double **A, double **B, double **C)
{// Dimensions: A[mf..ml][pf..pl] B[pf..pll[nf..n1] C[mf..ml][nf..n1]

// Cl1l += All*Bl1

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(n1-nf)/2, pf, pf+(pl-pf)/2, A,B,C);
// Cll += Al12%*B21

matmultrec(mf, mf+(ml-mf)/2, nf, nf+(n1-nf)/2, pf+(pl-pf)/2, pl, A,B,C);

 Also need stopping criteria for recursion
115




Conclusion

* We have now covered the full sweep of the OpenMP
specification
— We've left off some minor details, but we’ve covered all major topics
... remaining content you can pick up on your own

* Download the spec to learn more ... the spec is filled with
examples to support your continuing education
— Www.openmp.org
* Get involved:

— Get your organization to join the OpenMP ARB
— Work with us through cOMPunity

116



Appendices
==>. Sources for additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
Challenge Problems
— Challenge 1: Molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: Linked lists
— Challenge 5: Recursive matrix multiplication
Fortran and OpenMP
Mixing OpenMP and MPI
Some Important topics we skipped

117



OpenMP organizations

* OpenMP architecture review board URL, the
“owner” of the OpenMP specification:

WWWwW.openmp.org

* OpenMP User’'s Group (cOMPunity) URL.:

www.compunity.org

Get involved, join cOMPunity and help
define the future of OpenMP

118



Books about OpenMP

A
vy

PATTERNS
FOR PARALLEL
PROGRAMMING

o -

BARBARA CHAPMAN, rewor
GABRIELE JOST, DAVID J. KUCK
AND RUUD VAN DER PAS

//;;-/;:;-i;/‘: .;:'-l'l PATTERNS SERIES
« A book about OpenMP by a e A book about how to “think
team of authors at the forefront parallel” with examples in
of OpenMP’s evolution. OpenMP, MPI and java

119



Background references

Stmctured. Parallel
Programming

A Throad Monkey's Gude 1o W tng Paratel Apgd cations

G RELLY"

horan’y . &
ok e
‘x‘ _‘: «wvlml Materwl
r * $ y

A great book that explores key An excellent introduction and
patterns with Cilk, TBB, OpenCL, overview of multithreaded

and OpenMP (by McCool, Robison, programming in general (by Clay

and Reinders) Breshears) 120



OpenMP Papers

Sosa CP, Scalmani C, Gomperts R, Frisch MJ. Ab initio quantum chemistry on a
ccNUMA architecture using enMP. 1ll. Parallel Computing, vol.26, no.7-8, July
2000, pp.843-56. Publisher: Elsevier, Netherlands.

Couturier R, Chipot C. Parallel molecular dynamics using OPENMP on a shared
memory machine. Computer Physics Communications, vol.124, no.1, Jan. 2000,
pp.49-59. Publisher: Elsevier, Netherlands.

Bentz J., Kendall R., “Parallelization of General Matrix Multiply Routines Using
OpenMP”, Shared Memory Parallel Pro%ramming with OpenMP, Lecture notes in
Computer Science, Vol. 3349, P. 1, 200

Bova SW, Breshearsz CP, Cuicchi CE, Demirbilek Z, Gabb HA. Dual-level parallel
analysis of harbor wave response using MPIl and OpenMP. International Journal of
Hi%h_ Performance Computing Applications, vol.14, no.1, Spring 2000, pp.49-64.
Publisher: Sage Science Press, USA.

Ayguade E, Martorell X, Labarta J, Gonzalez M, Navarro N. Exploiting multiple
levels of parallelism in OpenMP: a case study. Proceedings of the 1999
International Conference on Parallel Processing. IEEE Comput. Soc. 1999, pp.

172-80. Los Alamitos, CA, USA.

Bova SW, Breshears CP, Cuicchi C, Demirbilek Z, Gabb H. Nesting OpenMP in an
MP1I application. Proceedings of the ISCA 12th International Conference. Parallel
and Distributed Systems. ISCA. 1999, pp.566-71. Cary, NC, USA.

121



OpenMP Papers (continued)

Jost G., Labarta J., Gimenez J., What Multilevel Parallel Programs do when you are
not watching: a Performance analysis case study comparing MPI/OpenMP, MLP, and
Nested OpenMP, Shared Memory Parallel Programming with OpenMP, Lecture notes
in Computer Science, Vol. 3349, P. 29, 2005

Gonzalez M, Serra A, Martorell X, Oliver J, Ayguade E, Labarta J, Navarro N.
Applying inter;F))osition techniques for performance analysis of OPENMP parallel
applications. roceedin% 14th International Parallel and Distributed Processing
Symposium. IPDPS 2000. IEEE Comput. Soc. 2000, pp.235-40.

Chapman B, Mehrotra P, Zima H. Enhancing OpenMP with features for locality
control. Proceedings of Eighth ECMWF Workshop on the Use of Parallel Processors
in Meteorology. Towards Teracomputing. World Scientific Publishing. 1999, pp.
301-13. Singapore.

Steve W. Bova, Clay P. Breshears, Henry Gabb, Rudolf Eigenmann, Greg Gaertner,
Bob Kuhn, Bill Magro, Stefano Salvini. Parallel Programming with Message Passing
and Directives; SIAM News, Volume 32, No 9, Nov. 1999.

Ca&elello F, Richard O, Etiemble D. Performance of the NAS benchmarks on a cluster
of SMP PCs using a parallelization of the MPI pro1grams with OgenMP. Lecture Notes
in Computer Science Vol.1662. Springer-Verlag. 1999, pp.339-50.

Liu Z., Huang L., Chapman B., Weng T., Efficient Implementationi of OpenMP for
Clusters with Implicit Data Disfribution, Shared Memory Parallel Pro%rammlng with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 121, 2005

122



OpenMP Papers (continued)

B. Chapman, F. Bregier, A. Patil, A. Prabhakar, “Achieving performance
under OpenMP on ccNUMA and software distributed shared memory

systems,” Concurrencg and Computation: Practice and Experience.
14(8-9): 713-739, 2002.

J. M. Bulland M. E. Kambites. JOMP: an OpenMP-like interface for
Java. Proceedings of the ACM 2000 conference on Java Grande, 2000,

Pages 44 - 53.

L. Adhianto and B. Chapman, “Performance modeling of communication
and computation in hybrid MPI and OpenMP applications, Simulation
Modeling Practice and Theory, vol 15, p. 481-491, 2007.

Shah S, Haab G, Petersen P, Throop J. Flexible control structures for
parallelism in OpenMP; Concurrency: Practice and Experience, 2000;
12:1219-1239. Publisher John Wiley & Sons, Ltd.

Mattson, T.G., How Good is OpenMP? Scientific Programming, Vol. 11,
Number 2, p.81-93, 2003.

Duran A., Silvera R., Corbalan J., Labarta J., “Runtime Adjustment of
Parallel Nested Loops”, Shared Memory Parallel Programming with
OpenMP, Lecture notes in Computer Science, Vol. 3349, P. 137, 2005

123



Appendices
« Sources for additional information
== « OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD pi program
— Exercise 3: SPMD pi without false sharing
— Exercise 4: Loop level pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
Challenge Problems
— Challenge 1: Molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: Linked lists
— Challenge 5: Recursive matrix multiplication
Fortran and OpenMP
Mixing OpenMP and MPI
Compiler notes

124



OpenMP pre-history

* OpenMP based upon SMP directive standardization efforts
PCF and aborted ANSI X3H5 — late 80’s
— Nobody fully implemented either standard
— Only a couple of partial implementations

* Vendors considered proprietary APl's to be a competitive
feature:
— Every vendor had proprietary directives sets

— Even KAP, a “portable” multi-platform parallelization tool used
different directives on each platform

PCF — Parallel computing forum KAP — parallelization tool from KAL.

125



History of OpenMP

1 DEC
SGI Merged, 1 HP
needed
commonality
across - IBM
Cray products
- Intel
Wrote a
KA| — ISV -needed rough draft Other vendors |
larger market straw man invited to join
SMP API
was tired of
recoding for
ASCI [~ SMPs. Urged OpenMP
vendors to

standardize. 1997



OpenMP Release History

GPGPU support,
user defined
reductions, and

Tasking, runtime control over loop
schedules, explicit control over nested

parallel regions, refined control over
resources

Expanded atomics, refined tasking, and more
control over nested parallel regions




Appendices
» Sources for Additional information
* OpenMP History
Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
Challenge Problems
— Challenge 1: Molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
Fortran and OpenMP
Mixing OpenMP and MPI
Some Important topics we skipped

=

128



Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
==) — Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
Challenge Problems
— Challenge 1: Molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
Fortran and OpenMP
Mixing OpenMP and MPI
Some Important topics we skipped

129



Exercise 1: Solution

A multi-threaded “Hello world” program

* Write a multithreaded program where each thread prints

“hello world”.

#include “omp.h” £

void main()

OpenMP include file

{ Parallel region with default

number of threads

Sample Output:

#pragma omp para..-
{ r’'d

int ID = omp_get thread _num();
printf(“ hello(%d) ”, ID);
printf(“ world(%d) \n”, ID);
}
}

hello(1) hello(0) world(1)
world(0)
hello (3) hello(2) world(3)
world(2)

.

\ End of the Parallel region

Runtime library function to
return a thread ID.

130



Appendices

» Sources for Additional information

* OpenMP History

» Solutions to exercises

— Exercise 1: hello world

m==) — Exercise 2: Simple SPMD Pi program

— Exercise 3: SPMD Pi without false sharing

— Exercise 4: Loop level Pi

— Exercise 5: Mandelbrot Set area

— Exercise 6: Recursive pi program
Challenge Problems

— Challenge 1: Molecular dynamics

— Challenge 2: Monte Carlo pi and random numbers

— Challenge 3: Matrix multiplication

— Challenge 4: linked lists

— Challenge 5: Recursive matrix multiplication
Fortran and OpenMP
Mixing OpenMP and MPI
Some Important topics we skipped

131



The SPMD pattern

* The most common approach for parallel algorithms is the
SPMD or Single Program Multiple Data pattern.

« Each thread runs the same program (Single Program), but
using the thread ID, they operate on different data (Multiple
Data) or take slightly different paths through the code.

* In OpenMP this means:
— A parallel region “near the top of the code”.
— Pick up thread ID and num_threads.
— Use them to split up loops and select different blocks of data to work on.

132



Exercise 2: A simple SPMD pi program

: Promote scalar to an array
#include <omp.h> dimensioned by number of

static long num_steps = 100000; double step; threads to avoid race

#define NUM_THREADS 2 condition.
void main () /
{ int i, nthreads; double pi, sum[NUM_THREADS];

step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);
#pragma omp parallel

{
int i, id,nthrds; Only one thread should copy the
- number of threads to the global
double x lue to mak ltiple thread
t = : value to make sure multiple threads
id = omp_get_thread_num(); writing to the same address don'’t
nthrds = omp_get_num_threads(); / conflict.
if (id == 0) nthreads = nthrds;
for (i=id, sum[id]=0.0;i< num_steps; i=i+nthrds) {
X = (|j-0.5)*step; This is a common trick in
sumlid] += 4.0/(1.0+x*x); , SPMD programs to create a
} cyclic distribution of loop
) iterations

for(i=0, pi=0.0;i<nthreads;i++)pi += sum([i] * step;

133 &




Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
== - Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
Fortran and OpenMP
Mixing OpenMP and MPI
Some Important topics we skipped

134



False sharing

* |[f independent data elements happen to sit on the same
cache line, each update will cause the cache lines to “slosh

back and forth” between threads.
— This is called “false sharing”.

* |f you promote scalars to an array to support creation of an
SPMD program, the array elements are contiguous in
memory and hence share cache lines.

— Result ... poor scalability
 Solution:

— When updates to an item are frequent, work with local copies of data
instead of an array indexed by the thread ID.

— Pad arrays so elements you use are on distinct cache lines.

135



Exercise 3: SPMD pi without false sharing

#include <omp.h>

static long num_steps = 100000; double step;

#define NUM_THREADS 2

void main ()

{ double pi; step = 1.0/(double) num_steps;
omp_set_num_threads(NUM_THREADS);

#pragma omp parallel Create a scalar local to

{ each thread to

int i, id,nthrds; double x, sum; € accumulate partial
id = omp_get_thread_num(); sums.
nthrds = omp_get_num_threads();
if (id ==0) nthreads = nthrds;

id = omp_get_thread_num();
nthrds = omp_get_num_threads();

for (i=id, sum=0.0;i< num_steps; i=i+nthrds){ No array, so
x = (i+0.5)*step; - no false
sum += 4.0/(1.0+x*x); sharing.
}
#pragma omp critical Sum goes “out of scope” beyond the parallel
pi += sum * step; €—— region ... so you must sum itin here. Must
} ’ protect summation into pi in a critical region so

) updates don’t conflict




Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
== — Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
Fortran and OpenMP
Mixing OpenMP and MPI
Some Important topics we skipped

137



Exercise 4: Solution

#include <omp.h>

static long num_steps = 100000; double step;
void main ()

{ 1inti; double x, pi1, sum = 0.0;
step = 1.0/(double) num_ steps;
#pragma omp parallel

{

double x;
#pragma omp for reduction(+:sum)
for (1=0;1< num_ steps; 1++){
x = (1+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

b

b

p1 = step * sum;

138




Exercise 4: Solution

#include <omp.h>
static long nunll) steps = 100000; double step; FE7 @290 O[>
- ’ ’ implementations,
) ) reduction is more
void main () scalable than critical.
{

nt 1; double x, p1, sum = 0.0;
step = 1.0/(double) num_steps; /

#pragma omp parallel for private(x) reduction(+:sum)

| private by
default

for (i=0;i< num_steps; i++){

x = (1+0.5)*step;
sum = sum + 4.0/(1.0+x*x);

b

pi = step * sum,;

Note: we created a parallel
program without changing
any code and by adding 2
simple lines of text!

139




Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
== — Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
* Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
* Fortran and OpenMP
* Mixing OpenMP and MPI
« Some Important topics we skipped

140



Exercise 5: The Mandelbrot area program
#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
void testpoint(void);
struct d_complex{

void testpoint(void){
struct d_complex z;

int iter;
doubler;  double i; double temp;
I3
struct d_complex c; 7=
int numoutside = 0; for (iter=0; iter<MXITR; iter++)
, _ temp = (z.r*z.r)-(z.i*z.i)+c.r;
int main()}{ z.i = z.r*z.i*2+c.i;
inti, J; z.r = temp;
double area, error, eps = 1.0e-5; if (z.r*z.r+z.i*z.i)>4.0) {
#pragma omp parallel for default(shared) \ numoutside++:
private(c,eps) break:
for (i=0; i<NPOINTS; i++) { }
for (j=0; j<NPOINTS; j++) { }
c.r =-2.0+2.5*(double)(i)/(double)(NPOINTS)+eps; } :
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps; When I run this
testpoint(); program, I get a different
} } incorrect answer each
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS-numoutsidey | 1me I runit ... there is a
(double)(NPOINTS*NPOINTS); race condition!!!!

error=area/(double)NPOINTS;
} 141



Exercise 5: Area of a Mandelbrot set

 Solution is in the file mandel par.c

 Errors:

— Eps is private but uninitialized. Two solutions
— It's read-only so you can make it shared.
— Make it firstprivate
— The loop index variable j is shared by default; make it private

— The variable ¢ has global scope so “testpoint” may pick up the global
value rather than the private value in the loop; solution ... pass c as
an arg to testpoint

- Updates to “numoutside” are a race; protect with an atomic.

142



Debugging parallel programs

* Find tools that work with your environment and learn to use
them; a good parallel debugger can make a huge difference

 But parallel debuggers are not portable and you will

assuredly need to debug “by hand” at some point

* There are tricks to help you; the most important is to use the

default(none) pragma

Hpragma omp parallel for default(none) private(c, eps)
for (i=0; i<NPOINTS; i++) {
for (j=0; <NPOINTS; j++) {
c.r = -2.0+2.5*(double)(i)/(double)(NPOINTS)+eps;
c.i = 1.125%*(double)(j)/(double)(NPOINTS)+eps;
testpoint();

}
}
}

Using
default(none)
generates a
compiler error
that j is
unspecified.

143



Exercise 5: The Mandelbrot area program
#include <omp.h>
# define NPOINTS 1000
# define MXITR 1000
struct d_complex{
double r; double i;

void testpoint(struct d_complex c){
struct d_complex z;

int iter;
5o . double temp;
void testpoint(struct d_complex);
struct d_complex c; 7=c:

Int numoutside = 0; for (iter=0; iter<MXITR; iter++){
temp = (z.r*z.r)-(z.i*z.i)+c.r;

in’F mgip(){ Z.i=zr*zi*2+c.i;
Int1, J; z.r = temp;
double area, error, eps = 1.0e-5; if (z.r*z.r+z.i*z.i)>4.0) {

#pragma omp parallel for default(shared) private(c, j) \
firstpriivate(eps)
for (i=0; i<NPOINTS; i++) {
for (j=0; [<NPOINTS; j++) { }
c.r =-2.0+2.5*(double)(i)/(double)(NPOINTS)+eps; }
c.i = 1.125*(double)(j)/(double)(NPOINTS)+eps; }
testpoint(c);

#pragma omp atomic
numoutside++;
break;

Other errors found using a debugger or

}

} by inspection:
area=2.0*2.5*1.125*(double)(NPOINTS*NPOINTS- * ¢pswasnotinitialized
numoutside)/(double)(NPOINTS*NPOINTS); * Protect updates of numoutside

error=area/(double)NPOINTS; *  Which value of ¢ die testpoint()

} see? Global or private? 144



Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
== — Exercise 6: Recursive pi program
* Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
* Fortran and OpenMP
* Mixing OpenMP and MPI
« Some Important topics we skipped

145



Divide and conquer pattern

 Use when:

— A problem includes a method to divide into subproblems
and a way to recombine solutions of subproblems into a
global solution

 Solution
— Define a split operation

— Continue to split the problem until subproblems are small
enough to solve directly

— Recombine solutions to subproblems to solve original
global problem

* Note:

— Computing may occur at each phase (split, leaves,
recombine)



Divide and conquer

» Split the problem into smaller sub-problems; continue until
the sub-problems can be solve directly

| problem | 3 Options:
/ pi \ 0 Do work as you split
S‘leprOblCnl subproblcm J into SUb-prObIemS
/ split \ / split \ 0 Do work only at the
] ] leaves
subproblem subproblem subproblem subproblem
solve solve solve solve [ DO Work as you
' ' Y recombine

subsolution ] subsolution ’ subsolution subsolutiion ]

N \w/

subsolution subsolution

‘ solution ]




Program: OpenMP tasks (divide and conquer pattern)

include <omp.h>

static long num_steps = 100000000; int main ()
#define MIN_BLK 10000000 {
double pi_comp(int Nstart,int Nfinish,double step) int i;
{ inti,iblk; double step, pi, sum;
double x, sum = 0.0,sum1, sum2; step = 1.0/(double) num_steps;
if (Nfinish-Nstart < MIN_BLK){ #pragma omp parallel
for (i=Nstart;i< Nfinish; i++){ {
x = (i+0.5)*step; #pragma omp single
sum = sum + 4.0/(1.0+x*x); sum =
} pi_comp(0,num_steps,step);
} }
else{ pi = step * sum;
iblk = Nfinish-Nstart; }

#pragma omp task shared(sum1)
sum1 = pi_comp(Nstart, Nfinish-iblk/2,step);
#pragma omp task shared(sum2)
sum2 = pi_comp(Nfinish-iblk/2, Nfinish, step);
#pragma omp taskwait
sum = sum1 + sum2;
}return sum;

}



Results*: pi with tasks

threads 15t SPMD SPMD PI Loop P1i tasks
critical
1 1.86 1.87 1.91 1.87
2 1.03 1.00 1.02 1.00
3 1.08 0.68 0.80 0.76
4 0.97 0.53 0.68 0.52

*Intel compiler (icpc) with no optimization on Apple OS X 10.7.3 with a dual core (four HW thread) pgm
Intel® Core™ i5 processor at 1.7 Ghz and 4 Gbyte DDR3 memory at 1.333 Ghz.

149



Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
Fortran and OpenMP
Mixing OpenMP and MPI
Some Important topics we skipped

150



Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
* Challenge Problems
==> — Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
* Fortran and OpenMP
* Mixing OpenMP and MPI
« Some Important topics we skipped

1591



Challenge 1: Solution

Compiler will warn you if
you have missed some

/ [ variables

#pragma omp parallel for default (none) \
shared(x,f,npart,rcoff,side) \
reduction(+:epot,vir) \
schedule (static,32)
for (int 1=0; i<npart™3; i+=3) { -

Loop is not well load
balanced: best schedule
has to be found by
experiment.




Challenge 1: Solution (cont.)

#pragma omp atomic
fj] -= forcex;
#pragma omp atomic
f[j+1] -= forcey;
#pragma omp atomic
f[j+2] -= forcez;
h
h

#pragma omp atomic
fli] += fxi;

#pragma omp atomic
fli+l] +=fyi;

#pragma omp atomic
fli+2] += fzi;

j
h

All updates to f must be
atomic




Challenge 1: With orphaning

#pragma omp single

. = 0.0: Implicit barrier needed to avoid race condition
vir * with update of reduction variables at end of the
GpOt — 00, for construct

#pragma omp for reduction(+:epot,vir) schedule (static,32)
for (int 1=0; 1<npart™*3; 1+=3) {

......... \ All variables which used to

" be shared here are now
implicitly determined




Challenge 1: With array reduction

ftemp
ftemp
ftemp

h
h

ftemp
ftemp
ftemp

b

myid]
‘myid]

‘myid][j]
‘myid]
‘myid]

‘myid]

1]

1+1]

112]

-= forcex;

j+1] -= forcey;
1+2] -= forcez;

+= fXi;
+= fyi;
+= fz1;

Replace atomics with
accumulation into array
with extra dimension




Challenge 1: With array reduction

#pragma omp for -

for(int i=0;i<(npart*3);i++){

Reduction can be done in
parallel

for(int id=0;id<nthreads;id++){

f[1] += ftemp[1d][1];
ftemp[id][1] = 0.0;

h \~Zer0 ftemp for next time

round




Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
* Challenge Problems
— Challenge 1: molecular dynamics
==>_ Challenge 2: Monte Carlo pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
* Fortran and OpenMP
* Mixing OpenMP and MPI
« Some Important topics we skipped

157



Computers and random numbers

« We use “dice” to make random numbers:
— Given previous values, you cannot predict the next value.
— There are no patterns in the series ... and it goes on forever.

« Computers are deterministic machines ... set an initial state,
run a sequence of predefined instructions, and you get a
deterministic answer

— By design, computers are not random and cannot produce random
numbers.

* However, with some very clever programming, we can make
“pseudo random” numbers that are as random as you need
them to be ... but only if you are very careful.

« Why do | care? Random numbers drive statistical methods
used in countless applications:

— Sample a large space of alternatives to find statistically good answers
(Monte Carlo methods).

198



Monte Carlo Calculations

Using Random numbers to solve tough problems

« Sample a problem domain to estimate areas, compute probabilities,
find optimal values, etc.

« Example: Computing 1T with a digital dart board:

e Throw darts at the circle/square.

2%r
° . e Chance of falling in circle is
proportional to ratio of areas:

A =r>*m

\ / A, = (2°1)* (2*1) =4* 12
A o P=AJA = T /4

e Compute 1 by randomly

N=10  m=238 choosing points, count the

N=100 Tt =316 fraction that falls in the circle,
compute pi.

N= 1000 1 =3.148

199



Parallel Programmers love Monte Carlo

algorithms

#include “omp.h
static long num__trials = 10000;
int main ()

{

Embarrassingly parallel: the
parallelism is so easy its
embarrassing.

Add two lines and you have a
parallel program.

longi;  long Ncirc = 0; double pi, X, y;

double r =1.0; // radius of circle. Side of squrare is 2*r
seed(0,-r, r); // The circle and square are centered at the origin
#pragma omp parallel for private (x, y) reduction (+:Ncirc)

for(i=0;i<num_trials; i++)

{
X = random(); y = random();
if (X*x +y*y) <=r*r) Ncirc++;

}

pi = 4.0 * ((double)Ncirc/(double)num_trials);
printf("\n %d trials, pi is %f \n",num_trials, pi);

}

160



Linear Congruential Generator (LCG)

« LCG: Easy to write, cheap to compute, portable, OK quality

random_next = (MULTIPLIER * random_last + ADDEND)% PMOD;
random_last = random_next;

e If you pick the multiplier and addend correctly, LCG has a period of
PMOD.

e Picking good LCG parameters is complicated, so look it up
(Numerical Recipes is a good source). | used the following:

¢ MULTIPLIER = 1366
¢ ADDEND = 150889
¢ PMOD = 714025

161



LCG code

static long MULTIPLIER = 1366;
static long ADDEND = 150889;
static long PMOD = 714025;
long random_last = 0;

double random ()

{

long random_next;

Seed the pseudo random
sequence by setting
random_last

random_next = (MULTIPLIER * random_last + ADDEND)% PMOQOD;

random_last = random_next;

return ((double)random_next/(double)PMOD);

}

162



Running the PI_MC program with LCG generator

Log,, number of samples

— 1
o
(@)
S 0.1
9y
@
QO
= 0.01
(O]
(©)
= 0.001
O -
S
0.0001
0.00001

71,‘ 2 3

<A
—

\

—9— LCG - one thread

-ii— LCG, 4 threads,
trail 1

LCG 4 threads,
trial 2

LCG, 4 threads,
trial 3

Run the same
program the
same way and
get different
answers!

That is not
acceptable!

Issue: my LCG
generator is not
threadsafe

Program written using the Intel C/C++ compiler (10.0.659.2005) in Microsoft Visual studio 2005 (8.0.50727.42) and running on a dual-core laptop (Intel
T2400 @ 1.83 Ghz with 2 GB RAM) running Microsoft Windows XP.

163




LCG code: threadsafe version

static long MULTIPLIER = 1366; random_last carries state

static long ADDEND = 150889; between random number

static long PMOD = 714025; computations,

long random_last = 0;

#pragma omp threadprivate(random_last) To make the generator

double random () threadsafe, make

{ long random._next; random_last threadprivate
— so each thread has its own

random_next = (MULTIPLIER * random_last + AD| ©OPY-

random_last = random_ next;

return ((double)random_next/(double)PMOD);
}

164



Thread safe random number generators

lolie anneey 6o

Log,, number of samples

—g=| CG - One

0.1 thread

trial 1
0.01

trial 2
0.001

trial 3
0.0001

thread safe

—m— LCG 4 threads,

LCT 4 threads,

LCG 4 threads,

== | CG 4 threads,

0.00001

Thread safe
version gives the
same answer each
time you run the
program.

But for large
number of
samples, its quality
Is lower than the
one thread result!

Why?

169




Pseudo Random Sequences

« Random number Generators (RNGs) define a sequence of pseudo-random
numbers of length equal to the period of the RNG

e In a typical problem, you grab a subsequence of the RNG range

™~

Seed determines starting point

e Grab arbitrary seeds and you may generate overlapping sequences
¢ E.g. three sequences ... last one wraps at the end of the RNG period.

— —

e Overlapping sequences = over-sampling and bad statistics ... lower quality or
even wrong answers!

166



Parallel random number generators

« Multiple threads cooperate to generate and use random
numbers.

« Solutions:
— Replicate and Pray
— Give each thread a separate, independent generator
— Have one thread generate all the numbers.

— Leapfrog ... deal out sequence values “round robin”
as if dealing a deck of cards.

— Block method ... pick your seed so each threads gets
a distinct contiguous block.

« Other than “replicate and pray”, these are difficult to
im Itement. Be smart ... buy a math library that does it
right.

Intel’s Math kernel Library supports all of these
methods.

If done right, can
generate the
same sequence
regardless of the

number of threads

Nice for
debugging, but
not really needed
scientifically.

167



MKL Random number generators (RNG)

e MKL includes several families of RNGs in its vector statistics library.
e Specialized to efficiently generate vectors of random numbers

#define BLOCK 100
double buff[BLOCK]; Select type of RNG

Initialize a | VSLStreamStatePtr stream; and set seed

stream or /\

pseudo vsINewStream(&ran_stream, VSL_BRNG_WH, (int)seed_val);
random |

numbers ,
vdRngUniform (VSL_METHOD DUNIFORM_STD, stream,
BLOCK, buff, low, hi)

) \ Fill buff with BLOCK pseudo rand.

|Pel
vs|DeleteStream( &stream nums, uniformly distributed with values
between lo and hi.

Delete the stream when you are done

168



Wichmann-Hill generators (WH)

« WH is a family of 273 parameter sets each defining a non-
overlapping and independent RNG.

« Easy to use, just make each stream threadprivate and initiate RNG
stream so each thread gets a unique WG RNG.

VSLStreamStatePtr stream:;

#pragma omp threadprivate(stream)

vsINewStream(&ran_stream, VSL_BRNG_WH+Thrd _ID, (int)seed);

169



Independent Generator for each thread

lolie anneey 6o

Log,, number of samples

1

0.1 -

1 2

6

0.01

0.001

A
™

0.0001

>

=== \\/H oOne
thread

il \\VH, 2
threads
WH, 4
threads

Notice that once
you get beyond
the high error,
small sample
count range,
adding threads
doesn'’t
decrease quality
of random
sampling.

170



Leap Frog method

* Interleave samples in the sequence of pseudo random numbers:
— Thread i starts at the it" number in the sequence
— Stride through sequence, stride length = number of threads.

* Result ... the same sequence of values regardless of the number of
threads.

#pragma omp single
{ nthreads = omp_get_num_threads();

iseed = PMOD/MULTIPLIER; //just pick a seed One thread
pseed[0] = iseed; computes offsets
mult_ n = MULTIPLIER; and strided
for (i = 1; i < nthreads; ++i) multiplier
{
iseed = (unsigned long long)((MULTIPLIER * iseed) % PMQOD);
pseed[i] = iseed; LCG with Addend = 0 just
mult_n = (mult_n * MULTIPLIER) % PMOD; to keep things simple
}

} Each thread stores offset starting
] ] point into its threadprivate “last
random_last = (unsigned long long) pseed[id]; random” value



Same sequence with many threads.

* We can use the leapfrog method to generate the same
answer for any number of threads

Steps One thread 2 threads 4 threads
1000 3.156 3.156 3.156
10000 3.1168 3.1168 3.1168
100000 3.13964 3.13964 3.13964
1000000 3.140348 3.140348 3.140348
10000000 3.141658 3.141658 3.141658

Used the MKL library with two generator streams per computation: one for the x values (WH) and one for
the y values (WH+1). Also used the leapfrog method to deal out iterations among threads.

999



Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
* Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo Pi and random numbers
==>_ Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
* Fortran and OpenMP
* Mixing OpenMP and MPI
« Some Important topics we skipped

173



Challenge 3: Matrix Multiplication

 Parallelize the matrix multiplication program in the file
matmul.c

« Can you optimize the program by playing with how the loops
are scheduled?
 Try the following and see how they interact with the
constructs in OpenMP
— Cache blocking
— Loop unrolling
— Vectorization

« Goal: Can you approach the peak performance of the
computer?

174



Matrix multiplication

#pragma omp parallel for private(tmp, i, j, k)
for (i=0; i<Ndim; i++){
for (j=0; j<Mdim; j++){

tmp = 0.0;

for(k=0;k<Pdim;k++ )
* C(i,j) = sum(over k) A(i,k) * B(k,j) */
tmp += *(A+(i*Ndim+k)) * *(B+(k*Pdim+j));

}

*(C+(i*Ndim+j)) = tmp;

*On a dual core laptop

*13.2 seconds 153 Mflops one thread
*7.5 seconds 270 Mflops two threads

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2



Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
* Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo Pi and random numbers
— Challenge 3: Matrix multiplication
==>_ Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
* Fortran and OpenMP
* Mixing OpenMP and MPI
« Some Important topics we skipped

176



Challenge 4: traversing linked lists

» Consider the program linked.c

— Traverses a linked list computing a sequence of Fibonacci numbers at
each node.

 Parallelize this program two different ways
==>1. Use OpenMP tasks
2. Use anything you choose in OpenMP other than tasks.
* The second approach (no tasks) can be difficult and may
take considerable creativity in how you approach the

problem (hence why its such a pedagogically valuable
problem).

1717



Linked lists with tasks (OpenMP 3)

» See the file Linked_omp3_tasks.c

#pragma omp parallel

{
#pragma omp single
{
p=head; Creates a task with its own
while (p) { copy of “p” initialized to the
#pragma omp task firstprivate(p) value of “p” when the task is
processwork(p); / defined
p = p->next;
h
J
J



Challenge 4: traversing linked lists

» Consider the program linked.c

— Traverses a linked list computing a sequence of Fibonacci numbers at
each node.

 Parallelize this program two different ways
1. Use OpenMP tasks
==> 2. Use anything you choose in OpenMP other than tasks.
* The second approach (no tasks) can be difficult and may
take considerable creativity in how you approach the

problem (hence why its such a pedagogically valuable
problem).

179



Linked lists without tasks
» See the file Linked_omp25.c

while (p = NULL) {

p = p->next; Count number of items in the linked list
count++;
}
p = head;
for(i=0; i<count; i++) {
parr[i] = p; . :
D = p->next: Copy pointer to each node into an array
}
#pragma omp parallel
{
#pragma omp for schedule(static,1)
for(i=0; i<count; i++) Process nodes in parallel with a for loop
processwork(parrf|i]);
}

Default schedule Static,1

One Thread 48 seconds 45 seconds

Two Threads 39 seconds 28 seconds
Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2 180




Linked lists without tasks: C++ STL

» See the file Linked_cpp.cpp

std::vector<node *> nodelist;
for (p = head; p '= NULL; p = p->next)
nodelist.push back(p);

Copy pointer to each node into an array

int j = (int)nodelist.size();

#pragma omp parallel for schedule(static,1) Count number of items in the linked list

for (int1=0; 1 <j; ++1)

processwork(nodelist[1i]);

Process nodes in parallel with a for loop

C++, default sched. C++, (static,1) C, (static,1)

One Thread 37 seconds 49 seconds 45 seconds
Two Threads 47 seconds 32 seconds 28 seconds

Results on an Intel dual core 1.83 GHz CPU, Intel IA-32 compiler 10.1 build 2 rol



Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
* Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo Pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
m==) — Challenge 5: Recursive matrix multiplication
* Fortran and OpenMP
* Mixing OpenMP and MPI
« Some Important topics we skipped

182



Reciirsive matrix miiltinlication
« Could be executed in parallel as 4 tasks

— Each task executes the two calls for the same output submatrix of C
 However, the same number of multiplication operations needed

#define THRESHOLD 32768 // product size below which simple matmult code is called
void matmultrec(int mf, int ml, int nf, int nl, int pf, int pl,
double **A, double **B, double **C)
// Dimensions: A[mf..m1][pf..p1] B[pf..p1][nf..n1] Cmf..m1][nf..n1]
{
if ((m1-mf)*(n1-nf)*(p1-pf) < THRESHOLD)
matmult (mf, ml, nf, nl, pf, pl, A, B, O);
else
{
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pT)
{
matmultrec(mf, mf+(m1-mf)/2, nf, nf+(nl1-nf)/2, pf, pf+(pl-pf)/2, A, B, ©; // Ccll += All*B11l
matmultrec(mf, mf+(m1-mf)/2, nf, nf+(n1-nf)/2, pf+(pl-pf)/2, pl, A, B, ©O; // Cll += A12*B21
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pT)
{
matmultrec(mf, mf+(m1-mf)/2, nf+(n1-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, O); // C12 += Al1*B12
matmultrec(mf, mf+(m1-mf)/2, nf+(n1-nf)/2, nl, pf+(pl-pf)/2, pl, A, B, Q); // Cl2 += A12*B22
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pT)
{
matmultrec(mf+(m1-mf)/2, m1, nf, nf+(n1-nf)/2, pf, pf+(pl-pf)/2, A, B, CO; // C21 += A21*Bll
matmultrec(mf+(m1-mf)/2, m1, nf, nf+(n1-nf)/2, pf+(p1-pf)/2, pl, A, B, CO; // C21 += A22*B21
}
#pragma omp task firstprivate(mf,ml,nf,nl,pf,pT)
{
matmultrec(mf+(ml-mf)/2, ml, nf+(nl-nf)/2, nl, pf, pf+(pl-pf)/2, A, B, CO; // C22 += A21*B12
matmultrec(mf+(ml-mf) /2, ml, nf+(n1-nf)/2, nl1, pf+(pl-pf)/2, pl, A, B, Q; // C22 += A22%B22
}
#pragma omp taskwait
}
}

183



Appendices
» Sources for Additional information
* OpenMP History
» Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
* Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo Pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
==« Fortran and OpenMP
* Mixing OpenMP and MPI
« Some Important topics we skipped

184



Fortran and OpenMP

« We were careful to design the OpenMP constructs so they
cleanly map onto C, C++ and Fortran.

* There are a few syntactic differences that once understood,
will allow you to move back and forth between languages.

* In the specification, language specific notes are included
when each construct is defined.

185



OpenMP:

Some syntax details for Fortran programmers

* Most of the constructs in OpenMP are compiler directives.
— For Fortran, the directives take one of the forms:
C$OMP construct [clause [clause]...]
ISOMP construct [clause [clause]...]
*$OMP construct [clause [clause]...]

 The OpenMP include file and lib module

use omp _lib
Include omp_lib.h



OpenMP:

Structured blocks (Fortran)
—Most OpenMP constructs apply to structured blocks.

— Structured block: a block of code with one point of
entry at the top and one point of exit at the bottom.

—The only “branches” allowed are STOP statements
in Fortran and exit() in C/C++.

C$SOMP PARALLEL C$SOMP PARALLEL
10 wrk(id) = garbage(id) 10 wrk(id) = garbage(id)
res(id) = wrk(id)**2 30 res(id)=wrk(id)**2
if(conv(res(id)) goto 10 if(conv(res(id))goto 20
CSOMP END PARALLEL go to 10
print *,id C$OMP END PARALLEL

if(not DONE) goto 30
20 print *, 1d

A structured block Not A structured block



OpenMP:

Structured Block Boundaries

e In Fortran: a block is a single statement or a group of statements between directive/
end-directive pairs.

MP PARALLEL DO
C$OMP PARALLEL C$(31 I=1.N
. b 0 - ’
10  wrk(id) = garbage(id) res(I)=bigComp(I)
res(id) = wrk(id)**2 end do
if(conv(res(id)) goto 10 C$OMP END PARALLEL DO

CSOMP END PARALLEL

e The “construct/end construct” pairs i1s done anywhere a structured block appears in
Fortran. Some examples:

e DO ... END DO

e PARALLEL ... END PARREL
e CRICITAL ... END CRITICAL
e SECTION ... END SECTION

e SECTIONS ... END SECTIONS
e SINGLE ... END SINGLE
e MASTER ... END MASTER



Runtime library routines

* The include file or module defines parameters
— Integer parameter omp _locl kind
— Integer parameter omp_nest_lock kind
— Integer parameter omp_sched_kind
— Integer parameter openmp_version
— With value that matches C's  OPEMMP macro
» Fortran interfaces are similar to those used with C
— Subroutine omp_set _num_threads (num_threads)
— Integer function omp_get num_threads()
— Integer function omp_get thread _num()\
— Subroutine omp _init_lock(svar)
— Integer(kind=omp_lock_kind) svar
— Subroutine omp_destroy lock(svar)
— Subroutine omp_set lock(svar)
— Subroutine omp_unset_lock(svar)

189



Appendices
» Sources for Additional information
* OpenMP History
Solutions to exercises
— Exercise 1: hello world
— Exercise 2: Simple SPMD Pi program
— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi
— Exercise 5: Mandelbrot Set area
— Exercise 6: Recursive pi program
Challenge Problems
— Challenge 1: molecular dynamics
— Challenge 2: Monte Carlo Pi and random numbers
— Challenge 3: Matrix multiplication
— Challenge 4: linked lists
— Challenge 5: Recursive matrix multiplication
Flush, memory models and OpenMP: producer consumer
* Fortran and OpenMP
==)> « Mixing OpenMP and MPI

« Some Important topics we skipped

190



How do people mix MPl and OpenMP?

*Create the MPI program with

A sequential program its data decomposition.
ki data set .
WOorking on a data s * Use OpenMP inside each
MPI process.

Replicate the program.
Add glue code
Break up the data

-

191



Pi program with MPI and OpenMP

#include <mpi.h>
#include “omp.h”
void main (int argc, char *argv[])

{

int 1, my_1d, numprocs; double x, pi, step, sum = 0.0 ;

step = 1.0/(double) num_steps ;

MPI_Init(&arge, &argv) ;
Get the MPI MPI_Comm_Rank(MPI_COMM_WORLD, &my id) ;
part done MPI_Comm_Size(MPI_COMM_WORLD, &numprocs) ;
first, then add my_steps = num_ steps/numprocs ;
OpenMP #pragma omp parallel for reduction(+:sum) private(x)
pragma for (i=my_id*my_steps; i<(m_id+1)*my_steps ; i++)
where it {
makes sense x = (1+0.5)*step;
to do so sum += 4.0/(1.0+X*X);

h

sum *= step ;

MPI_Reduce(&sum, &pi, 1, MPI_ DOUBLE, MPI_SUM, 0,
MPI_COMM_WORLD) ;

192



Key issues when mixing OpenMP and MPI

1. Messages are sent to a process not to a particular thread.
— Not all MPlIs are threadsafe. MPI 2.0 defines threading modes:
— MPI_Thread_Single: no support for multiple threads
— MPI_Thread_Funneled: Mult threads, only master calls MPI

— MPI_Thread_Serialized: Mult threads each calling MPI, but they
do it one at a time.

— MPI_Thread_ Multiple: Multiple threads without any restrictions
— Request and test thread modes with the function:
MPI_init_thread(desired_mode, delivered_mode, ierr)

2. Environment variables are not propagated by mpirun. You'll
need to broadcast OpenMP parameters and set them with
the library routines.

193



Dangerous Mixing of MPl and OpenMP

» The following will work only if MP1_Thread_Multiple is supported ... a
level of support | wouldn’t depend on.

MPI Comm_Rank(MPI COMM WORLD, &mpi id) ;
#pragma omp parallel
{

int tag, swap_neigh, stat, omp_id = omp_thread _num();

long buffer [BUFF_SIZE], incoming [BUFF_SIZE];

big_ugly calc1(omp_id, mpi_id, buffer);

// Finds MPI id and tag

SO

neighbor(omp_id, mpi_id, &swap_neigh, &tag); // messages don’t conflict

MPI_Send (buffer, BUFF_SIZE, MPl_LONG, swap_neigh,
tag, MPI_COMM_WORLD);

MPI1_Recv (incoming, buffer _count, MPI_LONG, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

big_ugly_calc2(omp_id, mpi_id, incoming, buffer);
#pragma critical
consume(buffer, omp_id, mpi_id);

194 }



Messages and threads

« Keep message passing and threaded sections of your
program separate:

— Setup message passing outside OpenMP parallel regions
(MPI_Thread_funneled)

— Surround with appropriate directives (e.g. critical section or master)
(MPI_Thread_Serialized)

— For certain applications depending on how it is designed it may not
matter which thread handles a message. (MPIl_Thread Multiple)

— Beware of race conditions though if two threads are probing on the same
message and then racing to receive it.

195



196

Safe Mixing of MPI and OpenMP

Put MPI in sequential regions

MPI Init(&arge, &argv) ;  MPI Comm_ Rank(MPI COMM_ WORLD, &mpi id) ;
/I 'a whole bunch of initializations

#pragma omp parallel for
for (1=0;I<N;l++) {

U[l] = big_calc(l);
}

MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD);

MPI_Recv (incoming, buffer_count, MPI_DOUBLE, swap_neigh,
tag, MPI_COMM_WORLD, &stat);

#pragma omp parallel for
for (1=0;I<N;l++) {
U[l] = other_big_calc(l, incoming);

} Technically Requires
MPI_Thread_funneled, but |
have never had a problem with
this approach ... even with pre-
MPI-2.0 libraries.

consume(U, mpi_id);




Safe Mixing of MPI and OpenMP

Protect MPI calls inside a parallel region
MPI Init(&arge, &argv) ;  MPI Comm_ Rank(MPI COMM_ WORLD, &mpi id) ;

/I a whole bunch of initializations

#pragma omp parallel Technically Requires

{ MPI_Thread_funneled, but |

#pragma omp for have never had a problem with
for (I=0;I<N;l++)  UllT = big_calel); this approach eF\)/en with pre-

#pragma master MPI-2.0 libraries.

{
MPI_Send (U, BUFF_SIZE, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD),

MPI_Recv (incoming, count, MPI_DOUBLE, neigh, tag, MPI_COMM_WORLD,
&stat);
}

#pragma omp barrier
#pragma omp for
for (1=0;I<N;l++) U[l] = other_big_calc(l, incoming);

#pragma omp master

consume(U, mpi_id);

}

197



Hybrid OpenMP/MPI works, but is it worth it?

 Literature™ is mixed on the hybrid model: sometimes its better, sometimes
MPI alone is best.

* There is potential for benefit to the hybrid model

— MPI algorithms often require replicated data making them less memory
efficient.

— Fewer total MPI communicating agents means fewer messages and less
overhead from message conflicts.

— Algorithms with good cache efficiency should benefit from shared caches of
multi-threaded programs.

— The model maps perfectly with clusters of SMP nodes.

« But really, it's a case by case basis and to large extent depends on the
particular application.

*L. Adhianto and Chapman, 2007

198



Appendices
» Sources for Additional information
* OpenMP History
Solutions to exercises

— Exercise 1: hello world

— Exercise 2: Simple SPMD Pi program

— Exercise 3: SPMD Pi without false sharing
— Exercise 4: Loop level Pi

— Exercise 5: Mandelbrot Set area

— Exercise 6: Recursive pi program
Challenge Problems

— Challenge 1: molecular dynamics

— Challenge 2: Monte Carlo Pi and random numbers
— Challenge 3: Matrix multiplication

— Challenge 4: linked lists

— Challenge 5: Recursive matrix multiplication
Fortran and OpenMP

* Mixing OpenMP and MPI

==) « Some Important topics we skipped

199



Some important topics we skipped

) « Memory model
* Threadprivate Data
« Recent additions and future OpenMP directions

200



OpenMP memory model

e OpenMP supports a shared memory model
e All threads share an address space, but it can get complicated:

Shared memory

cachel cache2

e Multiple copies of data may be present in various levels of cache, or in registers

201



OpenMP and relaxed consistency

* OpenMP supports a relaxed-consistency
shared memory model

— Threads can maintain a temporary view of shared memory
that is not consistent with that of other threads

— These temporary views are made consistent only at certain
points in the program

— The operation that enforces consistency is called the flush operation

202



Flush operation

» Defines a sequence point at which a thread is guaranteed to
see a consistent view of memory

— All previous read/writes by this thread have completed and are visible
to other threads

— No subsequent read/writes by this thread have occurred

— A flush operation is analogous to a fence in other shared memory
APls

203



Synchronization: flush example

e Flush forces data to be updated in memory so other threads see the most
recent value

double A;
A = compute();
#pragma omp flush(A)

// flush to memory to make sure other
// threads can pick up the right value

| Note: OpenMP’s flush is analogous to a fence in other shared memory APls I

204



Flush and synchronization

* A flush operation is implied by OpenMP synchronizations,
e.g.,
— at entry/exit of parallel regions
— at implicit and explicit barriers
— at entry/exit of critical regions
— whenever a lock is set or unset

(but not at entry to worksharing regions or entry/exit of master regions)

205



What is the BIG DEAL with flush?

« Compilers routinely reorder instructions implementing a
program
— Can better exploit the functional units, keep the machine busy, hide
memory latencies, etc.
« Compiler generally cannot move instructions:
— Past a barrier
— Past a flush on all variables

« But it can move them past a flush with a list of variables so
long as those variables are not accessed

« Keeping track of consistency when flushes are used can be
confusing ... especially if “flush(list)” is used.

Note: the flush operation does not actually synchronize different
threads. It just ensures that a thread’s variables are made

consistent with main memory
206



Example: prod _cons.c
 Parallelize a producer/consumer program

— One thread produces values that another thread consumes.

Int main()
{double *A, sum, runtime; int flag = 0;
A = (double *) malloc(N*sizeof(double));
runtime = omp_get_wtime();
fill_rand(N, A); // Producer: fill an array of data
sum = Sum_array(N, A); // Consumer: sum the array

runtime = omp_get_wtime() - runtime;

printf(" In %lf secs, The sum is %lIf \n",runtime,sum);

— Often used with a
stream of
produced values
to implement
“pipeline
parallelism”

— The key is to
Implement
pairwise
synchronization
between threads

207



Pairwise synchronization in OpenMP

* OpenMP lacks synchronization constructs that work between
pairs of threads.

 When needed, you have to build it yourself.

» Pairwise synchronization
— Use a shared flag variable
— Reader spins waiting for the new flag value
— Use flushes to force updates to and from memory

208



Example: Producer/consumer

int main()

double *A, sum, runtime; int numthreads, flag = 0;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections

{
ﬁpragma omp section Use flag to Signal when the
fill_rand(N, A): “produced” value is ready
#pragma omp flush
flag = 1;

} #pragma omp flush (flag) Flush forces refresh to memory;

#pragma omp section guarantees that the other thread
{ sees the new value of A

#pragma omp flush (flag)

while (flag == 0} :
#pragma omp flush (flag) | Flush needed on both “reader” and “writer”

} sides of the communication

#pragma omp flush

) sum = Sum_array(N, A); Notice you must put the flush inside the

) while loop to make sure the updated flag
} variable is seen

The problem is this program technically has a
race ... on the store and later load of flag




The OpenMP 3.1 atomics (1 of 2)

« Atomic was expanded to cover the full range of common scenarios
where you need to protect a memory operation so it occurs atomically:

# pragma omp atomic [read | write | update | capture]

« Atomic can protect loads « Atomic can protect stores
# pragma omp atomic read # pragma omp atomic write
V = X; X = expr;

« Atomic can protect updates to a storage location (this is the default
behavior ... i.e. when you don'’t provide a clause)

# pragma omp atomic update ~This is the
X++; or ++X; or X--; or —x; or original OpenMP
] . atomic
X binop= expr; or x = x binop expr;

210



The OpenMP 3.1 atomics (2 of 2)

« Atomic can protect the assignment of a value (its capture) AND an
associated update operation:

# pragma omp atomic capture
statement or structured block

« Where the statement is one of the following forms:
V = X++; V = ++X; V = X--; = —X; v = X binop expr;

« Where the structured block is one of the following forms:

{v=x; X binop = expr;} {x binop =expr; v=x;}
{v=x; x=x binop expr;} {X =x binop expr; v=x;}
fv=x; xt+;} fv=x; ++x:}

{++x; v=x:} x++; v=x;}

v=x; x--3} v=x5 --x3}

x5 v=x3 {x-;  v=x3}

The capture semantics in atomic were added to map onto common hardware
supported atomic operations and to support modern lock free algorithms

211



Atomics and synchronization flags

int main()
{ double *A, sum, runtime;
int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{
#pragma omp section
{ fill_rand(N, A);
#pragma omp flush
#pragma omp atomic
flag = 1;

This program is truly
race free ... the reads
and writes of flag are

Lpragma omp section protected so the two
{ while (1) threads cannot conflict
#pragma omp flush(flag)
#pragma omp atomic read . .
P f|gg_tmp= I;ag; Still painful and error
: if (flg_tmp==1) brejk;/ prone due to all of the
#fpragma omp flush flushes that are required
sum = Sum_array(N, A);
}
}

} 212



OpenMP 4.0 Atomic: Sequential consistency

« Sequential consistency:

— The order of loads and stores in a race-free program appear in some
interleaved order and all threads in the team see this same order.

 OpenMP 4.0 added an optional clause to atomics
— #pragma omp atomic [read | write | update | capture] [seq_cst]
* [n more pragmatic terms:
— If the seq_cst clause is included, OpenMP adds a flush without an
argument list to the atomic operation so you don’t need to.
* In terms of the C++'11 memory model:

— Use of the seq_cst clause makes atomics follow the sequentially
consistent memory order.

— Leaving off the seq_cst clause makes the atomics relaxed.

Advice to programmers: save yourself a world of hurt ... let OpenMP
take care of your flushes for you whenever possible ... use seq cst

213



Atomics and synchronization flags (4.0)

int main()
{ double *A, sum, runtime;
int numthreads, flag = 0, flg_tmp;
A = (double *)malloc(N*sizeof(double));
#pragma omp parallel sections
{
#pragma omp section
{ fill_rand(N, A);

#pragma omp atomic write seq_cst This program is truly
flag = 1; race free ... the reads
and writes of flag are
}
#pragma omp section protected so the two
{ while (1) threads cannot conflict —
#pragma omp atomic read seq_cst and you do not use flush
flg_tmp= flag;
if (flg_tmp==1) break;
}
sum = Sum_array(N, A);
}
}

} 214



Some important topics we skipped

* Memory model
) . Threadprivate Data
« Recent additions and future OpenMP directions

215



Data sharing: Threadprivate

* Makes global data private to a thread
— Fortran: COMMON blocks
— C: File scope and static variables, static class members

« Different from making them PRIVATE

— with PRIVATE global variables are masked.
— THREADPRIVATE preserves global scope within each thread

* Threadprivate variables can be initialized using COPYIN
or at time of definition (using language-defined
initialization capabilities)

216



A threadprivate example (C)

Use threadprivate to create a counter for each
thread.

int counter = 0;
#pragma omp threadprivate(counter)

int increment_counter()

{

counter++;
return (counter);

}

217



Data copying: Copyin

You initialize threadprivate data using a copyin
clause.

parameter (N=1000)
common/buf/A(N)
ISOMP THREADPRIVATE(/buf/)

C Initialize the A array
call init_data(N,A)

ISOMP PARALLEL COPYIN(A)

... Now each thread sees threadprivate array A initialized
... o the global value set in the subroutine init_data()

ISOMP END PARALLEL

end




Data copying: Copyprivate

Used with a single region to broadcast values of privates from one member of a
team to the rest of the team

#include <omp.h>
void input_parameters (int, int); // fetch values of input parameters
void do_work(int, int);

void main()

{

int Nsize, choice;

#pragma omp parallel private (Nsize, choice)

{
#pragma omp single copyprivate (Nsize, choice)
input_parameters (*Nsize, *choice);

do_work(Nsize, choice);




Some important topics we skipped

* Memory model
* Threadprivate Data
BE) . Recent additions and future OpenMP directions

220



OpenMP 4.0 ratified July 2013

« End of a long road? A brief rest stop along the way...
« Addresses several major open issues for OpenMP
* Do not break existing code unnecessarily

* Includes 106 passed tickets

— Focused on major tickets initially
— Builds on two comment drafts (“fRC1” and “RC2")
— Many small tickets after RC2, a few large ones

221



Overview of major 4.0 additions

* Device constructs

« SIMD constructs

« Cancellation

« Task dependences and task groups

* Thread affinity control

» User-defined reductions

* |nitial support for Fortran 2003

« Support for array sections (including in C and C++)
« Sequentially consistent atomics

* Display of initial OpenMP internal control variables

222



OpenMP 4.0 provides support

for a wide range of devices
 Use target directive to offload a region

#pragma omp target [clause [[,] clause] ..]

» Creates new data environment from enclosing device data
environment

» Clauses support data movement and conditional offloading

— device supports offload to a device other than default

— Does not assume copies are made — memory may be shared with
host

— Does not copy if present in enclosing device data environment
— 1f supports running on host if amount of work is small

» Other constructs support device data environment

— target data places map list items in device data environment
— target update ensures variable is consistent in host and device

223



Several other device constructs
support full-featured code

« Use target declare directive to create device versions

#pragma omp declare target

— Can be applied to functions and global variables
— Required for UDRs that use functions and execute on device

« teams directive creates multiple teams ina target region

#pragma omp teams [clause [[,] clause] ..]

— Work across teams only synchronized at end of target region

— Useful for GPUs (corresponds to thread blocks)

« Use distribute directive to run loop across multiple teams

#pragma omp distribute [clause [[,] clause]

]

« Several combined/composite constructs simplify device use

224



Example: OpenMP support for devices

Jacobi iteration Create a data region on the
#pragma omp target data map (A, Anew) «— device. Map A and AneW
while (err>tol && iter < iter max) { onto the target device

err = 0.0;
#pragma omp target teams distribute parallel for reduction(max:err)
for (int j=1; j< n-1; j++) {
for(int i=1; i<M-1; i++) {
Anew[j][1] = 0.25* (A[j][i+1l] + A[j]lI[i-1]1+
A[F-1]1[i] + A[F+1][i]);
err = max(err,abs(Anew[j][i] - A[J]1[1]1))
}

}
#pragma omp target teams distribute parallel for

for (int j=1; j< n-1; j++){

for (int i=1l; i<M-1; i++) { The "target teams”
A[j1[i] = Anew[jli]; construct tells the
} compiler to pick the
} number of teams ... which
iter ++; translates to thread blocks
b Copy A back out to host ... for CUDA.

but only once




OpenMP 4.0 provides

portable SIMD constructs
« Use simd directive to indicate a loop should be SIMDized

#pragma omp simd [clause [[,] clause] ..]

« Execute iterations of following loop in SIMD chunks
— Region binds to the current task, so loop is not divided across threads
— SIMD chunk is set of iterations executed concurrently by a SIMD lanes
» Creates a new data environment

 Clauses control data environment, how loop is partitioned
— safelen (length) limits the number of iterations in a SIMD chunk
— linear lists variables with a linear relationship to the iteration space
— aligned specifies byte alignments of a list of variables
— private, lastprivate, reduction, collapse - usual meanings

226



The declare simd construct

generates SIMD functions

#pragma omp declare simd notinbranch
float min (float a, float b) {
return a < b ? a : b; }

#pragma omp declare simd notinbranch
float distsqg (float x, float y) ({

Notinbranch tells the
compiler you can assume
this function will not be
called inside a branch
statement .. 1.e. all vector
lanes will execute this
function

return (x - y) * (x - y); }

« Compile library and use functions in a SIMD loop

#pragma omp parallel for simd
i ; 1 < N; i++)

void minex (float *a, float *b, float *c, float *d) {

0
min (distsqg(a[i], b[i]), c[i]):

— Creates implicit tasks of parallel region
— Divides loop into SIMD chunks
— Schedules SIMD chunks across implicit tasks

— Loop is fully SIMDized by using SIMD versions of functions

227



A simple UDR example

* Declare the reduction operator

#pragma omp declare reduction (merge : std::vector<int> :
omp out.insert(omp out.end(), omp in.begin(), omp in.end()))

« Use the reduction operator in a reduction clause

void schedule (std::vector<int> &v, std::vector<int> &filtered) {
#pragma omp parallel for reduction (merge : filtered)

if ( filter(*it) ) filtered.push back(*it);
}

for (std:vector<int>::iterator it = v.begin(); it < v.end(); it++)

 Private copies created for a reduction are initialized to the
identity that was specified for the operator and type
— Default identity defined if identity clause not present

« Compiler uses combiner to combine private copies

— omp out refers to private copy that holds combined value
— omp 1in refers to the other private copy

228



A simple UDR example

B Declare the reduction operator

#pragma omp declare reduction (merge : std::vector<int> :
omp out.insert(omp out.end(), omp in.begin(), omp in.end()))

B Use the reduction operator in a reduction clause

void schedule (std::vector<int> &v, std::vector<int> &filtered) {
#pragma omp parallel for reduction (merge : filtered)
for (std:vector<int>::iterator it = v.begin(); it < v.end(); it++)
if ( filter(*it) ) filtered.push back(*it);

}

B Private copies created for a reduction are initialized to the identity
that was specified for the operator and type

—> Default identity defined if identity clause not present
B Compiler uses combiner to combine private copies

- omp_out refers to private copy that holds combined value
— omp_in refers to the other private copy



OpenMP 4.0 includes initial
support for Fortran 2003

« Added to list of base language versions

* Have a list of unsupported Fortran 2003 features
— List initially included 24 items (some big, some small)
— List has been reduced to 14 items
— List in specification reflects approximate OpenMP Next priority
— Priorities determined by importance and difficulty

« Plan: Reduce list and ideally provide full support in 5.0

— Many small changes throughout; Support:
— Procedure pointers
— Renaming operators on the USE statement
— ASSOCIATE construct
— VOLATILE attribute
— Structure constructors
— Will support Fortran 2003 object-oriented features next
— The biggest issue
— Considering concurrent reexamination of C++ support

230



Plan for OpenMP specifications

* OpenMP Tools Interface Technical Report

— Released in March 2014
— Working towards adoption in 5.0

TR3: Initial OpenMP 4.1 Comment Draft

— Changes adopted in time frame of SC14
— Provided clear guidance to begin 4.1 implementations

Final OpenMP 4.1 Comment Draft: Released Late Last Month
OpenMP 4.1

— Clarifications, refinements and minor extensions to existing
specification

— Major focus is device construct refinements

— Do not break existing code

— Will be released by SC15

OpenMP 5.0

— Address several major open issues for OpenMP

— Expect less significant advance than 4.0 from 3.1/3.0
— Do not break existing code unnecessarily

— Targeting release for SC17 (somewhat ambitious)

231



OpenMP 4.1 will include many
refinements to recent additions

« 92 tickets have been passed
— Many refinements to device support
— Reflects improved efficiency due to LaTex conversion

* Many clarifications and minor enhancements
— Handled several items from Fortran 2003 list
— SIMD and tasking extensions and refinements
— Reductions for C/C++ arrays and templates
— Runtime routines to support cancelation and affinity

« Some new features are being added
— Support for DOACROSS loops
— Can divide loop into tasks with taskloop construct

232



TR3 (initial OpenMP 4.1 comment
draft) refines device constructs

« Adds flush to several device constructs
« Supports unstructured data movement
« Can now require update/assignment for map (always)

* Improves asynchronous execution
—In 4.0, could have a task region with only a target region

— target and other device regions are now tasks
— By default, undeferred
— Can use nowait and depend clauses

« Many clarifications and minor corrections

233



Final OpenMP 4.1 comment draft
further refines device constructs

* memcpy API to support manual mapping

 Device pointers (provides interoperability with CUDA and
OpenCL libraries)

* Mapping structure elements

« Tweaks to device environment support, including:
— Default for scalar variables: firstprivate
— link clause for declare target construct

« New combined constructs
» Other miscellaneous usability features

234



More significant topics are being
considered for OpenMP 5.0

« Updates to support latest C/C++ standards

* More tasking advances (support for event loops)
* General error model

« Continued improvements to device support

« Performance and debugging tools support

* Interoperability and composability

* Locality and affinity

* Transactional memory

 Additional looping constructs and refinements

235



236



Preliminaries: Part 0 (use your own laptop)

* You can use your Apple laptops running OS-X

— Use the gnu compilers

— Download xcode with command line tools (from Apple) and macports (from
macports.org)

— sudo port install gcc5
— sudo port select --set gecec mp-geed
— gcc —fopenmp <<file names>>
— copy exercises from github onto your own laptops
— git clone https://github.com/tgmattso/OpenMP_Exercises.qgit

237



0 pe n M P CO nStru Cts Where variable list is a comma

- #pragma omp parallel separated list of variables

« #pragma omp for

« #pragma omp critical Print the value of the macro
« #pragma omp atomic _ OPENMP

e #pragma omp barrier
 Data environment clauses

And its value will be

— private (variable_list) yyyymm
— firstprivate (variable_list) For the year and month of the spec the
— lastprivate (variable_list) implementation used

— reduction(+:variable_list)
« Tasks (remember ... private data is made firstprivate by default)
— pragma omp task
— pragma omp taskwait
« #pragma threadprivate(variable_list)
* Runtime library routines:
— int omp_get_num_threads()
— int omp_get thread _num()
— double omp_get_wtime()

238



