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Parallel Computing 
Introduction 

* The name “OpenMP” is the property of the OpenMP Architecture Review Board. 
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Disclaimer 
• The views expressed in this talk are those of the 

speaker and not his employer. 
• If I say something stupid, blame me … not the smart 

people I work with.  

I work in Intel’s research labs.  I don’t build products.  Instead, I get 
to poke into dark corners and think silly thoughts… just to make sure 

we don’t miss any great ideas.     
 

Hence, my views are by design far “off the roadmap”. 

I have a great job! 

Slides marked with this symbol come from a course at UC 
Berkeley that I teach with Professor Kurt Keutzer. 



I’m just a simple kayak instructor 

Photo © by Greg Clopton, 2014  

Introduction 
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To support my kayaking habit I 
work as a parallel programmer 

Which means I know how to turn 
math into lines on a speedup plot 

P 

S 



Outline 

•  High Performance computing: A hardware system view 
•  The processors in HPC systems 
•  Parallel Computing: Basic Concepts 
•  The Fundamental patterns of parallel Computing 
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High performance 
computing is addictive  
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The birth of Supercomputing 

•  The CRAY-1A: 
–  12.5-nanosecond clock,  
–  64 vector registers, 
–  1 million 64-bit words of high-

speed memory.  
–  Speed: 

–  160 MFLOPS vector peak speed 
–  110 MFLOPS Linpack 1000 (best 

effort) 

•  Cray software … by 1978  
–  Cray Operating System (COS),  
–  the first automatically vectorizing 

Fortran compiler (CFT), 
–  Cray Assembler Language (CAL) 

were introduced.  
§  On July 11, 1977, the CRAY-1A, serial 

number 3, was delivered to NCAR. The 
system cost was $8.86 million ($7.9 
million plus $1 million for the disks). 

http://www.cisl.ucar.edu/computers/gallery/cray/cray1.jsp 
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The original Supercomputers 
The Era of the Vector Supercomputer 

•  Large mainframes that operated on vectors of data 
•  Custom built, highly specialized hardware and software 
•  Multiple processors in an shared memory configuration 
•  Required modest changes to software (vectorization) 

The Cray C916/512 at the Pittsburgh 
Supercomputer Center 
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The attack of the killer micros 

•  The Caltech Cosmic 
Cube developed by 
Charles Seitz and 
Geoffrey Fox in1981 

•  64 Intel 8086/8087 
processors 

•  128kB of memory per 
processor 

•  6-dimensional 
hypercube network 

http://calteches.library.caltech.edu/3419/1/Cubism.pdf 
 

The cosmic cube, Charles Seitz 
Communications of the ACM, Vol 28, number 1 January 1985, p. 
22  

Launched the “attack 
of the killer micros”  
Eugene Brooks, SC’90 
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Vector MPP 

Improving CPU performance and weak scaling 
helped MPPs dominate supercomputing 

•  Parallel computers with large numbers of commercial off the shelf 
microprocessors  

•  High speed, low latency, scalable interconnection networks  
•  Lots of custom hardware to support scalability 
•  Required massive changes to software (parallelization)  

Paragon XPS-140 at Sandia 
National labs in Albuquerque NM 
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SIMD computers … the other MPP supercomputer 

Thinking machines 
CM-2: The Classic 
Symmetric SIMD 
supercomputer 
(mid-80’s): 
Description: Up to 64K bit-
serial processing elements. 

Strength: Supports 
deterministic programming 
models … single thread of 
control for ease of 
understanding. 

Weakness: Poor  floating point 
performance.  Programming 
model was not general 
enough.  TMC struggled 
throughout the 90’s and filed 
for bankruptcy in 1994. 

Third party names are the property of their owners.

“… we want to build a computer that 
will be proud of us”, Danny Hillis



The MPP future looked bright … but then 
clusters took over 

•  A cluster is a collection of connected, independent computers that work in 
unison to solve a problem. 

•  Nothing is custom … motivated users could build a cluster on their own 

§  First clusters appeared in 
the late 80’s (Stacks of 
“SPARC pizza boxes”)

§  The Intel Pentium Pro in 
1995 coupled with Linux 
made them competitive.
§  NASA Goddard’s Beowulf 

cluster demonstrated 
publically that high visibility 
science could be done on 
clusters.

§  Clusters made it easier to 
bring the benefits due to 
Moores’s law into working 
supercomputers



Top 500 list: System Architecture  

*Constellation: A cluster for which the  number of processors on a node is greater than the number of nodes in the 
cluster.  I’ve never seen anyone use this term outside of the top500 list. 

*

Source: http://s.top500.org/static/lists/2013/06/TOP500_201306_Poster.pdf 



Execution model: Distributed memory MIMD 

•  Cluster or MPP … the future is clear.  Distributed memory scales and is more 
energy efficient (cache coherence moves lots of electrons around and that 
consumes lots of power). 

•  Each node has its own processors, memory and caches but cannot directly access 
another node’s memory. 

•  Each “node” has a Network Interface component (NIC) for all communication and 
synchronization. 

•  Fundamentally more scalable than shared memory machines … especially cache 
coherent shared memory. 

interconnect 

P0 

memory 

NIC 

. . . 

P1 

memory 

NIC Pn 

memory 

NIC 



Programming Model:  Message Passing 
•  Program consists of a collection of named processes. 

– Number of processes usually fixed at program startup time 
– Local address space per node -- NO physically shared memory. 

•  Processes communicate by explicit send/receive pairs 
– Coordination is implicit in every communication event. 
– MPI (Message Passing Interface) is the most commonly used SW 

Pn P1 P0 

s: 12  

i: 2 

Private 
memory 

s: 14  

i: 3 

s: 11  

i: 1 

send P1,s 

Network 

receive Pn,s 



Outline 

•  High Performance computing: A hardware system view 
•  The processors in HPC systems 
•  Parallel Computing: Basic Concepts 
•  The Fundamental patterns of parallel Computing 
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Moore's Law 

Moore’s Law 

Slide source: UCB CS 194 Fall’2010 

•  In 1965, Intel co-founder Gordon Moore predicted (from just 3 data 
points!) that semiconductor density would double every 18 months. 
– He was right! Over the last 50 years, transistor densities have 

increased as he predicted. 
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The good old days … 

From Hennessy and Patterson, Computer Architecture: A Quantitative 
Approach, 4th edition, Sept. 15, 2006 

Vax “Star”, CISC 
Vax-11/780 Vax “Nautilus”, 

CISC, Vax 8700 

Sparc V7 RISC 
5-stage 
Sun 4/260 
16.7 MHz PowerPC 604, 100 MHz 

7 stage, 4 issue 

Pentium 4, 3.6 GHz, 
31 stage, 6 uop issue, 
3 CISC issue 

Third party names are the property of their owners. 

(SPECint) 
Uniproccessor 
Performance 

Pentium 4, 3.0 GHz, 
20 stage, 3 CISC issue 
(6 uop issue) 



The Hardware/Software contract 

•  Write your software 
as you choose and 
the HW-geniuses 
will take care of 
performance. 

18 

•  The result: Generations of performance ignorant software 
engineers using performance-handicapped languages (such 
as Java) … which was OK since performance was a HW job. 
Third party names are the property of their owners. 
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   Why many core?   Its all about Power. 
Power vs Performance (normalized to i486 process tech.)  
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Growth in power 
is unsustainable 

Source:  Ed Grochowski, Intel 
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Design with Power in mind 
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Consider power in a chip …  

Processor  

f 

Input Output 

Capacitance = C 
Voltage = V 
Frequency = f 
Power = CV2f 

C = capacitance  … it measures the ability of 
a circuit to store energy: 
 

C = q/V à    q = CV 
 
Work is pushing something (charge or q) 
across a “distance” … in electrostatic terms  
pushing q from 0 to V: 
 

V * q = W.      
 
But for a circuit    q = CV   so  
     

 W = CV2      
 
power is work over time … or how many 
times in a second we oscillate the circuit  
 
      Power = W* F   à      Power = CV2f 



... Reduce power by adding cores 

Chandrakasan, A.P.; Potkonjak, M.; Mehra, R.; Rabaey, J.; Brodersen, R.W., "Optimizing 
power using transformations," IEEE Transactions on Computer-Aided Design of Integrated 
Circuits and Systems,, vol.14, no.1, pp.12-31, Jan 1995  

Source:   
Vishwani Agrawal 

Processor  

f 

Input Output 

Capacitance = C 
Voltage = V 
Frequency = f 
Power = CV2f 

f * time 

Processor  

f/2 

Processor  

f/2 

Input 

Output 

Capacitance = 2.2C 
Voltage = 0.6V 
Frequency = 0.5f 
Power = 0.396CV2f 

f * time 



... Many core: we are all doing it 

PCIe QPI

HSW HSW

HSW HSW
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Hardware Diversity: Basic Building Blocks 

ICache 
Scheduler 

CPU Core:  one or more hardware threads sharing 
an address space. Optimized for low latencies. 

SIMD: Single Instruction Multiple Data. 
Vector registers/instructions with 128 to 512 bits so a 
single stream of instructions drives multiple data 
elements. 

SIMT: Single Instruction Multiple Threads. 
A single stream of instructions drives many threads. More 
threads than functional units.  Over subscription to hide 
latencies. Optimized for throughput.    



Hardware Diversity: Combining building 
blocks to construct nodes 

LLC 

LL
C

 

LLC 

LLC 

Multicore CPU 

Heterogeneous: CPU+GPU 
Heterogeneous:  

Integrated CPU+GPU 

Heterogeneous:  
CPU + manycore coprocessor 

Manycore CPU 



Hardware diversity: CPUs 
PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory	
  Controller

buffered	
  switch

buffered	
  switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory	
  
Controller

HSW

Intel® Xeon® processor: multicore 
E7 v3 series (Haswell or HSW) 
•  18 cores 
•  36 Hardware threads 
•  256 bit wide vector units  

Intel® Xeon Phi™ coprocessor 
(Knights Corner): Many core 
•  61 cores 
•  244 Hardware threads 
•  512 bit wide vector units  

In both cases … Cache hierarchy to 
create a low latency, coherent 
view of a shared address space. 



Hardware diversity: GPUs 
•  Nvidia® GPUs are a collection of “Streaming Multiprocessors” (SM) 

–  Each SM is analogous to a core of a Multi-Core CPU 
•  Each SM is a collection of SIMD execution pipelines that share 

control logic, register file, and L1 Cache#  

#Source: UC Berkeley, CS194, 
Fall’2014, Kurt Keutzer and Tim Mattson 

For example: an NVIDIA 
Tesla C2050 (Fermi) GPU 
with 3GB of memory and 
14 streaming 
multiprocessor cores*. 

*Source: http://www.nersc.gov/users/computational-systems/dirac/node-and-gpu-configuration/ 

Third party names are the property of their owners. 



The result… 
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+ 

= 
A new HW/SW contract … HW people will do 
what’s natural for them (lots of cores) and 
optimization is up to SW people who will have to 
adapt (rewrite everything) 

The problem is this was presented as an ultimatum 
… nobody asked us if we were OK with this new 

contract … which is kind of rude.   



It’s really about competing software platforms 

PCIe QPI

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache
(45MB)

Memory	
  Controller

buffered	
  switch

buffered	
  switch

HSW HSW

HSW HSW

HSW HSW

HSW HSW

Shared
L3

Cache

HSW

Memory	
  
Controller

HSW

GPU 
•  Single Instruction multiple threads. 

•  turn loop bodies into kernels. 
•  HW intelligently schedules kernels to 

hide latencies. 
•  Dogma: a natural way to express huge 

amounts of data parallelism 
•  Examples: CUDA, OpenCL, OpenACC 

CPU 
•  Shared Address space, multi-threading. 

•  Many threads executing with 
coherent shared memory. 

•  Dogma: The legacy programming model 
people already know.  Easier than 
alternatives. 

•  Examples: OpenMP, Pthreads, C++11 

*third party names are the property of their owners 



Outline 

•  High Performance computing: A hardware system view 
•  The processors in HPC systems 
•  Parallel Computing: Basic Concepts 
•  The Fundamental patterns of parallel Computing 
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Concurrency vs. Parallelism

§  Two important definitions:
§  Concurrency: A condition of a system in which multiple tasks 

are logically active at one time.
§  Parallelism: A condition of a system in which multiple tasks 

are actually active at one time.

Concurrent, parallel Execution 

Concurrent, non-parallel Execution 
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Concurrency vs. Parallelism

§  Two important definitions:
§  Concurrency: A condition of a system in which multiple tasks 

are logically active at one time.
§  Parallelism: A condition of a system in which multiple tasks 

are actually active at one time.

Programs 

Concurrent 
Programs 

Parallel 
Programs 
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Images 
The Internet 

Image 
Server 

Web 
Server 

Client 

Concurrency in Action: a web server

Images 

§  A Web Server is a Concurrent Application (the problem is fundamentally 
defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference 

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images 

Client Client Client Client 
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Concurrency in Action: a web server

§  An Web Server is a Concurrent Application (the problem is 
fundamentally defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference 

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images 

Images 
The Internet 

Image 
Server 

Web 
Server 

Client Client Client Client 
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Concurrency in Action: a web server

HTTP Request 

§  A Web Server is a Concurrent Application (the problem is fundamentally 
defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference 

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images 

For each 
client … 
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Images 
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Concurrency in Action: a web server

Image Request 

HTML doc. 

§  A Web Server is a Concurrent Application (the problem is fundamentally 
defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference 

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images 

For each 
client … 
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Images 
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Concurrency in Action: a web server

Images 

§  A Web Server is a Concurrent Application (the problem is fundamentally 
defined in terms of concurrent tasks):
§  An arbitrary, large number of clients make requests which reference 

per-client persistent state
§  Consider an Image Server, which relieves load on primary web servers 

by storing, processing, and serving only images 

For each 
client … 



38

Concurrency in Action: a web server

§  The Web server, image server, and clients (you have to plan on having 
many clients) all execute at the same time

§  The problem of one or more clients interacting with a web server not 
only contains concurrency, the problem is fundamentally current.  It 
doesn’t exist as a serial problem.

Concurrent application: An application for which 
the  problem definition is fundamentally concurrent.
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Concurrency in action: Mandelbrot Set

§  The Mandelbrot set: An iterative map in the complex plane

czz nn +=+
2

1 z0 = 0,       c is constant 

§  Color each point in 
the complex plain 
of C values based 
on convergence or 
divergence of the 
iterative map. 

CReal   

C
im

aginary    
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Concurrency in action: Mandelbrot Set
int mandel ( complex C) {
   int n;
   double a = C.real();
   double b = C.imag();
   double zr = 0.0 , zi = 0.0;
   double tzr , tzi ;
   n = 0;
   while (n < max_iters && sqrt (zr*zr + zi*zi) < t) {
      tzr = (zr*zr - zi*zi) + a;
      tzi = (zr*zi + zr*zi) + b;
      zr = tzr ;
      zi = tzi ;
      n = n+1;
   }
   return n;
}

Function to compute the iterative map for 
a single point C where 

C = a + b * i 

Where i is the square root of (-1) 

“t” is a constant that 
defines a threshold 
beyond which we 
consider the iterative 
map to diverge. 
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Concurrency in action: Mandelbrot Set

§  To generate the famous Mandelbrot set image, we use the function 
mandel(C) where C comes from  the points in the complex plane. 

§  At each point C, use 
n=mandel(C) to determine if:
§  The map converges 

(n=max_iters), assign the 
color black

§  The map diverges 
(n<max_iters), assign the 
color based on the value of 
n

§  The computation for each point 
is independent of all the other 
points … a so-called 
embarrassingly parallel 
problem .  

CReal   

C
im

aginary    
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Concurrency in action: Mandelbrot Set

§  The following is simplified code for the serial Mandelbrot program.

for (i=0; i<N; i++){ 

   for (j=0; j<N; j++) { 

       complex c = get_const_at_pixel(i,j); 

       complex image[i][j] = mandel( c); 

   } 

} 
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Concurrency in action: Mandelbrot Set

§  The following is simplified code for the serial Mandelbrot program.
§  Loop iterations are independent, so we can create a parallel version of 

this program as follows … 

for (i=0; i<N; i++){ 

   for (j=0; j<N; j++) { 

       complex c = get_const_at_pixel(i,j); 

       complex image[i][j] = mandel( c); 

   } 

} 

•  Combine the two loops into one big loop 
and execute them in parallel  
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Concurrency in action: Mandelbrot Set

§  The problem of 
generating an image of 
the Mandelbrot set can 
be viewed serially.

§ We choose to exploit the 
concurrency contained in 
this problem so we can 
generate the image in 
less time

Parallel application: An application composed of 
tasks that actually execute concurrently in order to (1) 

consider larger problems in fixed time or (2) complete in 
less time for a fixed size problem.



45

Concurrency vs. Parallelism: wrap up

Figure from “An Introduction to Concurrency in Programming Languages” by J. Sottile, Timothy G. Mattson, and Craig E Rasmussen, 2010 

§  Key points:
§  A web server had concurrency in its problem definition … it doesn’t 

make sense to even think of writing a “serial web server”.
§  The Mandelbrot program didn’t have concurrency in its problem 

definition. It would take a long time, but it could be serial 

§  Both cases use concurrency:
§  A concurrent application is 

concurrent  by definition. 
§  A parallel application solves a 

problem that could be serial, but 
it is run in parallel by …

1.  find concurrency in the 
problem

2.  expose the concurrency in 
the source code.

3.  exploit the exposed 
concurrency to complete a 
job in less time.
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The Parallel programming process: 

Original Problem Tasks, shared and local data 

Find Concurrency 
(Decomposition) 
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Decomposition in parallel programs

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time.

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently..

§  Data decomposition: How must 
the data be broken down into 
chunks and associated with 
threads/processes to make the 
parallel program run efficiently.
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Decomposition in parallel programs

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time.

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently..

§  Data decomposition: How must 
the data be broken down into 
chunks and associated with 
threads/processes to make the 
parallel program run efficiently.

What’s a task 
decomposition for this 
problem? 
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Decomposition in parallel programs

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time.

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently..

§  Data decomposition: How must 
the data be broken down into 
chunks and associated with 
threads/processes to make the 
parallel program run efficiently.

Hint: Think of the source 
code and work that is 
compute-intensive that can 
execute independently 

for (i=0; i<N; i++){ 

   for (j=0; j<N; j++) { 

       complex c = get_const_at_pixel(i,j); 

       complex image[i][j] = mandel( c); 

   } 

} 
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Decomposition in parallel programs

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time.

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:
§  Task decomposition: break the 

application down into a set of tasks 
that can execute concurrently..

§  Data decomposition: How must the 
data be broken down into chunks 
and associated with threads/
processes to make the parallel 
program run efficiently.

Task: the computation required 
for each pixel … the body of the 
loop for a pair (i,j). 
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Decomposition in parallel programs

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time.

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently..

§  Data decomposition: How must 
the data (the complex plain, C) 
be broken down into chunks and 
associated with threads/
processes to make the parallel 
program run efficiently.

Suggest a data decomposition for 
this problem … assume a quad 
core shared memory PC.  
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Decomposition in parallel programs

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time.

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:
§  Task decomposition: break the 

application down into a set of 
tasks that can execute 
concurrently..

§  Data decomposition: How must 
the data (the complex plain, C) 
be broken down into chunks and 
associated with threads/
processes to make the parallel 
program run efficiently.

§  .

Hint: you can define the data 
decomposition to match the task, 
but would that be efficient in this 
case? 

Task: the computation required 
for each pixel … the body of the 
loop for a pair (i,j). 
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Map the pixels into row blocks and 
deal them out to the cores.  This 
will give each core a memory 
efficient block to work on. 

Decomposition in parallel programs

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time.

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:
§  Task decomposition: break the 

application down into a set of tasks 
that can execute concurrently..

§  Data decomposition: How must the 
data (the complex plain, C) be 
broken down into chunks and 
associated with threads/processes to 
make the parallel program run 
efficiently.



54

Map the pixels into row blocks and 
deal them out to the cores.  This 
will give each core a memory 
efficient block to work on. 

Decomposition in parallel programs

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time.

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:
§  Task decomposition: break the 

application down into a set of tasks 
that can execute concurrently..

§  Data decomposition: How must the 
data (the complex plain, C) be 
broken down into chunks and 
associated with threads/processes to 
make the parallel program run 
efficiently.

But given this data decomposition, it is 
effective to think of a task as the update 
to a pixel?  Should we update our task 
definition given the data decomposition?  
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Map the pixels into row blocks and 
deal them out to the cores.  This 
will give each core a memory 
efficient block to work on. 

Decomposition in parallel programs

§  Every parallel program is based on 
concurrency …  i.e. tasks defined by 
an application that can run at the 
same time.

§  EVERY parallel program requires a 
task decomposition and a data 
decomposition:
§  Task decomposition: break the 

application down into a set of tasks 
that can execute concurrently..

§  Data decomposition: How must the 
data (the complex plain, C) be 
broken down into chunks and 
associated with threads/processes to 
make the parallel program run 
efficiently.

Yes.  You go back and forth between 
task and data decomposition until you 
have a pair that work well together.  In 
this case, let’s define a task as the 
update to a row-block 
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Recap: 

Original Problem Tasks, shared and local data 

Find Concurrency 
(Decomposition) 

v  To expose concurrency in a problem, we need to 
understand how the problem is decomposed into tasks 
AND how the problem’s data is decomposed to support 
efficient computation.    

v  YOU ALWAYS NEED BOTH.



Outline 

•  High Performance computing: A hardware system view 
•  The processors in HPC systems 
•  Parallel Computing: Basic Concepts 
•  The Fundamental patterns of parallel Computing 
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Data Parallelism Pattern 
•  Use when: 

– Your problem is defined in terms of independent 
collections of data elements operated on by a similar (if 
not identical) sequence of instructions; i.e. the 
concurrency is in the data.    
– Hint: when the data decomposition dominates your design, 

this is probably the pattern to use! 
•  Solution 

– Define collections of data elements that can be updated in 
parallel. 

– Define computation as a sequence of collective operations 
applied together to each data element. 

Data 1 Data 2 Data 3 Data n 

Tasks 

…… 



Task Parallelism Pattern 

•  Solution 
– Define the set of tasks and a way to detect when the 

computation is done. 
– Manage (or “remove”) dependencies so the correct 

answer is produced regardless of the details of how 
the tasks execute.  

– Schedule the tasks for execution in a way that keeps 
the work balanced between the processing elements 
of the parallel computer and  

§  Use when:
§  The problem naturally decomposes into a 

distinct collection of tasks
•  Hint: when the task decomposition 

dominates you design, this is probably 
the pattern to use.



Task Parallelism in practice 

•  Embarrassingly parallel:  
– The tasks are independent, so the parallelism is “so 

easy to exploit it’s embarrassing”. 

•  Separable dependencies: 
– Turn a problem with dependent tasks into an 

“embarrassingly parallel” by “replicating data between 
tasks, doing the work, then recombining data (often a 
reduction) to restore global state. 

•  Functional Decomposition 
– A task is associated with a functional decomposition 

of the problem to produce a coarse grained parallel 
program  Its becoming common to associate this 

case as the prototypical “task parallel” 
approach … but to us old-timers, the 
previous two cases are overwhelming 
more common. 



Fundamental Design Patterns: 

•  Data Parallelism: 
– Kernel Parallelism 
– Geometric Decomposition 
– Loop parallel 

•  Task Parallelism 
– Task queue 
– Divide and Conquer 
– Loop parallel 

•  Implementation Patterns (used to support the above) 
– SPMD (Any MIMD machine, but typically distributed memory) 
– Fork Join (Multithreading, shared address space MIMD) 
– Kernel Parallelism (GPGPU) 
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SPMD: Single Program Mulitple Data 

•  Run the same program on P processing elements where P 
can be arbitrarily large.  

•  Use the rank … an ID ranging from 0 to (P-1) … to select 
between a set of tasks and to manage any shared data 
structures.  

This pattern is very general and has been used to support most (if 
not all) the algorithm strategy patterns. 

MPI programs almost always use this pattern … it is probably 
the most commonly used pattern in the history of parallel 

programming. 
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Loop parallelism 

•  Collections of tasks are defined as iterations of one or more loops.  
•  Transform loop body to remove loop carried dependencies and assure 

that the right answer is produced regardless of the order iterations are 
carried out. 

•  Loop iterations are divided between a collection of processing elements 
to compute tasks concurrently.  

This design pattern is also heavily used with data parallel design patterns. 
OpenMP programmers commonly use this pattern. 

#pragma  omp parallel for shared(Results) schedule(dynamic) 

For(i=0;i<N;i++){ 
 Do_work(i, Results); 

} 
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Kernel Parallelism 

•  Kernel Parallelism:   
–  Implement data parallel problems: 

– Define an abstract index space that spans the problem domain. 
– Data structures in the problem are aligned to this index space. 
–  Tasks (e.g. work-items in OpenCL or “threads” in CUDA) operate on 

these data structures for each point in the index space. 

•  This approach was popularized for graphics applications 
where the index space mapped onto the pixels in an image.   
Since 2006, It’s been extended to General Purpose GPU 
(GPGPU) programming. 

Note: This is basically a fine grained extreme form of 
the SPMD pattern. 
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Fork-join 

•  Use when: 
–  Target platform has a shared address space 
–  Dynamic task parallelism 

•  Particularly useful when you have a serial program to 
transform incrementally into a parallel program 

•  Solution: 
1.  A computation begins and ends as a single thread. 
2.  When concurrent tasks are desired, additional threads are forked. 
3.  The thread carries out the indicated task,  
4.  The set of threads recombine (join) 

Cilk and OpenMP 3.0 with explicit tasks make heavy use of this 
pattern. 



Fork-join Design Pattern 
•  Use when: 

–  Target platform has a shared address space 
–  Dynamic task parallelism 

•  Particularly useful when incrementally parallelizing a serial program. 
•  Solution: 

1.  A computation begins and ends as a single thread. 
2.  When concurrent tasks are desired, additional threads are forked. 
3.  The thread carries out the indicated task,  
4.  The set of threads recombine (join) 

Parallel Regions 
Master 
Thread 
in green 

A Nested 
Parallel 
region 



Divide and Conquer Pattern 

•  Use when: 
– A problem includes a method to divide into subproblems 

and a way to recombine solutions of subproblems into a 
global solution. 

•  Solution 
– Define a split operation 
– Continue to split the problem until subproblems are small 

enough to solve directly. 
– Recombine solutions to subproblems to solve original 

global problem. 
•  Note:  

– Computing may occur at each phase (split, leaves, 
recombine). 



Divide and conquer 

•  Split the problem into smaller sub-problems. Continue until 
the sub-problems can be solve directly. 

n  3 Options: 
¨  Do work as you split 

into sub-problems. 
¨  Do work only at the 

leaves. 
¨  Do work as you 

recombine. 
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Task Queue 

•  Use When   
– The computation is defined as a collection of independent tasks. 
– The key challenge is how to schedule them such that the 

computational load is evenly distributed.  

•  Solution: 
– Set up collection of workers to carry out the work. 
– Put tasks into a shared queue 
– Workers grab tasks, carry out computations, then return to queue for 

more work. 
– There must be some way to detect when the work is done and then 

shut down the workers. 

This is an easy way to implement automatic load balancing … so 
easy that for years we’ve been telling people to use this pattern 

whenever they can. 
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Geometric Decomposition 

•  Use when: 
– The problem is organized around a central data structure that can 

be decomposed into smaller segments (chunks) that can be 
updated concurrently. 

•  Solution 
– Typically, the data structure is updated iteratively where a new 

value for one chunk depends on neighboring chunks. 
– The computation breaks down into three components: (1) exchange 

boundary data, (2) update the interiors or each chunk, and (3) 
update boundary regions. The optimal size of the chunks is dictated 
by the properties of the memory hierarchy.  

•  Note: 
– This pattern is often used with the Structured Mesh and linear 

algebra computational strategy pattern. 



Summary 
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Processors with lots of cores/vector-units/SIMT 
connected into clusters are here to stay.   You have 

no choice … embrace parallel computing! 



Summary 
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Processors with lots of cores/vector-units/SIMT 
connected into clusters are here to stay.   You have 

no choice … embrace parallel computing! 

Protect your software 
investment … refuse to 
use any programming 

model that locks you to 
a vendors platform. 

Open Standards are the 
ONLY rational approach 

in the long run. 



The software platform debate! 
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Recall my earlier 
comment … the 

competing visions are 
less about hardware 
and more about the 

programmers software 
platform 

*third party names are the property of their owners 



The official strategy at Intel. 

•  Everything is a 
cluster of “shared 
address space 
multithreaded” 
computers. 

•  One programming 
model from laptop to 
supercomputer 
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What about the competing platform:  
Single Instruction multiple thread (SIMT)? 

•  Dominant as a proprietary solution based on CUDA and 
OpenACC. 

•  But there is an Open Standard response (supported to 
varying degrees by all major vendors) 

75 

SIMT programming for CPUs, GPUs, DSPs, and FPGAs. 
Basically, an Open Standard that generalizes the SIMT 
platform pioneered by our friends at NVIDIA® 

OpenMP 4.0 added target and device directives ... Based 
on the same work that was used to create OpenACC.  
Therefore, just like OpenACC, you can program a GPU 
with OpenMP!!! 

The long term viability of the SIMT platform depends on the user community 
demanding (and using) the Open Standard alternatives! 

*third party names are the property of their owners 



Summary 
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Processors with lots of cores/vector-units/SIMT 
connected into clusters are here to stay.   You have 

no choice … embrace parallel computing! 

Protect your software 
investment … refuse to 
use any programming 

model that locks you to 
a vendors platform. 

Open Standards are the 
ONLY rational approach 

in the long run. 

OpenMP, MPI, 
and OpenCL 
are in most 

cases, the way 
to go 



Summary 

77 

Processors with lots of cores/vector-units/SIMT 
connected into clusters are here to stay.   You have 

no choice … embrace parallel computing! 

Protect your software 
investment … refuse to 
use any programming 

model that locks you to 
a vendors platform. 

Open Standards are the 
ONLY rational approach 

in the long run. 

OpenMP, MPI, 
and OpenCL 
are in most 

cases, the way 
to go 

There are countless parallel 
algorithms … but they make use of a 

small number of design patterns.  
Focus on the patterns and how to 
apply them in your programming 

models of choice and you’ll be OK. 



Background references  
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A great book that  explores key 
patterns with Cilk, TBB, OpenCL, 
and OpenMP (by McCool, Robison, 
and Reinders) 

l  A book about how to “think 
parallel” with examples in 
OpenMP, MPI and java 


