OpenMP

Parallel Computing
Introduction

Tim Mattson
Intel Corp.

timothy.g.mattson@intel.com

* The name “OpenMP” is the property of the OpenMP Architecture Review Board.

Disclaimer
e The views expressed in this talk are those of the
speaker and not his employer.

e If I say something stupid, blame me ... not the smart
people I work with.

I work 1n Intel’s research labs. I don’t build products. Instead, I get
to poke into dark corners and think silly thoughts... just to make sure
we don’t miss any great 1deas.

Hence, my views are by design far “off the roadmap”.

I have a great job!

/ | \/ \ Slides marked with this symbol come from a course at UC
= Berkeley that I teach with Professor Kurt Keutzer.

Introduction

I'm just a simple-kayak instructor
d ,.r , .‘ ‘:. \(4 . . ,

To support my kayaking habit I
work as a parallel programmer

Photo © by Greg Clopton, 2014 -
oto © by Greg Clopton Which means I know how to turn

math into lines on a speedup plot

Outline

=)+ High Performance computing: A hardware system view
* The processors in HPC systems
 Parallel Computing: Basic Concepts
* The Fundamental patterns of parallel Computing

High performance
computing is addictive

agrnffﬁrfrarmmnrnnnnnga rntnn anr}’gkr:nnrnrrnnqagggatccgg q
227 g S2anpats | remeey ST CJAJACCCgg
..:'."'-"]' “;"f"":"v”‘: = ".:ﬂ--;!.rl’_".-' N SN e
R o Ry gaagtct
o ggcece
ARG v ol R R jcagcecc
v/ '-._l.'ll S S .;".- A Y '. C ,,{
Eonl e s T e ST g ccacggocde agagcg
B 24 oy aro i et SR - “.scgcagetgagaccggeggecgacggecage aagtcag
ac| === e IR S
: % '!.:{)fg.*’ A A

Before Migration After Migration

C¢ (a) (b)
ctcttacgacccgcetcag ccccgaggagcaggagcttctcgacttcacc

PR

% atggtttaaaatgtgtatatcttgatacttt

Actctcctcataggtgagatcaagaggct
gatgttattaaatactgticaagaagaacaaagtttatgcagctactgtccsus .
cctttttttttcttactgttttattacaaacttdwwaatdtgtataaccctgttttatacaaactagtttcgtaataaaactttttcctttttttaaaa

The birth of Supercomputing

] The CRAY-1A:

— 12.5-nanosecond clock,
— 64 vector registers,

— 1 million 64-bit words of high-
speed memory.

— Speed:
- 160 MFLOPS vector peak speed

— 110 MFLOPS Linpack 1000 (best
effort)

* Cray software ... by 1978
— Cray Operating System (COS),
— the first automatically vectorizing

Fortran compiler (CFT),

" OnJuly 11,1977, the CRAY-1A, serial — Cray Assembler Language (CAL)
number 3, was delivered to NCAR. The were introduced.
system cost was $8.86 million ($7.9
million plus $1 million for the disks).

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp

Peak GFLOPS

The original Supercomputers
The Era of the Vector Supercomputer

« Large mainframes that operated on vectors of data

« Custom built, highly specialized hardware and software
« Multiple processors in an shared memory configuration
« Required modest changes to software (vectorization)

60"
501

401

301

207

Cray YMP (8), 1989
Cray‘ C916 (16), 1991

Cray 2 (4), 1985

107

Cray T932 (32), 1996

|

The Cray C916/512 at the Pittsburgh
Vector Supercomputer Center

The attack of the killer micros

 The Caltech Cosmic
Cube developed by
Charles Seitz and
Geoffrey Fox in1981

* 64 Intel 8086/8087
processors

« 128kB of memory per
#) processor

. » 6-dimensional
~ hypercube network

The cosmic cube, Charles Seitz ¢
Communications of the ACM, Vol 28, number 1 January 1985, p. LﬂUIlChde the . atta?k
22 of the killer micros”

Eugene Brooks, SC’90

http://calteches.library.caltech.edu/3419/1/Cubism.pdf

Improving CPU performance and weak scaling
helped MPPs dominate supercomputing

Parallel computers with large numbers of commercial off the shelf
MICroprocessors

High speed, low latency, scalable interconnection networks
Lots of custom hardware to support scalability
Required massive changes to software (parallelization)

Peak GFLOPS

2001
1801
1601
1401
1201
100
80
60"
401
207

Vector

iPSC\860(128) 1990.
TMC CM5-(1024) 1992
Paragon XPS 1993

Paragon XPS-140 at Sandia
National labs in Albuquerque NM

MPP

SIMD computers ... the other MPP supercomputer

11

will be proud of us”, Danny Hillis

Third party names are the property of their owners.

... we want to build a computer that

Thinking machines
CM-2: The Classic
Symmetric SIMD
supercomputer
(mid-80’ s):

Description: Up to 64K bit-
serial processing elements.

Strength: Supports
deterministic programming
models ... single thread of
control for ease of
understanding.

Weakness: Poor floating point
performance. Programming
model was not general
enough. TMC struggled
throughout the 90’ s and filed
for bankruptcy in 1994.

10

The MPP future looked bright ... but then
clusters took over

A cluster is a collection of connected, independent computers that work in
unison to solve a problem.

« Nothing is custom ... motivated users could build a cluster on their own

" First clusters appeared in
the late 80’s (Stacks of
“SPARC pizza boxes”)

" The Intel Pentium Pro in
1995 coupled with Linux
made them competitive.

® NASA Goddard’s Beowulf
cluster demonstrated
publically that high visibility
science could be done on
clusters.

® Clusters made it easier to
bring the benefits due to
Moores’s law into working
supercomputers

Top 500 list: System Architecture

100%

‘98 99 ‘00 ‘07 ‘08
Source: http://s.top500.org/static/lists/2013/06/TOP500 201306 Poster.pdf

*Constellation: A cluster for which the number of processors on a node is greater than the number of nodes in the
cluster. I’ve never seen anyone use this term outside of the top500 list.

Execution model: Distributed memory MIMD

Cluster or MPP ... the future is clear. Distributed memory scales and is more
energy efficient (cache coherence moves lots of electrons around and that

consumes lots of power).

Each node has its own processors, memory and caches but cannot directly access
another node’s memory.

Each “node” has a Network Interface component (NIC) for all communication and
synchronization.

Fundamentally more scalable than shared memory machines ... especially cache
coherent shared memory.

NIC NIC NIC

memory memory

memory

[Interconnect]

Programming Model: Message Passing

* Program consists of a collection of named processes.
— Number of processes usually fixed at program startup time

— Local address space per node -- NO physically shared memory.

* Processes communicate by explicit send/receive pairs
— Coordination is implicit in every communication event.

— MPI (Message Passing Interface) is the most commonly used SW

receive Pn,s

send P1,s

Private
memory

Outline

« High Performance computing: A hardware system view
=+ The processors in HPC systems

 Parallel Computing: Basic Concepts

* The Fundamental patterns of parallel Computing

15

Moore's Law

1975 1980 1985 1990 1995

4
10M Micro. 500
(transistors) ‘ 2000 (mips)
™M Pentium" 25
‘ — Processor
80486
100K @ 80386 10
‘ 80286
10K 3086 0.1
BO8O
‘ f
.‘O(_}/‘ 0.01

* In 1965, Intel co-founder Gordon Moore predicted (from just 3 data
points!) that semiconductor density would double every 18 months.

— He was right! Over the last 50 years, transistor densities have
increased as he predicted.

Slide source: UCB CS 194 Fall’2010

The good old days ...

Pentium 4, 3.0 GHz,

10000
(SPECint)
Uniproccessor
Performance
1000 1

20 stage, 3 CISC issue
(6 uop 1ssue)

Pentium 4, 3.6 GHz

52%lyear _
3 CISC 1ssue

100 Sparc V7 RISC

Performance (vs. VAX-11/780)

S-stage / \
Sun 4/260
16.7 MHz PowerPC 604, 100 MHz
10 ~ 7 stage, 4 issue
25%lyear
zzilsl;a;rgo CIsC T Vax “Nautilus”,
\ CISC, Vax 8700
1 o——— T T T T T T T T T T T T

31 stage, 6 uop issu'e,

>

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

From Hennessy and Patterson, Computer Architecture: A Quantitative
Approach, 4th edition, Sept. 15, 2006

Third party names are the property of their owners.

17

The Hardware/Software contract

Pentium 4, 3.0 GHz,
10000 —1 20 stage, 3 CISC
(SpECint) : |issue (6 uop issue)

Uniproccessor

1000 ------- Performance = - e e

Pentium 4, 3.6 GHz,
31 stage, 6 uop
issue, 3 CISC issug

« Write your software
as you choose and
the HW-geniuses

5;2%Iyear

i 100 +---SparcV7RISC --~--=-=-=====-- B i
will take care of Sstage N\
performance. P il o E POUPCOILIN .

25%Iyea‘r. . 7 stage, 4 issue

_ Performance (vs.VVAX-11/780)

"~ vax"Nautilus”,
CISC, Vax 8700

1978 1980 1982 1984 1986 1988 199:0 1992 1994 1996 1998 2000 2002 2004 2006

From Hennessy and Patterson, CompuitprArc/)itedure:A
Quantitative Approach, 4th edition, Sept. 15, 2006

Third party names arethe property oftheirowners. 2

* The result: Generations of performance ignorant software
engineers using performance-handicapped languages (such
as Java) ... which was OK since performance was a HW job.

Third party names are the property of their owners.

The good old days //‘A

18

Why many core? Its all about Power.
Power vs Performance (normalized to i486 process tech.)

30

25

20

15

Power

10

Pentium 4 (Psc) /

Pentium 4 (Wmty/

power = perf A 1.7/

/ Growth in power

Pentiumpy‘ IS unsustainable

iAﬁ@/‘/Pentium

| | |

2 4 6 8
Scalar Performance

Source: Ed Grochowski, Intel

10

Design with Power in mind

31 Pipeline

30

25

20

15

Power

10

stages

Pentium 4 (Psc)\,/

Pentium 4 (Wmt)

Mobile CPUs
power = perf A 1_7/ with shallow

pipelines use
/ less power
__—

Pentium Prg /
® Pentium M

. , <20 Pipeline
486, —% Pentium e

| | |

2 4 6 8
Scalar Performance

Source: Ed Grochowski, Intel

0

Consider power in a chip ...

C = capacitance ... it measures the ability of
a circuit to store energy:

Input Output _ _
—* Processor —— C=qV> q=CV

Work is pushing something (charge or q)
across a ‘“distance” ... in electrostatic terms
f pushing q from 0 to V:

* 4 =
Capacitance = C VT a =

Voltage =V
Frequency =f
Power = CV2f

But for a circuit q=CV so

W =CV2

power is work over time ... or how many
times in a second we oscillate the circuit

Power=W*F - Power=CV?f

... Reduce power by adding cores

Input

—* Processor

Output

——

f - tilme

Capacitance = C
Voltage =V
Frequency =f
Power = CV4f

Input

A 4

Processor
[(N Output
f/2 " 4
=/ f * t|me
Processor

f/2 || Capacitance = 2.2C
Voltage = 0.6V
Frequency = 0.5f
Power = 0.396CV?f

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing
power using transformations," /EEE Transactions on Computer-Aided Design of Integrated Source:

Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995

Vishwani Agrawal

... Many core: we are all doing it

Processor

Input

Processor

Instruction Cache

Processor

Output

Instruction scheduler/dispatch - Instruction scheduler/dispatch

3
&

Multithreaded SIMD Processor | Memory o Memory Multithreaded SIMD Processor
o
g

Multithreaded SIMD Processor | Memory g Memory Multithreaded SIMD Processor
£

Multithreaded SIMD Processor ' Memory _c=> Memory Multithreaded SIMD Processor
8
o

Multithreaded SIMD Processor ' Memory Memory Multithreaded SIMD Processor

GDDR Memory

Processor

PCle l I QPI {_ —
buffered switch _
7 7 N Y 7 N R

HSW HSW HSW HSW
\ ‘ \ —
(Shared — \(Shared)

HSW HSW HSW HSW
| L3 L L3 J
r — [—

HSW Cache Hsw || Hsw Cache HSW
\ (45MB) I\ E—
r — [—

HSW HSW HSW HSW
" " J J \ \ —
- —

\ A buffere‘zdrswnhc/lhem HSW

Memory Eontroller ‘ ControEIiIe;r)

K 38

Hardware Diversity: Basic Building Blocks

s CPU Core: one or more hardware threads sharing
W . . .
an address space. Optimized for low latencies.

SIMD: Single Instruction Multiple Data.
Vector registers/instructions with 128 to 512 bits so a
single stream of instructions drives multiple data

elements.
TCaohe | SIMT: Single Instruction Multiple Threads.
A single stream of instructions drives many threads. More

threads than functional units. Over subscription to hide
latencies. Optimized for throughput.

e

Hardware Diversity: Combining building

LLC

Multicore CPU

el [erfa e

blocks to construct nodes

Manycore CPU

|| ICache ||| ICache |
Scheduler

Sl

[iCache || [ICache |

Scheduler Scheduler

SEEEla

Heterogeneous: CPU+GPU

010 010 0010 0010 011
]
010 OO OO 0110 011 9 4==)
T I I
01T M O 0110 011
7 2
0 010 OO 010 01

Heterogeneous:
CPU + manycore coprocessor

Jor
Scheduler
O

| R

Heterogeneous:
Integrated CPU+GPU

Hardware diversity: CPUs

[PCle QPI)
7? Buffered switch 1§ HSW ® ® i
, , pufteredswitch — Intel® Xeon® processor: multicore
W W JLHW W) E7 v3 series (Haswell or HSW)
(Shared) Shared)
W 13 HSW | W 13 HSW « 18 cores
Wl ey (s) (rswll]| < |([vsw]« 36 Hardware threads
[Hsw [} J[rsw){ mswi]| I([Hsw 256 bit wide vector units
\ A buffer(‘edrswitch HSW)
k A A In both cases ... Cache hierarchy to
@@ @@ create a low latency, coherent
view of a shared address space.
Core Core Core Core
PCle
e B EE Intel® Xeon Phi™ coprocessor
- - . : _
g -| bl o e b | (Knights Corner): Many core
GDDRMC| |] aL] aL | alL | alL | GDDRMCl L4 61 cores
- ’ « 244 Hardware threads
SN RN N « 512 bit wide vector units
2J0) 3J0) 2J0) 3J0)

Hardware diversity: GPUs

« Nvidia® GPUs are a collection of “Streaming Multiprocessors” (SM)
— Each SM is analogous to a core of a Multi-Core CPU

« Each SMis a collection of SIMD execution pipelines that share
control logic, register file, and L1 Cache#

For example: an NVIDIA
Tesla C2050 (Fermi) GPU
with 3GB of memory and
14 streaming
multiprocessor cores”.

DRAMIF
NI 2-e]

o
bl
>
S
1\.‘

WY¥a

dil

DRAMI/F
NN 2]

Third party names are the property of their owners.

N/

PolyMorph Engine

I Vertex Fetch || Tessellator |
\ #Source: UC Berkeley, CS194,

W T Fall'2014, Kurt Keutzer and Tim Mattson

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/

The result...

... partial solution: simple low power cores ' How multiple cores reduce power //’A

. | Processor
05 Pentium 4 (Psc) / Output

— Processor

Pentium 4 (Wmt)/o/ Out
put
20 rfA”/ Mobile CPUS i [input] 72 -
[power = pe - with shallow
o

/ pipelines use
less power —

10 P Capacitance =C FIEEESTT
Pentium Prg — Voltage = V

5 ¢ Pentium M Frequency =f

Power = CV2f f/2 || Capacitance =2.2C
0 1486 Pentium Voltage = 0.6V

Frequency =0.5f

0 2 4 6 8 Power = 0.396C\V/2f
Scalar Performance Chandrakasan, A.P; Potkonjak, M.; Mehra, R.; Rabaey,J.; Brodersen, R.W,
"Optimizing power using transformations," JEEE Transactions on Computer- Source:
) Aided Design of Integrated Circuits and Systems,, vol.14,no.1, pp.12-31, Jan Vishwani Agrawal
Source: E. Grochowski of Intel

1995

A new HW/SW contract ... HW people will do
what’s natural for them (lots of cores) and
optimization is up to SW people who will have to
adapt (rewrite everything)

The problem is this was presented as an ultimatum
... nobody asked us if we were OK with this new
contract ... which is kind of rude.

28

It’s really about competing software platforms

Instruction Cache

Instruction scheduler/dispatch = Instruction scheduler/dispatch
©
‘@
Multithreaded SIMD Processor = Memory § Memory Multithreaded SIMD Processor
=
Multithreaded SIMD Processor = Memory g Memory Multithreaded SIMD Processor
£

GPU

Single Instruction multiple threads.
* turn loop bodies into kernels.
* HW intelligently schedules kernels to
hide latencies.
Dogma: a natural way to express huge

Multithreaded SIMD Processor | Memory _a=: Memory Multithreaded SIMD Processor .
8 amounts of data parallelism
Multithreaded SIMD Processor | Memory Memory Multithreaded SIMD Processor o ExampleS' CUD A OpenCL Open ACC
¢ 9 2
GDDR Memory
[PCie | | QP) CPU
buffered swich [J W Shared Address space, multi-threading.
r r N A\ r N\ AT . .
HSW HSW [| HSW HSW * Many threads executing with
my Shfged hsw 1 Hsw Shfged HSW coherent shared memory.
\ —— . . 1
ol cache [T el Cache |ffe Dogma: The legacy programming model
; (45MB) | H—I% — people already know. Easier than
HSW HSW HSW HSW :
_ASWIIL JUHSW L ‘ ‘ alternatives.
d switch)
'—Nﬁ}(== rSW't,\C,, — HSW Examples: OpenMP, Pthreads, C++11
Memory Controller Cor?trpoller

@ @ @ @ *third party names are the property of their owners

Outline

« High Performance computing: A hardware system view
* The processors in HPC systems

= . Parallel Computing: Basic Concepts
* The Fundamental patterns of parallel Computing

30

_

~J \ Concurrency vs. Parallelism

® Two important definitions:
= Concurrency: A condition of a system in which multiple tasks
are logically active at one time.

= Parallelism: A condition of a system in which multiple tasks
are actually active at one time.

— — E—
1 —] -

—— S

Concurrent, parallel Execution

31

Concurrency vs. Parallelism

® Two important definitions:
= Concurrency: A condition of a system in which multiple tasks
are logically active at one time.

= Parallelism: A condition of a system in which multiple tasks
are actually active at one time.

Programs

Concurrent
Programs

Parallel
Programs

32

Concurrency in Action: a web server

® A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):

= An arbitrary, large number of clients make requests which reference
per-client persistent state

® Consider an Image Server, which relieves load on primary web servers
by storing, processing, and serving only images

Web \
Server Image

Server Images

The Internet

Images

Client

Concurrency in Action: a web server

® An Web Server is a Concurrent Application (the problem is
fundamentally defined in terms of concurrent tasks):

= An arbitrary, large number of clients make requests which reference
per-client persistent state

® Consider an Image Server, which relieves load on primary web servers
by storing, processing, and serving only images

Web
Server Image |
mages
The Internet D g
Client

34

Concurrency in Action: a web server

® A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):

= An arbitrary, large number of clients make requests which reference
per-client persistent state

® Consider an Image Server, which relieves load on primary web servers
by storing, processing, and serving only images

Web
Server Image |
mages
The Internet D g
HTTP Request
For each i
client ... Client

35

Concurrency in Action: a web server

® A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):

= An arbitrary, large number of clients make requests which reference
per-client persistent state

® Consider an Image Server, which relieves load on primary web servers
by storing, processing, and serving only images

Image Request

Web
SSRves HTML doc. mage
mages
The Internet D g
For each i
client ... Client

36

Concurrency in Action: a web server

® A Web Server is a Concurrent Application (the problem is fundamentally
defined in terms of concurrent tasks):

= An arbitrary, large number of clients make requests which reference
per-client persistent state

® Consider an Image Server, which relieves load on primary web servers
by storing, processing, and serving only images

Server Image

Server Images

The Internet

For each
client ...

Images

Client

Concurrency in Action: a web server

® The Web server, image server, and clients (you have to plan on having
many clients) all execute at the same time

Web

Server \ Image

Images
The Internet Tl <
Images

" The problem of one or more clients interacting with a web server not
only contains concurrency, the problem is fundamentally current. It
doesn’t exist as a serial problem.

Client

~—

Concurrent application: An application for which
the problem definition is fundamentally concurrent.

38

NN e

~J \ Concurrency in action: Mandelbrot Set

®" The Mandelbrot set: An iterative map in the complex plane

2
zZ 1=2, 7 C'; -z O, C is constant

s

® Color each point in 1 P
the complex plain oA W
of C values based
on convergence or
divergence of the
iterative map.

Aeuibewi
0

N N S i

) \ Concurrency in action: Mandelbrot Set

int mandel (complex C) {

int n; Function to compute the iterative map for
double a = C.real(); a single point C where
double b = C.imag(); Cz=a+b*i
double zr =0.0, zi = 0.0; .
Where i is the square root of (-1)

double tzr , tzi ;

n=0;

while (n < max_iters && sqrt (zr*zr + zi*zi) < t) {
tzr = (zr*zr - zi*zi) + a; “t” is a constant that
tzi = (zr*zi + zr*zi) + b; defines a threshold
21 = tzr1 - beyo_nd whlch we

_ o consider the iterative

Zl =1z1; map to diverge.
n=n+1;

Y

return n;

¥

40

_

)\ Concurrency in action: Mandelbrot Set

® To generate the famous Mandelbrot set image, we use the function
mandel(C) where C comes from the points in the complex plane.

® At each point C, use A
n=mandel(C) to determine if:

® The map converges
(n=max_iters), assign the
color black

® The map diverges
(n<max_iters), assign the
color based on the value of Aoy
n

® The computation for each point
IS independent of all the other
points ... a so-called
embarrassingly parallel
problem .

Areuibewi

41

Concurrency in action: Mandelbrot Set

® The following is simplified code for the serial Mandelbrot program.

for (i=0; i<N; i++){
for (j=0; j<N; j++) {
complex ¢ = get_const_at_pixel(i,j);

complex imageli][j] = mandel(c);

42

_

) \ Concurrency in action: Mandelbrot Set

® The following is simplified code for the serial Mandelbrot program.

" Loop iterations are independent, so we can create a parallel version of
this program as follows ...

=0: I<N: i1++
M I<N; Q{/ « Combine the two loops into one big loop

] . and execute them in parallel

complex ¢ = get_const_at_pixel(i,j);

complex imageli][j] = mandel(c);

43

_

)\ Concurrency in action: Mandelbrot Set

®" The problem of
generating an image of
the Mandelbrot set can
be viewed serially.

® We choose to exploit the A
concurrency contained in CVR .. e
this problem so we can f
generate the image in
less time

Parallel application: An application composed of
tasks that actually execute concurrently in order to (1)
consider larger problems in fixed time or (2) complete in
less time for a fixed size problem.

44

_

~J \ Concurrency vs. Parallelism: wrap up

" Key points:
= A web server had concurrency in its problem definition ... it doesn’t
make sense to even think of writing a “serial web server”.

= The Mandelbrot program didn’t have concurrency in its problem
definition. It would take a long time, but it could be serial

® Both cases use concurrency:

= A concurrent application is
concurrent by definition.

= A parallel application solves a
problem that could be serial, but
It is run in parallel by ...

1. find concurrency in the
problem

2. expose the concurrency in
the source code.

3. exploit the exposed
concurrency to complete a
job in less time.

Programs

Concurrent
Programs

Parallel
Programs

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010

\

|
J- '\ The Parallel programming process:

Find Concurrency
(Decomposition)

Original Problem

Tasks, shared and local data

46

_

)\ Decomposition in parallel programs

® Every parallel program is based on

concurrency ... i.e. tasks defined by
an application that can run at the
same time.

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of
tasks that can execute
concurrently..

= Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently.

47

_
D

)\ ecomposition in parallel programs

® Every parallel program is based on

concurrency ... i.e. tasks defined by What's a task
an application that can run at the decomposition for this
same time. problem?

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of
tasks that can execute
concurrently..

= Data decomposition: How must
the data be broken down into
chunks and associated with
threads/processes to make the
parallel program run efficiently.

s by

48

_
D

)\ ecomposition in parallel programs

" Every parallel program is based on Hint: Think of the source
concurrency ... i.e. tasks defined by code and work that is
an application that can run at the compute-intensive that can
same time. execute independently

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of
tasks that can execute i

for (i=0; i<N; i++){ TN i T
for (j=0; j<N; j++) { -

complex ¢ = get_const_at_pixel(i,j);

complex image[i][j] = mandel(c);

_

)\ Decomposition in parallel programs

® Every parallel program is based on

concurrency ... i.e. tasks defined by Task: the computation required
an application that can run at the for each pixel ... the body of the
same time. loop for a pair (i,j)-

® EVERY parallel program requires a
task decomposition and a data
decomposition:
» Task decomposition: break the
application down into a set of tasks
that can execute concurrently..
= Data decomposition: How must the A
data be broken down into chunks
and associated with threads/
processes to make the parallel

program run efficiently.

50

B ——

J \ Decomposition in parallel programs

® Every parallel program is based on

concurrency ... i.e. tasks defined by
an application that can run at the
same time.

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of
tasks that can execute
concurrently..

= Data decomposition: How must
the data (the complex plain, C)
be broken down into chunks and
associated with threads/ Suggest a data decomposition for

processes to make the parallel this problem ... assume a quad

program run efficiently. core shared memory PC. &=

B ——

) \ Decomposition in parallel programs

® Every parallel program is based on

concurrency ... i.e. tasks defined by Task: the computation required
an application that can run at the for each pixel ... the body of the
same time. loop for a pair (i,j).

® EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of
tasks that can execute
concurrently..

= Data decomposition: How must
the data (the complex plain, C)
be broken down into chunks and
associated with threads/ Hint: you can define the data

decomposition to match the task
rocesses to make the parallel ’
E ogram run efficiently P but would that be efficient in this

1
case”? i

oy g

I
J

Decomposition in parallel programs

" Every parallel program is based on

concurrency ... i.e. tasks defined by
an application that can run at the
same time.

" EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of tasks
that can execute concurrently..

» Data decomposition: How must the
data (the complex plain, C) be
broken down into chunks and
associated with threads/processes to
make the parallel program run
efficiently.

Map the pixels into row blocks and
deal them out to the cores. This

will give each core a memory
S O =
efficient block to work on.]

" Every parallel program is based on
concurrency ... i.e. tasks defined by
an application that can run at the

But given this data decomposition, it is
effective to think of a task as the update
to a pixel? Should we update our task
definition given the data decomposition?

same time.

" EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of tasks
that can execute concurrently..

» Data decomposition: How must the
data (the complex plain, C) be
broken down into chunks and
associated with threads/processes to
make the parallel program run
efficiently.

Map the pixels into row blocks and
deal them out to the cores. This

will give each core a memory
S O =
efficient block to work on.]

~

" Every parallel program is based on
concurrency ... i.e. tasks defined by
an application that can run at the
same time.

Yes. You go back and forth between
task and data decomposition until you
have a pair that work well together. In
this case, let’s define a task as the
update to a row-block

" EVERY parallel program requires a
task decomposition and a data
decomposition:

» Task decomposition: break the
application down into a set of tasks
that can execute concurrently..

» Data decomposition: How must the
data (the complex plain, C) be
broken down into chunks and
associated with threads/processes to
make the parallel program run
efficiently.

Map the pixels into row blocks and
deal them out to the cores. This

will give each core a memory ——
efficient block to work on. i

Recap:

Find Concurrency
(Decomposition)

Original Problem

Tasks, shared and local data

< To expose concurrency in a problem, we need to
understand how the problem is decomposed into tasks
AND how the problem’s data is decomposed to support
efficient computation.

<+ YOU ALWAYS NEED BOTH.

56

Outline

« High Performance computing: A hardware system view
* The processors in HPC systems
 Parallel Computing: Basic Concepts

=+ The Fundamental patterns of parallel Computing

57

Data Parallelism Pattern

 Use when:

—Your problem is defined in terms of independent
collections of data elements operated on by a similar (if
not identical) sequence of instructions; i.e. the
concurrency is in the data.

— Hint: when the data decomposition dominates your design,
this is probably the pattern to use!

e Solution

— Define collections of data elements that can be updated in
parallel.

— Define computation as a sequence of collective operations
applied together to each data element.

!] ! ! }

a1 | [pawz | (w3 | [| [Don

Task Parallelism Pattern

® Use when:

* The problem naturally decomposes into a
distinct collection of tasks

 Hint: when the task decomposition
dominates you design, this is probably
the pattern to use.

e Solution

— Define the set of tasks and a way to detect when the
computation is done.

— Manage (or “remove”) dependencies so the correct
answer is produced regardless of the details of how
the tasks execute.

— Schedule the tasks for execution in a way that keeps
the work balanced between the processing elements
of the parallel computer and

Task Parallelism in practice

 Embarrassingly parallel:

— The tasks are independent, so the parallelism is “so
easy to exploit it's embarrassing”.

» Separable dependencies:

— Turn a problem with dependent tasks into an
“embarrassingly parallel” by “replicating data between
tasks, doing the work, then recombining data (often a
reduction) to restore global state.

* Functional Decomposition

— A task is associated with a functional decomposition
of the problem to produce a coarse grained parallel

program

N

Its becoming common to associate this
case as the prototypical “task parallel”
approach ... but to us old-timers, the
previous two cases are overwhelming
more common.

Fundamental Design Patterns:

« Data Parallelism:
— Kernel Parallelism
— Geometric Decomposition
— Loop parallel

e Task Parallelism
— Task queue
— Divide and Conquer
— Loop parallel

* Implementation Patterns (used to support the above)
— SPMD (Any MIMD machine, but typically distributed memory)
— Fork Join (Multithreading, shared address space MIMD)
— Kernel Parallelism (GPGPU)

61

SPMD: Single Program Mulitple Data

* Run the same program on P processing elements where P
can be arbitrarily large.

* Use the rank ... an ID ranging from 0 to (P-1) ... to select
between a set of tasks and to manage any shared data
structures.

This pattern 1s very general and has been used to support most (1f
not all) the algorithm strategy patterns.

MPI programs almost always use this pattern ... 1t 1s probably
the most commonly used pattern in the history of parallel
programming.

6D

Loop parallelism

» Collections of tasks are defined as iterations of one or more loops.

« Transform loop body to remove loop carried dependencies and assure
that the right answer is produced regardless of the order iterations are
carried out.

» Loop iterations are divided between a collection of processing elements
to compute tasks concurrently.

#pragma omp parallel for shared(Results) schedule(dynamic)

For(i=0;i<N;i++){
Do work(i, Results);

;

This design pattern is also heavily used with data parallel design patterns.
OpenMP programmers commonly use this pattern.

63

Kernel Parallelism

 Kernel Parallelism:

— Implement data parallel problems:
— Define an abstract index space that spans the problem domain.
— Data structures in the problem are aligned to this index space.

— Tasks (e.g. work-items in OpenCL or “threads” in CUDA) operate on
these data structures for each point in the index space.

« This approach was popularized for graphics applications
where the index space mapped onto the pixels in an image.
Since 2000, It's been extended to General Purpose GPU
(GPGPU) programming.

Note: This is basically a fine grained extreme form of
the SPMD pattern.

64

Fork-join

 Use when:
— Target platform has a shared address space

— Dynamic task parallelism

« Particularly useful when you have a serial program to
transform incrementally into a parallel program

« Solution:
1. A computation begins and ends as a single thread.
2. When concurrent tasks are desired, additional threads are forked.
3. The thread carries out the indicated task,
4. The set of threads recombine (join)

Cilk and OpenMP 3.0 with explicit tasks make heavy use of this
pattern.

A8

Fork-join Design Pattern

 Use when:
— Target platform has a shared address space
— Dynamic task parallelism
Particularly useful when incrementally parallelizing a serial program.
« Solution:
1. A computation begins and ends as a single thread.
2. When concurrent tasks are desired, additional threads are forked.
3. The thread carries out the indicated task,
4. The set of threads recombine (join)

Parallel Regions

Master /

A Nested
l Parallel
Thread — region
in green
areen L——\ —
P K P — Q S
4~._’H~._’,¢q~.
\ /7 A\ 7 S G . 4
N , \\ ,// N s e s
N

Divide and Conquer Pattern

 Use when:

— A problem includes a method to divide into subproblems
and a way to recombine solutions of subproblems into a
global solution.

 Solution
— Define a split operation

— Continue to split the problem until subproblems are small
enough to solve directly.

— Recombine solutions to subproblems to solve original
global problem.

* Note:

— Computing may occur at each phase (split, leaves,
recombine).

Divide and conquer

 Split the problem into smaller sub-problems. Continue until
the sub-problems can be solve directly.

3 Options:

roblem .
- . | 0 Do work as you split
spirl .
/ \. into sub-problems.
subproblem subproblem ’

D K only at th
/spli!, \ /splil, \ u Iezvvézr only at the

subproblecm
- 0 Do work as you
recombine.

‘ subproblem ‘ subproblem ’ ‘ subproblem ’

solve solve solve solve
Y Y

-
-

subsolution ‘ subsolution ‘ subsoluiion ‘

Nl N

subsolution ‘ subsolution ‘

‘ solution ‘

subsolution ‘

Task Queue

 Use When

— The computation is defined as a collection of independent tasks.
— The key challenge is how to schedule them such that the
computational load is evenly distributed.
 Solution:
— Set up collection of workers to carry out the work.
— Put tasks into a shared queue

— Workers grab tasks, carry out computations, then return to queue for
more work.

— There must be some way to detect when the work is done and then
shut down the workers.

This is an easy way to implement automatic load balancing ... so
easy that for years we’ve been telling people to use this pattern
whenever they can.

A0

Geometric Decomposition

 Use when:

— The problem is organized around a central data structure that can
be decomposed into smaller segments (chunks) that can be
updated concurrently.

e Solution

— Typically, the data structure is updated iteratively where a new
value for one chunk depends on neighboring chunks.

— The computation breaks down into three components: (1) exchange
boundary data, (2) update the interiors or each chunk, and (3)
update boundary regions. The optimal size of the chunks is dictated
by the properties of the memory hierarchy.

* Note:

— This pattern is often used with the Structured Mesh and linear
algebra computational strategy pattern.

70

Summary

Processors with lots of cores/vector-units/SIMT
connected into clusters are here to stay. You have
no choice ... embrace parallel computing!

Outline

» High Performance computing: A hardware system view
* The processors in HPC systems

 Parallel Computing: Basic Concepts

« The Fundamental patterns of parallel Computing

IA

Summary

Processors with lots of cores/vector-units/SIMT
connected into clusters are here to stay. You have

no choice ... embrace parallel computing!

Outline

Protect your software
investment ... refuse to
use any programming
model that locks you to
a vendors platform.
Open Standards are the
ONLY rational approach
in the long run.

» High Performance computing: A hardware system view
* The processors in HPC systems

 Parallel Computing: Basic Concepts

« The Fundamental patterns of parallel Computing

12

The software platform debate!

Recall my earlier
comment ... the

competing visions are
less about hardware
and more about the

’ Instruction Cache
’ Instruction scheduler/dispatch ‘ 2 Instruction scheduleridispatch
| Multithreaded SIMD Processor & Memory I g [Memory Multithreaded SIMD Processor
o
L Multithreaded SIMD Processor & Memory I § [Memory Muireaded SIMD Processor]
Ml
=
o
[Memory Muithreaded SIMD Processor]
GDDR Memory

programmers software = ————— HSW
ulfered switc
—_— '
platform wsw) (rsw asw)
| wswlll["2 |flsw][wswilll 3o (| asw]
: L3 L3
[HSW Cache HSW][HSW Eache HSW]
(45MB)

[HSW HSW][HSW HSW]

\) buffered switch HSW

~ - — Mem
[Memory Controller][Controller

88

83

It’s really about competing software platforms

GPU

;. *» Single Instruction multiple

threads.
« turn loop bodies into kernels.
* HW intelligently schedules kernels
to hide latencies.
« Dogma:. a natural way to express huge
amounts of data parallelism

CPU

« Shared Address space, multi-
threading.

« Many threads executing with
coherent shared memory.

» Dogma: The legacy programming
model people already know. Easier
than alternatives.

* Examples: OpenMP, Pthreads, C++11

*third party names are the property of their owners

The official strategy at Intel.

.
-
-
-
-

- -
~

Everything is a
cluster of “shared
address space
multithreaded”
computers.

One programming
model from laptop to
supercomputer

High Performance Parallel Programming -

One Toolset from Multicore to Many-core to
Heterogeneous Computing

Compiler

Libraries
Parallel Models

Archite
Co-proc

Use Standard Programming Models Today.
Scale Forward Tomorrow.

74

What about the competing platform:
Single Instruction multiple thread (SIMT)?

« Dominant as a proprietary solution based on CUDA and
OpenACC.

« But there is an Open Standard response (supported to
varying degrees by all major vendors)

QES
..t \}‘ SIMT programming for CPUs, GPUs, DSPs, and FPGAs.
&= ‘ Basically, an Open Standard that generalizes the SIMT

platform pioneered by our friends at NVIDIA®

OpenMP 4.0 added target and device directives ... Based

OpenMP on the same work that was used to create OpenACC.

Therefore, just like OpenACC, you can program a GPU
with OpenMP!!!

The long term viability of the SIMT platform depends on the user community

demanding (and using) the Open Standard alternatives!
*third party names are the property of their owners 75

Summary

Processors with lots of cores/vector-units/SIMT
connected into clusters are here to stay. You have
no choice ... embrace parallel computing! -

Outline

Protect your software
investment ... refuse to
use any programming
model that locks you to
a vendors platform.
Open Standards are the
ONLY rational approach
in the long run.

» High Performance computing: A hardware system view
* The processors in HPC systems
 Parallel Computing: Basic Concepts and OpenCL
« The Fundamental patterns of parallel Computing

OpenMP, MPI,

are in most
cases, the way
to go

16

Summary

Processors with lots of cores/vector-units/SIMT
connected into clusters are here to stay. You have
no choice ... embrace parallel computing! -

Outline

Protect your software
investment ... refuse to
use any programming
model that locks you to
a vendors platform.
Open Standards are the
ONLY rational approach
in the long run.

* The processors in HPC systems
 Parallel Computing: Basic Concepts
« The Fundamental patterns of parallel Computing

There are countless parallel
algorithms ..
small number of design patterns.
Focus on the patterns and how to
apply them in your programming
models of choice and you’ll be OK.

. but they make use of a

» High Performance computing: A hardware system view

OpenMP, MPI,
and OpenCL
are in most
cases, the way
to go

717

Background references

Structured. Parallel
Programming

A great book that explores key
patterns with Cilk, TBB, OpenCL,
and OpenMP (by McCool, Robison,
and Reinders)

A
vy

PATTERNS
FOR PARALLEL
PROGRAMMING

Vil
7/

e A book about how to “think
parallel” with examples in
OpenMP, MPI and java

78

