
1
1

Parallel Computing
Introduction

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Tim Mattson
Intel Corp.

timothy.g.mattson@intel.com

2
2

Disclaimer
• The views expressed in this talk are those of the

speaker and not his employer.
• If I say something stupid, blame me … not the smart

people I work with.

I work in Intel’s research labs. I don’t build products. Instead, I get
to poke into dark corners and think silly thoughts… just to make sure

we don’t miss any great ideas.

Hence, my views are by design far “off the roadmap”.

I have a great job!

Slides marked with this symbol come from a course at UC
Berkeley that I teach with Professor Kurt Keutzer.

I’m just a simple kayak instructor

Photo © by Greg Clopton, 2014

Introduction

3

To support my kayaking habit I
work as a parallel programmer

Which means I know how to turn
math into lines on a speedup plot

P

S

Outline

•  High Performance computing: A hardware system view
•  The processors in HPC systems
•  Parallel Computing: Basic Concepts
•  The Fundamental patterns of parallel Computing

4

High performance
computing is addictive

5

Atlas

fMRI

Shoemaker Levy-9

SAR

CAT Scan

The birth of Supercomputing

•  The CRAY-1A:
–  12.5-nanosecond clock,
–  64 vector registers,
–  1 million 64-bit words of high-

speed memory.
–  Speed:

–  160 MFLOPS vector peak speed
–  110 MFLOPS Linpack 1000 (best

effort)

•  Cray software … by 1978
–  Cray Operating System (COS),
–  the first automatically vectorizing

Fortran compiler (CFT),
–  Cray Assembler Language (CAL)

were introduced.
§  On July 11, 1977, the CRAY-1A, serial

number 3, was delivered to NCAR. The
system cost was $8.86 million ($7.9
million plus $1 million for the disks).

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp

0

10

20

30

40

50

60

Vector

The original Supercomputers
The Era of the Vector Supercomputer

•  Large mainframes that operated on vectors of data
•  Custom built, highly specialized hardware and software
•  Multiple processors in an shared memory configuration
•  Required modest changes to software (vectorization)

The Cray C916/512 at the Pittsburgh
Supercomputer Center

C
ra

y
2

(4
),

19
85

C
ra

y
Y

M
P

(8
),

19
89

C
ra

y
T

93
2

(3
2)

, 1
99

6

Pe
ak

 G
FL

O
PS

C
ra

y
C

91
6

(1
6)

, 1
99

1

Vector

The attack of the killer micros

•  The Caltech Cosmic
Cube developed by
Charles Seitz and
Geoffrey Fox in1981

•  64 Intel 8086/8087
processors

•  128kB of memory per
processor

•  6-dimensional
hypercube network

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

The cosmic cube, Charles Seitz
Communications of the ACM, Vol 28, number 1 January 1985, p.
22

Launched the “attack
of the killer micros”
Eugene Brooks, SC’90

0
20
40
60
80

100
120
140
160
180
200

Vector MPP

Improving CPU performance and weak scaling
helped MPPs dominate supercomputing

•  Parallel computers with large numbers of commercial off the shelf
microprocessors

•  High speed, low latency, scalable interconnection networks
•  Lots of custom hardware to support scalability
•  Required massive changes to software (parallelization)

Paragon XPS-140 at Sandia
National labs in Albuquerque NM

Pe
ak

 G
FL

O
PS

iP
SC

\8
60

(1
28

) 1
99

0.

Pa
ra

go
n

X
PS

 1
99

3
T

M
C

 C
M

5-
(1

02
4)

 1
99

2

Vector MPP

10

SIMD computers … the other MPP supercomputer

Thinking machines
CM-2: The Classic
Symmetric SIMD
supercomputer
(mid-80’s):
Description: Up to 64K bit-
serial processing elements.

Strength: Supports
deterministic programming
models … single thread of
control for ease of
understanding.

Weakness: Poor floating point
performance. Programming
model was not general
enough. TMC struggled
throughout the 90’s and filed
for bankruptcy in 1994.

Third party names are the property of their owners.

“… we want to build a computer that
will be proud of us”, Danny Hillis

The MPP future looked bright … but then
clusters took over

•  A cluster is a collection of connected, independent computers that work in
unison to solve a problem.

•  Nothing is custom … motivated users could build a cluster on their own

§  First clusters appeared in
the late 80’s (Stacks of
“SPARC pizza boxes”)

§  The Intel Pentium Pro in
1995 coupled with Linux
made them competitive.
§  NASA Goddard’s Beowulf

cluster demonstrated
publically that high visibility
science could be done on
clusters.

§  Clusters made it easier to
bring the benefits due to
Moores’s law into working
supercomputers

Top 500 list: System Architecture

*Constellation: A cluster for which the number of processors on a node is greater than the number of nodes in the
cluster. I’ve never seen anyone use this term outside of the top500 list.

*

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf

Execution model: Distributed memory MIMD

•  Cluster or MPP … the future is clear. Distributed memory scales and is more
energy efficient (cache coherence moves lots of electrons around and that
consumes lots of power).

•  Each node has its own processors, memory and caches but cannot directly access
another node’s memory.

•  Each “node” has a Network Interface component (NIC) for all communication and
synchronization.

•  Fundamentally more scalable than shared memory machines … especially cache
coherent shared memory.

interconnect

P0

memory

NIC

. . .

P1

memory

NIC Pn

memory

NIC

Programming Model: Message Passing
•  Program consists of a collection of named processes.

– Number of processes usually fixed at program startup time
– Local address space per node -- NO physically shared memory.

•  Processes communicate by explicit send/receive pairs
– Coordination is implicit in every communication event.
– MPI (Message Passing Interface) is the most commonly used SW

Pn P1 P0

s: 12

i: 2

Private
memory

s: 14

i: 3

s: 11

i: 1

send P1,s

Network

receive Pn,s

Outline

•  High Performance computing: A hardware system view
•  The processors in HPC systems
•  Parallel Computing: Basic Concepts
•  The Fundamental patterns of parallel Computing

15

Moore's Law

Moore’s Law

Slide source: UCB CS 194 Fall’2010

•  In 1965, Intel co-founder Gordon Moore predicted (from just 3 data
points!) that semiconductor density would double every 18 months.
– He was right! Over the last 50 years, transistor densities have

increased as he predicted.

17

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

Pe
rfo

rm
an

ce
 (v

s.
 V

A
X-

11
/7

80
)

25%/year

52%/year

??%/year

The good old days …

From Hennessy and Patterson, Computer Architecture: A Quantitative
Approach, 4th edition, Sept. 15, 2006

Vax “Star”, CISC
Vax-11/780 Vax “Nautilus”,

CISC, Vax 8700

Sparc V7 RISC
5-stage
Sun 4/260
16.7 MHz PowerPC 604, 100 MHz

7 stage, 4 issue

Pentium 4, 3.6 GHz,
31 stage, 6 uop issue,
3 CISC issue

Third party names are the property of their owners.

(SPECint)
Uniproccessor
Performance

Pentium 4, 3.0 GHz,
20 stage, 3 CISC issue
(6 uop issue)

The Hardware/Software contract

•  Write your software
as you choose and
the HW-geniuses
will take care of
performance.

18

•  The result: Generations of performance ignorant software
engineers using performance-handicapped languages (such
as Java) … which was OK since performance was a HW job.
Third party names are the property of their owners.

19

 Why many core? Its all about Power.
Power vs Performance (normalized to i486 process tech.)

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

Po
w

er power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Growth in power
is unsustainable

Source: Ed Grochowski, Intel

20

Design with Power in mind

0

5

10

15

20

25

30

0 2 4 6 8
Scalar Performance

Po
w

er power = perf ^ 1.74

Pentium M

i486 Pentium

Pentium Pro

Pentium 4 (Wmt)

Pentium 4 (Psc)

Mobile CPUs
with shallow
pipelines use

less power

31 Pipeline
stages

<20 Pipeline
stages

Source: Ed Grochowski, Intel

Consider power in a chip …

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

C = capacitance … it measures the ability of
a circuit to store energy:

C = q/V à q = CV

Work is pushing something (charge or q)
across a “distance” … in electrostatic terms
pushing q from 0 to V:

V * q = W.

But for a circuit q = CV so

 W = CV2

power is work over time … or how many
times in a second we oscillate the circuit

 Power = W* F à Power = CV2f

... Reduce power by adding cores

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing
power using transformations," IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

Source:
Vishwani Agrawal

Processor

f

Input Output

Capacitance = C
Voltage = V
Frequency = f
Power = CV2f

f * time

Processor

f/2

Processor

f/2

Input

Output

Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV2f

f * time

... Many core: we are all doing it

PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory	
 Controller

buffered	
 switch

buffered	
 switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory	

Controller

HSW

GPU

CPU

Hardware Diversity: Basic Building Blocks

ICache
Scheduler

CPU Core: one or more hardware threads sharing
an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a
single stream of instructions drives multiple data
elements.

SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More
threads than functional units. Over subscription to hide
latencies. Optimized for throughput.

Hardware Diversity: Combining building
blocks to construct nodes

LLC

LL
C

LLC

LLC

Multicore CPU

Heterogeneous: CPU+GPU
Heterogeneous:

Integrated CPU+GPU

Heterogeneous:
CPU + manycore coprocessor

Manycore CPU

Hardware diversity: CPUs
PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory	
 Controller

buffered	
 switch

buffered	
 switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory	

Controller

HSW

Intel® Xeon® processor: multicore
E7 v3 series (Haswell or HSW)
•  18 cores
•  36 Hardware threads
•  256 bit wide vector units

Intel® Xeon Phi™ coprocessor
(Knights Corner): Many core
•  61 cores
•  244 Hardware threads
•  512 bit wide vector units

In both cases … Cache hierarchy to
create a low latency, coherent
view of a shared address space.

Hardware diversity: GPUs
•  Nvidia® GPUs are a collection of “Streaming Multiprocessors” (SM)

–  Each SM is analogous to a core of a Multi-Core CPU
•  Each SM is a collection of SIMD execution pipelines that share

control logic, register file, and L1 Cache#

#Source: UC Berkeley, CS194,
Fall’2014, Kurt Keutzer and Tim Mattson

For example: an NVIDIA
Tesla C2050 (Fermi) GPU
with 3GB of memory and
14 streaming
multiprocessor cores*.

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/

Third party names are the property of their owners.

The result…

28

+

=
A new HW/SW contract … HW people will do
what’s natural for them (lots of cores) and
optimization is up to SW people who will have to
adapt (rewrite everything)

The problem is this was presented as an ultimatum
… nobody asked us if we were OK with this new

contract … which is kind of rude.

It’s really about competing software platforms

PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory	
 Controller

buffered	
 switch

buffered	
 switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory	

Controller

HSW

GPU
•  Single Instruction multiple threads.

•  turn loop bodies into kernels.
•  HW intelligently schedules kernels to

hide latencies.
•  Dogma: a natural way to express huge

amounts of data parallelism
•  Examples: CUDA, OpenCL, OpenACC

CPU
•  Shared Address space, multi-threading.

•  Many threads executing with
coherent shared memory.

•  Dogma: The legacy programming model
people already know. Easier than
alternatives.

•  Examples: OpenMP, Pthreads, C++11

*third party names are the property of their owners

Outline

•  High Performance computing: A hardware system view
•  The processors in HPC systems
•  Parallel Computing: Basic Concepts
•  The Fundamental patterns of parallel Computing

30

31

Concurrency vs. Parallelism

§  Two important definitions:
§  Concurrency: A condition of a system in which multiple tasks

are logically active at one time.
§  Parallelism: A condition of a system in which multiple tasks

are actually active at one time.

Concurrent, parallel Execution

Concurrent, non-parallel Execution

32

Concurrency vs. Parallelism

§  Two important definitions:
§  Concurrency: A condition of a system in which multiple tasks

are logically active at one time.
§  Parallelism: A condition of a system in which multiple tasks

are actually active at one time.

Programs

Concurrent
Programs

Parallel
Programs

33

Images
The Internet

Image
Server

Web
Server

Client

Concurrency in Action: a web server

Images

§  A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images

Client Client Client Client

34

Concurrency in Action: a web server

§  An Web Server is a Concurrent Application (the problem is
fundamentally defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images

Images
The Internet

Image
Server

Web
Server

Client Client Client Client

35

Images
The Internet

Image
Server

Web
Server

Client

Concurrency in Action: a web server

HTTP Request

§  A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images

For each
client …

36

Images
The Internet

Image
Server

Web
Server

Client

Concurrency in Action: a web server

Image Request

HTML doc.

§  A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images

For each
client …

37

Images
The Internet

Image
Server

Web
Server

Client

Concurrency in Action: a web server

Images

§  A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers

by storing, processing, and serving only images

For each
client …

38

Concurrency in Action: a web server

§  The Web server, image server, and clients (you have to plan on having
many clients) all execute at the same time

§  The problem of one or more clients interacting with a web server not
only contains concurrency, the problem is fundamentally current. It
doesn’t exist as a serial problem.

Concurrent application: An application for which
the problem definition is fundamentally concurrent.

39

Concurrency in action: Mandelbrot Set

§  The Mandelbrot set: An iterative map in the complex plane

czz nn +=+
2

1 z0 = 0, c is constant

§  Color each point in
the complex plain
of C values based
on convergence or
divergence of the
iterative map.

CReal

C
im

aginary

40

Concurrency in action: Mandelbrot Set
int mandel (complex C) {
 int n;
 double a = C.real();
 double b = C.imag();
 double zr = 0.0 , zi = 0.0;
 double tzr , tzi ;
 n = 0;
 while (n < max_iters && sqrt (zr*zr + zi*zi) < t) {
 tzr = (zr*zr - zi*zi) + a;
 tzi = (zr*zi + zr*zi) + b;
 zr = tzr ;
 zi = tzi ;
 n = n+1;
 }
 return n;
}

Function to compute the iterative map for
a single point C where

C = a + b * i

Where i is the square root of (-1)

“t” is a constant that
defines a threshold
beyond which we
consider the iterative
map to diverge.

41

Concurrency in action: Mandelbrot Set

§  To generate the famous Mandelbrot set image, we use the function
mandel(C) where C comes from the points in the complex plane.

§  At each point C, use
n=mandel(C) to determine if:
§  The map converges

(n=max_iters), assign the
color black

§  The map diverges
(n<max_iters), assign the
color based on the value of
n

§  The computation for each point
is independent of all the other
points … a so-called
embarrassingly parallel
problem .

CReal

C
im

aginary

42

Concurrency in action: Mandelbrot Set

§  The following is simplified code for the serial Mandelbrot program.

for (i=0; i<N; i++){

 for (j=0; j<N; j++) {

 complex c = get_const_at_pixel(i,j);

 complex image[i][j] = mandel(c);

 }

}

43

Concurrency in action: Mandelbrot Set

§  The following is simplified code for the serial Mandelbrot program.
§  Loop iterations are independent, so we can create a parallel version of

this program as follows …

for (i=0; i<N; i++){

 for (j=0; j<N; j++) {

 complex c = get_const_at_pixel(i,j);

 complex image[i][j] = mandel(c);

 }

}

•  Combine the two loops into one big loop
and execute them in parallel

44

Concurrency in action: Mandelbrot Set

§  The problem of
generating an image of
the Mandelbrot set can
be viewed serially.

§ We choose to exploit the
concurrency contained in
this problem so we can
generate the image in
less time

Parallel application: An application composed of
tasks that actually execute concurrently in order to (1)

consider larger problems in fixed time or (2) complete in
less time for a fixed size problem.

45

Concurrency vs. Parallelism: wrap up

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

§  Key points:
§  A web server had concurrency in its problem definition … it doesn’t

make sense to even think of writing a “serial web server”.
§  The Mandelbrot program didn’t have concurrency in its problem

definition. It would take a long time, but it could be serial

§  Both cases use concurrency:
§  A concurrent application is

concurrent by definition.
§  A parallel application solves a

problem that could be serial, but
it is run in parallel by …

1.  find concurrency in the
problem

2.  expose the concurrency in
the source code.

3.  exploit the exposed
concurrency to complete a
job in less time.

46

The Parallel programming process:

Original Problem Tasks, shared and local data

Find Concurrency
(Decomposition)

47

Decomposition in parallel programs

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time.

§  EVERY parallel program requires a
task decomposition and a data
decomposition:
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently..

§  Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently.

48

Decomposition in parallel programs

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time.

§  EVERY parallel program requires a
task decomposition and a data
decomposition:
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently..

§  Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently.

What’s a task
decomposition for this
problem?

49

Decomposition in parallel programs

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time.

§  EVERY parallel program requires a
task decomposition and a data
decomposition:
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently..

§  Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently.

Hint: Think of the source
code and work that is
compute-intensive that can
execute independently

for (i=0; i<N; i++){

 for (j=0; j<N; j++) {

 complex c = get_const_at_pixel(i,j);

 complex image[i][j] = mandel(c);

 }

}

50

Decomposition in parallel programs

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time.

§  EVERY parallel program requires a
task decomposition and a data
decomposition:
§  Task decomposition: break the

application down into a set of tasks
that can execute concurrently..

§  Data decomposition: How must the
data be broken down into chunks
and associated with threads/
processes to make the parallel
program run efficiently.

Task: the computation required
for each pixel … the body of the
loop for a pair (i,j).

51

Decomposition in parallel programs

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time.

§  EVERY parallel program requires a
task decomposition and a data
decomposition:
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently..

§  Data decomposition: How must
the data (the complex plain, C)
be broken down into chunks and
associated with threads/
processes to make the parallel
program run efficiently.

Suggest a data decomposition for
this problem … assume a quad
core shared memory PC.

52

Decomposition in parallel programs

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time.

§  EVERY parallel program requires a
task decomposition and a data
decomposition:
§  Task decomposition: break the

application down into a set of
tasks that can execute
concurrently..

§  Data decomposition: How must
the data (the complex plain, C)
be broken down into chunks and
associated with threads/
processes to make the parallel
program run efficiently.

§  .

Hint: you can define the data
decomposition to match the task,
but would that be efficient in this
case?

Task: the computation required
for each pixel … the body of the
loop for a pair (i,j).

53

Map the pixels into row blocks and
deal them out to the cores. This
will give each core a memory
efficient block to work on.

Decomposition in parallel programs

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time.

§  EVERY parallel program requires a
task decomposition and a data
decomposition:
§  Task decomposition: break the

application down into a set of tasks
that can execute concurrently..

§  Data decomposition: How must the
data (the complex plain, C) be
broken down into chunks and
associated with threads/processes to
make the parallel program run
efficiently.

54

Map the pixels into row blocks and
deal them out to the cores. This
will give each core a memory
efficient block to work on.

Decomposition in parallel programs

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time.

§  EVERY parallel program requires a
task decomposition and a data
decomposition:
§  Task decomposition: break the

application down into a set of tasks
that can execute concurrently..

§  Data decomposition: How must the
data (the complex plain, C) be
broken down into chunks and
associated with threads/processes to
make the parallel program run
efficiently.

But given this data decomposition, it is
effective to think of a task as the update
to a pixel? Should we update our task
definition given the data decomposition?

55

Map the pixels into row blocks and
deal them out to the cores. This
will give each core a memory
efficient block to work on.

Decomposition in parallel programs

§  Every parallel program is based on
concurrency … i.e. tasks defined by
an application that can run at the
same time.

§  EVERY parallel program requires a
task decomposition and a data
decomposition:
§  Task decomposition: break the

application down into a set of tasks
that can execute concurrently..

§  Data decomposition: How must the
data (the complex plain, C) be
broken down into chunks and
associated with threads/processes to
make the parallel program run
efficiently.

Yes. You go back and forth between
task and data decomposition until you
have a pair that work well together. In
this case, let’s define a task as the
update to a row-block

56

Recap:

Original Problem Tasks, shared and local data

Find Concurrency
(Decomposition)

v  To expose concurrency in a problem, we need to
understand how the problem is decomposed into tasks
AND how the problem’s data is decomposed to support
efficient computation.

v  YOU ALWAYS NEED BOTH.

Outline

•  High Performance computing: A hardware system view
•  The processors in HPC systems
•  Parallel Computing: Basic Concepts
•  The Fundamental patterns of parallel Computing

57

Data Parallelism Pattern
•  Use when:

– Your problem is defined in terms of independent
collections of data elements operated on by a similar (if
not identical) sequence of instructions; i.e. the
concurrency is in the data.
– Hint: when the data decomposition dominates your design,

this is probably the pattern to use!
•  Solution

– Define collections of data elements that can be updated in
parallel.

– Define computation as a sequence of collective operations
applied together to each data element.

Data 1 Data 2 Data 3 Data n

Tasks

……

Task Parallelism Pattern

•  Solution
– Define the set of tasks and a way to detect when the

computation is done.
– Manage (or “remove”) dependencies so the correct

answer is produced regardless of the details of how
the tasks execute.

– Schedule the tasks for execution in a way that keeps
the work balanced between the processing elements
of the parallel computer and

§  Use when:
§  The problem naturally decomposes into a

distinct collection of tasks
•  Hint: when the task decomposition

dominates you design, this is probably
the pattern to use.

Task Parallelism in practice

•  Embarrassingly parallel:
– The tasks are independent, so the parallelism is “so

easy to exploit it’s embarrassing”.

•  Separable dependencies:
– Turn a problem with dependent tasks into an

“embarrassingly parallel” by “replicating data between
tasks, doing the work, then recombining data (often a
reduction) to restore global state.

•  Functional Decomposition
– A task is associated with a functional decomposition

of the problem to produce a coarse grained parallel
program Its becoming common to associate this

case as the prototypical “task parallel”
approach … but to us old-timers, the
previous two cases are overwhelming
more common.

Fundamental Design Patterns:

•  Data Parallelism:
– Kernel Parallelism
– Geometric Decomposition
– Loop parallel

•  Task Parallelism
– Task queue
– Divide and Conquer
– Loop parallel

•  Implementation Patterns (used to support the above)
– SPMD (Any MIMD machine, but typically distributed memory)
– Fork Join (Multithreading, shared address space MIMD)
– Kernel Parallelism (GPGPU)

61

62

SPMD: Single Program Mulitple Data

•  Run the same program on P processing elements where P
can be arbitrarily large.

•  Use the rank … an ID ranging from 0 to (P-1) … to select
between a set of tasks and to manage any shared data
structures.

This pattern is very general and has been used to support most (if
not all) the algorithm strategy patterns.

MPI programs almost always use this pattern … it is probably
the most commonly used pattern in the history of parallel

programming.

63

Loop parallelism

•  Collections of tasks are defined as iterations of one or more loops.
•  Transform loop body to remove loop carried dependencies and assure

that the right answer is produced regardless of the order iterations are
carried out.

•  Loop iterations are divided between a collection of processing elements
to compute tasks concurrently.

This design pattern is also heavily used with data parallel design patterns.
OpenMP programmers commonly use this pattern.

#pragma omp parallel for shared(Results) schedule(dynamic)

For(i=0;i<N;i++){
 Do_work(i, Results);

}

64

Kernel Parallelism

•  Kernel Parallelism:
–  Implement data parallel problems:

– Define an abstract index space that spans the problem domain.
– Data structures in the problem are aligned to this index space.
–  Tasks (e.g. work-items in OpenCL or “threads” in CUDA) operate on

these data structures for each point in the index space.

•  This approach was popularized for graphics applications
where the index space mapped onto the pixels in an image.
Since 2006, It’s been extended to General Purpose GPU
(GPGPU) programming.

Note: This is basically a fine grained extreme form of
the SPMD pattern.

65

Fork-join

•  Use when:
–  Target platform has a shared address space
–  Dynamic task parallelism

•  Particularly useful when you have a serial program to
transform incrementally into a parallel program

•  Solution:
1.  A computation begins and ends as a single thread.
2.  When concurrent tasks are desired, additional threads are forked.
3.  The thread carries out the indicated task,
4.  The set of threads recombine (join)

Cilk and OpenMP 3.0 with explicit tasks make heavy use of this
pattern.

Fork-join Design Pattern
•  Use when:

–  Target platform has a shared address space
–  Dynamic task parallelism

•  Particularly useful when incrementally parallelizing a serial program.
•  Solution:

1.  A computation begins and ends as a single thread.
2.  When concurrent tasks are desired, additional threads are forked.
3.  The thread carries out the indicated task,
4.  The set of threads recombine (join)

Parallel Regions
Master
Thread
in green

A Nested
Parallel
region

Divide and Conquer Pattern

•  Use when:
– A problem includes a method to divide into subproblems

and a way to recombine solutions of subproblems into a
global solution.

•  Solution
– Define a split operation
– Continue to split the problem until subproblems are small

enough to solve directly.
– Recombine solutions to subproblems to solve original

global problem.
•  Note:

– Computing may occur at each phase (split, leaves,
recombine).

Divide and conquer

•  Split the problem into smaller sub-problems. Continue until
the sub-problems can be solve directly.

n  3 Options:
¨  Do work as you split

into sub-problems.
¨  Do work only at the

leaves.
¨  Do work as you

recombine.

69

Task Queue

•  Use When
– The computation is defined as a collection of independent tasks.
– The key challenge is how to schedule them such that the

computational load is evenly distributed.

•  Solution:
– Set up collection of workers to carry out the work.
– Put tasks into a shared queue
– Workers grab tasks, carry out computations, then return to queue for

more work.
– There must be some way to detect when the work is done and then

shut down the workers.

This is an easy way to implement automatic load balancing … so
easy that for years we’ve been telling people to use this pattern

whenever they can.

70

Geometric Decomposition

•  Use when:
– The problem is organized around a central data structure that can

be decomposed into smaller segments (chunks) that can be
updated concurrently.

•  Solution
– Typically, the data structure is updated iteratively where a new

value for one chunk depends on neighboring chunks.
– The computation breaks down into three components: (1) exchange

boundary data, (2) update the interiors or each chunk, and (3)
update boundary regions. The optimal size of the chunks is dictated
by the properties of the memory hierarchy.

•  Note:
– This pattern is often used with the Structured Mesh and linear

algebra computational strategy pattern.

Summary

71

Processors with lots of cores/vector-units/SIMT
connected into clusters are here to stay. You have

no choice … embrace parallel computing!

Summary

72

Processors with lots of cores/vector-units/SIMT
connected into clusters are here to stay. You have

no choice … embrace parallel computing!

Protect your software
investment … refuse to
use any programming

model that locks you to
a vendors platform.

Open Standards are the
ONLY rational approach

in the long run.

The software platform debate!

73

Recall my earlier
comment … the

competing visions are
less about hardware
and more about the

programmers software
platform

*third party names are the property of their owners

The official strategy at Intel.

•  Everything is a
cluster of “shared
address space
multithreaded”
computers.

•  One programming
model from laptop to
supercomputer

74

What about the competing platform:
Single Instruction multiple thread (SIMT)?

•  Dominant as a proprietary solution based on CUDA and
OpenACC.

•  But there is an Open Standard response (supported to
varying degrees by all major vendors)

75

SIMT programming for CPUs, GPUs, DSPs, and FPGAs.
Basically, an Open Standard that generalizes the SIMT
platform pioneered by our friends at NVIDIA®

OpenMP 4.0 added target and device directives ... Based
on the same work that was used to create OpenACC.
Therefore, just like OpenACC, you can program a GPU
with OpenMP!!!

The long term viability of the SIMT platform depends on the user community
demanding (and using) the Open Standard alternatives!

*third party names are the property of their owners

Summary

76

Processors with lots of cores/vector-units/SIMT
connected into clusters are here to stay. You have

no choice … embrace parallel computing!

Protect your software
investment … refuse to
use any programming

model that locks you to
a vendors platform.

Open Standards are the
ONLY rational approach

in the long run.

OpenMP, MPI,
and OpenCL
are in most

cases, the way
to go

Summary

77

Processors with lots of cores/vector-units/SIMT
connected into clusters are here to stay. You have

no choice … embrace parallel computing!

Protect your software
investment … refuse to
use any programming

model that locks you to
a vendors platform.

Open Standards are the
ONLY rational approach

in the long run.

OpenMP, MPI,
and OpenCL
are in most

cases, the way
to go

There are countless parallel
algorithms … but they make use of a

small number of design patterns.
Focus on the patterns and how to
apply them in your programming

models of choice and you’ll be OK.

Background references

78

A great book that explores key
patterns with Cilk, TBB, OpenCL,
and OpenMP (by McCool, Robison,
and Reinders)

l  A book about how to “think
parallel” with examples in
OpenMP, MPI and java

