"55800

_,.ﬂ
""'\_

-
.

. Giulio Eulisse - CERN
EfﬁCIEﬂt MemOfy Management Original lectures by Lassi Tuura (FNAL, now Google




About These Lectures

These lectures will address memory use and management in large scale
scientific computing applications, with Linux/C++ focus.

I will introduce general concepts mainly through specific concrete
examples common to everyday developer work. I will focus on common
aspects on commodity hardware, in areas I am personally experienced

in — this 1s not a tour of absolutely everything there is to know about
memory management.



http://infn-esc.github.10/esc15/memory
All the exercise material for these lectures


http://infn-esc.github.io/esc15/memory

COMPUTER

Additional Reading

J. Hennessy, D. Patterson, . 10
Computer Architecture: A Quantitative Approach, '
5th edition (2011), ISBN 978-0-12-383872-8

U. Drepper,
What Every Programmer Should Know About Memory,

http://people.redhat.com/drepper/cpumemory.pdf

D. Bovet, M. Cesati,
Understanding the Linux Kernel,
3rd Edition, O’Reilly 2005, ISBN 0-596-00565-2

http://techreport.com, reviews with technical detail

‘S By [ g
o % §
) ' S 3 N
L 3 N b AN /
7‘\«‘r
O’REILLY" DANIEL P. BOVET & MARCO CESATI
ed Material
A



http://techreport.com

Why Memory Management Matters?

So, you've got a problem to solve. You've designed an algorithm to solve
it. Now all you need is it code it up and you are done, right?

Actually, you have just begun. Your algorithm will translate to real
machine code, which will run on very real physical systems, which have
very real practical limitations.

A complete design must account for the real world limitations. This
means “the solution” will vary over time with technology evolution.



The Performance Gap

[Computer Architecture: A Quantitative Approach, 4% ed (lohn L. Hennessy, David A. Patterson)]

100,000

Processor

Performance

Memory

1 4 ] 1 1 ]

1980 1985 1990 1995 2000 2005 2010
Year

Memory performance evolution compared with processor performance
6



Why Memory Management Matters?

Different solutions to the same problem vary dramatically in real life
performance.

Algorithmic and data structure changes can easily result in several
orders of magnitude improvement and regression. Always research this
option first.

In some cases, changes in memory use and management can also
easily produce orders of magnitude performance wins and losses —
even without major logical change to the underlying algorithmes.
Common critical factors include memory churn, poor locality, and in
multi-processing, memory contention.

In other cases, simple, subtle changes can yield performance wins in
the 1-10% range. When % of your computing capacity is counted in
rows of racks and days of processing, this still matters a great deal
in practice! The small stuff still directly affects how much science
you get out of your funding. 7



Memory Management at 10" 000ft

Physical hardware

CPU pipelines and out-of-order execution, memory management unit
[MMU] and physical memory banks and access properties; interconnect —

front-side bus [FSB] vs. direct path [AMD: HT, Intel: QPI]; cache coherence
and atomic operations; memory access non-uniformity [NUMA].

Operating system kernel

Per-process linear virtual address space; virtual memory translation from
logical pages to physical page frames; page allocation and swapping; file
and other caching; shared memory.

Run time

Code, data, heap, thread stacks; acquiring memory [sbrk/mmap]; sharing
memory [shmget/mmap/fork]; C/C++ libraries and containers; application

memory management. .



Key Memory Management Factors

Many factors at different levels: physical hardware, operating system, in-
process run-time, language run-time, and application level.

#1:

#2:

#3:

Correctness matters.

If your results are incorrect, buggy, or unreliable, none of the rest
matters.

Memory overhead, alignment & churn matter.
Badly coded good algorithm = bad algorithm. If you spend all the time
in the memory allocator, your algorithms may not matter at all.

Locality matters, courtesy of the memory wall.
Cache locality — stay on the fast hardware, away from the memory
wall.

Virtual address locality — address translation capacity is limited.
Kernel memory locality — share memory across processes.

Physical memory locality — non-uniform memory access issues.



Key Memory Management Factors

#1: Correctness matters.

- If your results are incorrect, buggy, or unreliable, none of the rest
matters.

10



Key factor #1: correctness

Find the error:

#include <iostream>

int main(int argc, char **argv) {
int *foo = new 1nt[10];

for (1nt 1 = 0; 1 <= 10; ++1)
foo[1] = 1;

11



Key factor #1: correctness

Find the error:

#include <iostream>

int main(int argc, char **argv) {
int *foo = new 1nt[10];

for (1nt 1 = 0; 1 <= 10; ++1)
foo[1] = 1;

12



Key factor #1: correctness

e Find the error:

11 1
1 1
// This macro reads ACORDE DDL Raw Data and /1
// converts it into Digits /1
1 1
11 1

void ACORDERaw2Digits(Int_t nEvents = 1, char* fileName =
alien:///alice/data/2008/LHC08a_ACORDE/000016788/raw/08000016788014.20.root")
{

// Reads DDL data from fileName

TStopwatch timer;
timer.Start();

T6rid: :Connect("alien://");
AliRawReader* rawReader = 0x0

// rawReader = new AliRawReaderFile(fileName); // DDL files
rawReader = new AliRawReaderRoot(fileName); // DDL files

AliACORDERawStream* rawStream = new AliACORDERawStream(rawReader);

for (Int_t i=0; i<nEvents; i++) {

printf( EVENT %d n",i);
if (!rawReader->NextEvent())
break;

rawStream->Reset();
if (IrawStream->Next())

break;
printf("Data size is %d\n",rawStream->DataSize());
for (Int_t j=0; j<4; j++)

printf(" %x",rawStream->GetWord(j));
printf("\n");

delete rawReader;
delete rawStream;

timer.Stop();
timer.Print();

b

11 1
% 1
/7 This macro reads ACORDE DDL Raw Data and /1
// converts it into Digits /1
% 1
11 1

void ACORDERaw2Digits(Int_t nEvents = 1, char* fileName = "rawdata.root")
{
// Reads DDL data from fileName

TStopwatch timer;
timer.Start();

// Creates a TreeD to dump Digits
AliRunLoader* rl = AliRunLoader::Open("galice.root");
ALiACORDELoader* loader = (AliACORDELoader*) rl->GetLoader ("ACORDELoader");
if(!loader) {
ALiError("no ACORDE loader found");
return kFALSE; }
TTree* treeD = loader->TreeD();
if(Itreed) {
loader ->MakeTree("D");
treeD = loader->TreeD(); }
ALiACORDEdigit digit;
ALiACORDEdigit* pdigit = 8digit;
const Int_t kBufferSize = 4000
treeD->Branch("ACORDE", "ALiACORDEdigit", &pdigit, kBufferSize)
AliRawReader* rawReader = 0x0
/7 rawReader = new AliRawReaderFile(fileName); // DDL files

rawReader = new AliRawReaderRoot(fileName); // DDL files

AliACORDERawStream* rawStream = new AliACORDERawStream(rawReader);

* Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved.
*

* Author: The ALICE Off-line Project.

* Contributors are mentioned in the code where appropriate.

*

* Permission to use, copy, modify and distribute this software and its
* documentation strictly for non-commercial purposes is hereby granted
* without fee, provided that the above copyright notice appears in all
* copies and that both the copyright notice and this permission notice
* appear in the supporting documentation. The authors make no claims

* about the suitability of this software for any purpose. It is

* provided "as is" without express or implied warranty.

void MakeACORDEFullMisAlignment(){ #ifndef ALIACORDEQADATAMAKER_H void MakeACORDEFullMisAlignment(){

11
/7 Produces the data needed to calculate the quality assurance.
// ACORDE QA for Hits, Digits, RAW and ESD's

/1 Authors:

// Luciano Diaz Gonzalez <luciano.diaz@nucleares.unam.mx> (ICN-UNAM)
// Mario Rodriguez Cahuantzi <mrodrigu@mail.cern.ch> (FCFM-BUAP)

/1 Arturo Fernandez Tellez <afernan@mail.cern.ch (FCFM-BUAP)

1/

// Created: June 13th 2008

//---

/7 --- ROOT system ---
#include <TClonesArray.h>
#include <TFile.h>

#include <TH1F.h>

#include <TH2F.h>

#include <TDirectory.h>
#include <TObject.h>

// --- Standard library ---

// --- AliRoot header files ---
#include "ALiESDEvent.h”
#include "Alilog.h"

#include "ALiACORDEdigit.h"
#include "ALiACORDEhit.h"
#include "AliACORDERecPoint.h"
#include "AliACORDEQADataMaker.h"
#include "AliQAChecker.h”
#include "AliACORDERawReader.h"
#include "AliACORDERawStream.h"

ClassImp(ALiACORDEQADataMaker)

/1,

* /| Create TClonesArray of full misalignment objects for ACORDE #define ALTACORDEQADATAMAKER_H /1 Create TClonesArray of full misalignment objects for ACORDE

* Il /% Copyright(c) 1998-1999, ALICE Experiment at CERN, All rights reserved. * 2

* const char* macroname = "MakeACORDEFullMisAlignment.C"; * See cxx source for full Copyright notice */ const char* macroname = "MakeACORDEFullMisAlignment.C";

* // Activate CDB storage and load geometry from CDB /1 Activate (DB storage and load geometry from CDB

* 1iCD cdb = AliCD g % /% $1d: AliACORDEQADataMaker.h 25659 2008-05-030 15:13:46Z ldg $ */ AliCl cdb = AliCl ::Instance();

* if(lcdb->IsD )) cdb->SetD “local://$ALICE_ROOT/OCDB"); if(!cdb->IsDefaultStorageSet()) cdb->SetDefaultStorage("local://$ALICE_ROOT/OCDB");
* cdb->SetRun(0); cdb->SetRun(0);

* // Produces the data needed to calculate the quality assurance

* AliCDBStorage* storage; /1 ACORDE QA for Hits, Digits, RAW and ESD's AliCDBStorage* storage;

*

* /load geom from local file till ACORDE is not switched on by default in standard config-files //1oad geom from local file till ACORDE is not switched on by default in standard config-files
* if( TString(gSystem->Getenv("TOCDB")) == TString("kTRUE") ){ /1 Authors: if( TString(gSystem->Getenv("TOCDB")) == TString("kTRUE") ){

/ TString Storage = gSystem->Getenv("STORAGE"); 1 TString Storage = gSystem->Getenv("STORAGE");

if(1Storage. BeginsWith("local://") & IStorage BeginsWith("alien://")) { // Luciano Diaz Gonzalez <luciano.diaz@nucleares.unam.mx> (ICN-UNAM) if(1Storage.BeginsWith("local://") 8& !Storage.BeginsWith("alien://")) {
Error(macroname,STORAGE variable set to %s is not valid. Exiting\n",Storage.Data(f¥, Mario Rodriguez Cahuantzi <mrodrigu@mail.cern.ch> (FCFM-BUAP) Error(macroname, "STORAGE variable set to %s is not valid. Exiting\n",Storage.Data())
return; // Arturo Fernandez Tellez <afernan@mail.cern.ch (FCFM-BUAP) return

} 17 ¥

storage = cdb->GetStorage(Storage.Data0); // Created: June 13th 2008 storage = cdb->GetStorage(Storage.Data());

if(istorage){ 11--- if(!storage){

Error(macroname,"Unable to open storage %s\n",Storage.Data(); Error(macroname, "Unable to open storage %s\n",Storage.Data());

return; return;

} ¥

AliCDBPath path("GRP","Geometry","Data");

AliCDBEntry *entry = storage->Get(path.GetPath(),cdb->GetRun();
if(tentry) Fatal(macroname,"Could not get the specified CDB entry!");
entry->SetOwner(0);

#include "AliQADataMaker.h" ALiCDBPath path("GRP","Geometry","Data")

ALiCDBEntry *entry = storage->Get(path.GetPath(),cdb->GetRun());
if(lentry) Fatal(macroname,"Could not get the specified CDB entry!");
entry->SetOwner (0);

TGeoManager* geom = (TGeoManager*) entry->GetObject(; public: T geom = (T ) entry->GetObject();
AliGeomManager::SetGeometry(geom); ALiACORDEQADataMaker () ; // constructor AliGeomManager : : SetGeometry (geom);

Jelse{ ALiACORDEQADataMaker (const AliACORDEQADataMaker& gadm) ; Yelse{

AliGeomManager::LoadGeometry(; //load geom from default CDB storage ALiACORDEQADataMaker& operator = (const AliACORDEQADataMaker& gadm) ; AliGeomManager : : LoadGeometry(); //load geom from default CDB storage
virtual ~A1iACORDEQADataMaker() {;} // destructor

class AliACORDEQADataMaker: public AliQADataMaker {

}
/I AliGeomManager::LoadGeometry("geometry.root”); private: //  AliGeomManager : :LoadGeometry("geometry.root");
virtual void InitHits() ; //book hit QA histo
TClonesArray *array = new TClonesArray("AliAlignObjParams",60); virtual void InitDigits() ;  //book Digit QA histo TClonesArray *array = new TClonesArray("AliAlignObjParams",60)
TClonesArray &alobj = *array; virtual void InitRaws() ;  //book Digit QA histo TClonesArray &alobj = *array;

virtual void InitRecPoints(); //book cluster QA histo

InitESDs() ; //book ESD QA histo

MakeHits(TTree * hits) ; //Fill hit QA histo

MakeRaws (AliRawReader* rawkeader) ;

MakeDigits(TTree* digitsTree) ; //Fill Digit QA histo
MakeRecPoints(TTree * clusters) //Fill cluster QA histo
MakeESDs (ALiESDEvent * esd) ; //Fill hit QA histo

TRandom *rnd = new TRandom(4321);
me_tj=0;
Double_t d, dy, dz, dpsi, dtheta, dphi;

virtual void TRandom *rnd = new TRandom(4321);
Int_t j = 0;

Double_t dx, dy, dz, dpsi, dtheta, dphi;

virtual void
virtual void
virtual void
/I RS = local

// sigma translation = 1 mm

|/ sigma rotation = 0.5 degrees
Double_t sigmatr

virtual void /7 RS = local

// sigma translation = 1 mm

// sigma rotation = 0.5 degrees
Double_t sigmatr = 2

Double_t sigmarot = 1;

virtual void

[k

Double._t sigmarot =
virtual Int_t Add2DigitsList(TH1*, Int_t){return 0;};
virtual Int_t Add2HitsList(TH1*, Int_t){return 0;};
virtual Int_t Add2RecPointsList(TH1*, Int_t){return 0;};
virtual Int_t Add2RawsList(TH1*, Int_t){return 0;}

TString symname;
TString basename = "ACORDE/Array";
Int_t iIndex=0;
1iGi ELayerlID iLayer = AliGi idLayer;

TString symname;
TString basename = "ACORDE/Array";

ALiACORDEQADataMaker : : ALiACORDEQADataMaker () :AliQADataMaker (ALiQAV1 : : GetDetName (ALiQAv1 :UShort t volid = AliGeomManager::Layer ToVolUID(iLayer,ilndex);

:kACORDE), "ACORDE Quality Assurance Data Maker")
{
// Acorde QA Data Maker

/1,

virtual Int_t Add2SDigitsList(TH1*, Int_t){return 0;};

virtual void  Exec(ALiQAv1::TASKINDEX_t, TObject*){};

virtual void  EndOfCycle(ALiQAv1::TASKINDEX_t){};

virtual Int_t Add2ESDsList(TH1*, Int_t){return 0;};
. oturn 0:1:

::ELayerID ilayer = AliGeomManager::kInvalidLayer
Ushort_t volid = AliGeomManager : :LayerToVolUID(ilayer,iIndex);

for (Int_t imod=0; imod<60; imod++){
dx = rnd->Gaus(0., .
dy = rnd->Gaus(0.,
dz = rd->Gaus(0.,
dpsi = rnd->Gaus(

for (Int_t imod=0; imod<60; imod++){
dx = rnd_>Gaus(Q .

AliACORDEQADataMaker : :ALiACORDEQADataMaker (const AliACORDEQ

{
SetName((const char*)qadm.GetName()) ;
SetTitle((const char*)gadm.GetTitle());
¥
1

AliACORDEQADataMaker& AliACORDEQADataMaker::operator = (const AliACORDEQADataMaker& gadm )

{
// Equal operator.
this->~A1iACORDEQADataMaker () ;
new(this) AliACORDEQADataMaker (gadm)

aMaker& gadm):ALiQADa

= rnd->Gau|
dphi = rnd->Gaus(
symname = basen

symname += imod
new(alobj[j++]) Al
}

ALICE Experiment Offline Software:
~5M lines of code

if( TString(gSystem
J/ save on file
const char* filena
TFile f(filename, §

return *this; (

} Error(macronam|

1 return; ° °

void AliACORDEQADataMaker : :StartOfDetectorCycle() ) °

{ Info(macroname,’

o i s s o e CMS Experiment Offline Software.
£.WriteObject(arra

} £.Close();
Yelse{ °

1 J/ save in CDB stor;

void AliACORDEQADataMaker::InitHits() AliCDBMetaData* nNJ

{ md->SetResponsib

// create Hits histograms in Hits subdir
TH1F *fAHitsACORDE[8];

md->SetComment(
md->SetAliRootVe
AliCDBId id("ACOR

etrrnme sDitfarmad




Key factor #1: correctness

Tools matter:
e Valgrind
e IgProf
 Address Sanitizer
e Clang Static Analyzer
 GDB, strace, LD_DEBUG & /proc <pid>

Real world scenarios is not something which can be captured on a slide, in
a tutorial or in half an hour exercise. Mastering debug and profiling tools is
as crucial as knowing your Algorithm Book, book to cover.

We need tools to help us dealing with large, mostly unfamiliar, codebases
and to find our errors.

14



Key Factor #1: Correctness

VALGRIND...

One of the most valuable tools to verify correctness of any memory related
operations. It will save you hours of work.

It’s not a toy — it’s one of the most useful software developer tools I have ever
used. Always verify your regression test suite under Valgrind; if nothing is
flagged there’s reasonable chance there are no silent memory access problems.

Any time you run into a problem, and certainly if you have a memory fault such
as a segmentation violation, run the program under Valgrind.

It will also provide useful memory leak data. It’s very slow just for that however.

... and friends
The same suite has other tremendously useful associated tools.

HELGRIND for finding multi-threaded data races, MASSIF for generating run
time heap snapshot profiles and CACHEGRIND for CPU simulation.

15



Key factor #1: tools to enforce correctness

Address Sanitizer

When recompiling buggy code is an option, some compilers (like GCC and Clang) allow
to add extra runtime instrumentation which will catch errors that can elude also
Valgrind checks.

Clang Static Analizer

Due to C/ C++ being very "liberal” languages, compilers do not flag bad practices even
if they are usually not correct. At the cost of false positives, Static Analyzers (like
clang-static-analyser) can detect possibly fatal bad behaviours.

GDB, strace, LD_DEBUG, /proc/<pid>

There is a number of system features / tools which can be extremely helpful when
debugging memory problems. If none of the above ring a bell, make sure you google
for them and become familiar.

16



Key Factor #1: Correctness

IgProf
The IgProf profiling suite is complimentary to the Valgrind Family.

IgProf can profile memory allocations, and can report the full stack
trace for every allocated memory block. It’s particularly useful for
detecting leaks, generating run-time heap snapshots, and generally
tracking memory use.

Recommended use: check correctness with Valgrind, then use IgProf to
create heap profiles, in particular to identify leaks. IgProf has much
less overhead than Valgrind (50-100% vs 1000%), but assumes

correctness.

Instruments (Mac only), Google Perf Tools..

There is a number of tools out there which we will not cover, each with
its strengths and deficiencies. While we will limit our exercises to those
that I personally use, that does not mean there is no alternatives. .



Key Factor #1: Memory Leaks

Unreachable but still allocated:

Unreachable memory is created by forgetting to free data past last
reference. In C++ it is usually a sign of fairly poor object ownership

design — see talloc for ideas.
Accumulated reachable garbage

Accumulated garbage happens when object lifetime extends long
beyond the time the object is needed. Fattens virtual memory use and
slows apps down.

18



Combating Memory Leaks

#1: Design clear object ownership

It won’t just happen! The most common reason for leaks is developers don’t
know who owns the object or how long it will be live. Most likely to happen at API
boundaries. Design clear ownership rules; see for example talloc library. [Causes
knock-on issues: developers copy objects when they don’t know who owns them.]

#2: Use RAII 1idiom where possible

Resource Acquisition Is Initialisation. The owner object will release resources
when destructed. Numerous idioms. A) Prefer memory pools when you can
define en-masse clear ownership; B) Use by-value containers - std::string,
std::vector; C) Use reference counting smart pointers - std: auto_ptr,
boost::intrusive_ptr, boost::shared_ptr; good for internal use, be cautious of using

them in APIs: prefer #1 over #2.

#3: Proactively verify correctness using leak detection tools

19






#2: Memory overhead, alignment & churn matter.
- Badly coded good algorithm = bad algorithm. If you spend all the time
in the memory allocator, your algorithms may not matter at all.

21



Know your enemies: simple types

The first thing to do when dealing with memory is to know the size of the

objects you are dealing with.

Type

Memory used (B)

1 bit
char
short
int
long / int64_t

Int *

22



Know your enemies: simple types

The first thing to do when dealing with memory is to know the size of the
objects you are dealing with.

Memory used (B)

|

char 1

short 2

int 4

long / int64_t 8
int * 8 (64-bit)

23



Know your enemies: simple types

The first thing to do when dealing with memory is to know the size of the
objects you are dealing with.

Memory used (B)

|

char 1

short 2

int 4

long / int64_t 8
int * 8 (64-bit)

24



Know your enemies: simple types

This is a first (simple) example on how "on paper" behaviour and

hardware actually can be different.

char
short
int
long / int64_t

Int *

Memory used (B)
|
|
1
2
4

8
8 (64-bit)

25



Know your enemies: padding

How much memory is occupied by the following struct?

struct A { a. 6 bytes
(.:har a, b. 8 bytes
int b; ? b
c. 12 bvtes
char c: y

) d. 16 bytes

26



Know your enemies: padding

6 bytes come from the actual member sizes.

struct A {
char a;
int b;
char c;

}i

-

27



Know your enemies: padding

Another 6 bytes come from the required padding.

Wasted bytes
struct A { . l N\
char a: I B
int b; »
char c; I B
}s . [ Vs

Wasted bytes

28



Know your enemies: padding

A much better layout...

struct A {

int b;

char a; * I
char c; [ /

}s Only two bytes wasted

By default, C/ C++ imposes alignment of data members
within a struct / class to their size.

29



Know your enemies: padding

End of the story?

struct A {
int b;
char a;
char c;

}s
A *a = new A;

How much memory is used by the above construct?

30



Know your enemies: padding

End of the story?
r A
St. uct { 8 bytes for the
int b; data itself
char a;
char c;
1 ~16 extra bytes for
8ointeliz)t)ott€;12 kalignment of the
P ‘ structure on the heap and

. * — °
object A *a = new A; extra heap book-keeping.

Whenever dealing with small structures always think about the overhead introduced
by the required book-keeping!

31



C, C++ Run Time Memory Management

C/POSIX provides some very basic memory allocation primitives
malloc(); free(); realloc(); calloc(); memalign(); valloc(); alloca()
Various libraries provide alternatives, or higher-level managers

Some of the best alternatives: Google TCMalloc, FreeBSD jemalloc;
Managers: Boost Pool, Sun SLAB allocator + derivatives, SAMBA talloc,
GNU obstacks

C++ provides partially incompatible allocation technology

operator new/delete; object constructors, destructors and copy
constructors,; standard library containers and allocator objects; smart
pointers, etc.; does map easily on top of malloc + free, somewhat
painfully on anything else

32



"(++: the power and elegance of a hand grenade’

STL containers are great implementations of abstract concepts, but
they come with a cost. Knowing that cost is key to be able to use
them efficiently.

33



Know your enemies: std::vector

std::vector<T>: a compact, variable size, collection of objects of

type T.
N /

jia back
T capac1ty

std::vector has an overhead of .
3 pointers per container, plus spare space
the malloc overhead. '

34



Know your enemies: std::vector

A good and efficient data
structure 1n general.

Good locality usually, guaranteed
contiguous allocation.

Avoid small vectors because of the /
overhead. T front -
ty\>

T* back
T* capaci

Beware creating vectors

incrementally without reserve().
Grows exponentially and copies old ispare space
contents on every growth step if there :

isn’t enough space!

Beware making a copy, if the
dynamically allocated part is copied!

Beware using erase(), it also causes

incremental copying.
35



Know your enemies: std::string

std::string s("foo"); char *s[] = "foo";
1 R B R 18
1§ R R B I Jo
B BN N N N B W capacity
B BN B B BN BN B B efcount

Strings are highly overrated and are most likely to point to bad
design choices in your code. While they do have a use and can
have smart(er) implementations, in general you should think
twice if you really need their dynamic behaviour or if what
you want is really a constant string literal.

36



Know your enemies: std::vector<uint16_t>

Typical std::vector<uintl16_t> overhead is 40 bytes [64-bit system].

-3 pointers x 8 bytes for vector itself, plus average 2 words x 8 bytes malloc()
overhead for the dynamically allocated array data chunk.

-So, if x always has N < 19 elements, it’d better to just use a
std::array<uint16_t,N> x.

- More generally, if 95+% of uses of x have only N elements for some small N, it
may be better to have a uintl6_t x[N] for the common case, and a separate
dynamically allocated “overflow” buffer for the rare N = large case. Somewhat
more complex code may be offset by reduction in overheads — measure to see!

-Even more generally, this applies to any small object allocated from heap.
Examples abound in almost any large code base — at one point our software
made many heap copies of 1-byte strings (yes, just the trailing null byte).

37



Know your enemies: std::list

Usually implemented as a doubly linked list. Usually, overhead of at
least 2 pointers per item (implementation dependent).

I N N N N N et ious NN [ N I O B next+ previous* Il [ [ NN N N B BN

previous

Here the cost is per item, not per container.

Moreover there is no guarantee that the objects will be close in memory
potentially adding pressure to the memory subsystem.

38



Know your enemies: std::map<K.V>

Maps are another extremely abused container, mostly because of their
"lntuitive" behaviour.

Platonic world

39



Know your enemies: std::map<K.V>

Maps are another extremely abused container, mostly because of their
"lntuitive" behaviour.

<[A|T|T|O

N\

C C
L L
R R
K K
V V
k k
C C C C
1 L L —]i 1 L L —]1
. H R R H H R R Hi
Platonic world K g g g

Reality: Balanced Binary
Tree, e.g. Red-Black

K = key, V = value, C = color, L = left, R = right 40



std::map<K, V>

. [Wikipedia /
Maps are "pointer-fest" GFDL]

Each tree node is a separately allocated [R/B, LeftPtr, RightPtr, Key, Value]
tuple. Key comparison determines whether to follow left or right pointer.

The recursive pointer chasing is poison to modern CPUs if data is not
in cache.

Avoid large maps and use inexpensive keys

Since the map is a balanced binary tree, it has log,(size) levels. If you have

1M entries in the map, it will take up to 20 key comparisons to find a
match. If each key is a container such as std::string, every key comparison
involves another pointer dereference, then key data match - for 1M
entries, up to 40 pointer dereferences and up to 20 key comparisons

before you get to data. If you fill the map slowly, the tree nodes and key

and value data can be scattered all over virtual address space.
41



Memory Churn

Memory churn is excessive reliance on dynamic heap allocation,
usually in the form of numerous very short-lived allocations.

Memory churn has several highly undesirable side effects.

Time is spent in memory management, not in your algorithms. We’ve
seen up to 40% in malloc(+free(); 10%+ is a strong sign of bad problems.

Tends to cause poor heap locality and to increase heap
fragmentation. Churn on large allocations can cause frequent, costly
page table updates.

Contaminates I, D and TLB caches with memory management code
and data structures. CPU performance counter profiling less useful

because the caches will seem to perform extremely well — they just
contain the wrong data.

If you do not use C++11, do yourself a favour and switch to it.
42



Object Life Cycle Management

Object life cycle management defines who is responsible
for allocation, creation and destruction of objects.

The API specifies where objects are created, who owns and frees them,
and when. It may also specify hooks for memory allocation allowing
client to decide where memory gets allocated.

One policy is to take standard library like objects. It implies memory
allocation is hard-wired to types, and copies happen frequently, and
as such is a very significant design choice.

Opt-in approach to life cycle management doesn’t work.

The APIs define the object management policy. You cannot avoid this by
ignoring it; you’ll just make your clients confused and guess (wrong).

Changing life cycle policy usually implies API + library
rewrite.

43



std::vector<std::vector<std::vector<int>>>

typedef std::vector<int> VI;
typedef std::vector<VI> VVI;
std::vector<VVI> vvvi;

for (int 1 =0, j, k; 1 < 10; ++1i)

for (vvvi.push_back(VVI()), j = 0; j < 10; ++j)

for (vvvi.back().push_back(VI()

), k =0; k < 10; ++k)
vvvi.back().back().push_back(k);

A very common mistake. C++ vectors of vectors are expensive, and not contiguous

matrices. Let’s measure just how lethal this nested containment by value combined with
incremental growth is.

- Naively: 111 allocations, 6°640 bytes (64-bit; proper use of reserve() gets this.)
- Reality (C++98): 870 allocations, total 36’184 bytes alloc’d, 7°168 at end, 12°096 peak.
- Reality (C++11): 555 allocations, total 20'584 bytes alloc’d, 7’168 at end, 11'040 peak.
- +400% # allocs, +210% bytes alloc’d, 66% working and 8% residual overhead!

- Versus 1 allocation, 4’880 bytes and some pointer setup had we used a real matrix
(or 1 allocation and 4000 bytes, had we used a linear array).

44



std::vector<std::vector<std::vector<int>>>

std::vector<VVI> vvvi, vvvi2;

for (/* ... x/) { /% ... %/ }
VVV1i2 = VvVvl;

Why you should avoid making container copies by value...

-+111 allocations, +6°640 bytes (= naive / full reserve() allocation).

-An allocation storm is inevitable if you copy nested containers
by value. Evil bonus: fragmentation. Because of the allocation/free

pattern, by-value copies are an effective way to scatter the memory
blocks all over the heap.

- “A nested container” does not have to be a standard library container.
It can refer to any object type which makes an expensive deep copy —
for instance almost any normal type with std::string, std::vector or
std::map data members, or objects which “clone” pointed-to objects on

copy.

- The simple “=“ line may also generate lots of code.

45



Getting Hands Dirty: C++ Types

Allocator template argument
All C++ standard containers take an allocator template argument.

-Usually by default the containers just grab memory with operator new when they need
something. This can lead to highly inefficient memory layouts.

-We are meant to use the template argument and constructor parameter to specify an
alternate allocator, such as a pool allocator to improve locality. Pointer-rich containers
(maps, lists) do need pool allocators for performance.

-Do be advised this is even more invasive decision than starting to use slabs, obstacks,
talloc, or purpose-built arenas — it affects the type. In general the decision needs to be
made early on, retrofitting custom allocators into a large code base is a significant

effort.

Custom "plug-in" allocators

Finally, there is a number of "plug-in" allocators, like jemalloc or TCmalloc, which
might enormously improve the performance of your application under certain specific
conditions, e.g. in a highly multithreaded environment. Noticeable gains can be
obtained by using them, however make sure you profile their performance and that
you keep looking at the improvements done in the standard allocator.

46



Combating Memory Churn

Rewarding. Eliminating churn tends to yield big gains — x10 is not unusual.

Unless the code suffers from even greater algorithmic flaws, memory churn tends to mask
any other properties, rendering other profiling ineffective.

Detecting memory churn is relatively easy: memory use profiling, such as IgProf
MEM_TOTAL stats, tends to flag the problems almost trivially.

Hard. Solving memory churn varies from trivial to very hard.

Easy to fix mistakes std::vector push_back()/erase(), containers defined inside of loops rather
than outside.

Modern compilers help a lot! With old compilers, passing / returning containers by value
was also an issue, nowadays, when using C++11 and C++14, thanks to move constructors,
one needs to try very hard to suffer from this.

Maybe caching, a std::vector (“poor man’s arena”), replacing local variable with a data
member, or a proper pool allocator will provide sufficient relief.

Next hardest are changes to specific common types, e.g. replacing small heap-allocated
matrix objects with compile-time sized array matrices.

By far the hardest is to address systematic poor design — code “thinks” too locally and you
have to touch tens to hundreds of thousands of lines of code to cut string use or introduce new

object ownership or pool/ slab allocators.
47



(++ Hazards Wrap-Up

C++ standard library is very easy to program.

With judicious use easy to write high performance programs. With poor
judgement easy to make terrible mistakes which ruin the performance and
require total rewrite to regain it.

C++ standard library types in interface = life cycle policy.

Passing C++ standard library like types in API interfaces effectively means
segregating memory management to library. In practice library users will have
little ability to manage library memory use.

Avoid containers nested by value and string abuse.
There are legitimate uses, but this is almost always a mistake.
Containers are dynamic entities.

Make sure you understand what their dynamic behaviour implies. Prefer vectors
over maps and list. Prefer string constants over std::string where possible.

48









Key Memory Management Factors

#3: Locality matters, courtesy of the memory wall.
- Cache locality - stay on the fast hardware, away from the memory
wall.
- Virtual address locality — address translation capacity is limited.
- Kernel memory locality — share memory across processes.

- Physical memory locality — non-uniform memory access issues.
51



Memory hierarchy

2 - 8 cores per die, 1-2
dies per package,1-N
Core | Core || Core | Core packages per system.

3 levels of cache

e Small [32kB] separate
L11I+D
caches for each core.

e Medium [256KkB - 6 MB]

| 2 Cache | 2 Cache combined L2 cache,
perhaps shared
among some cores.

e Large [4 - 20MB]
combined L3 cache

|_3 Cache shared between all
cores on die.

e Can have even more
exotic setups,
especially when on
cpu GPU is present.

L1 Cache L1 Cache L1 Cache L1 Cache

52



Memory hierarchy

|

Exchange
cache-lines:
64 bytes*, aligned.

Exchange pages: 4096
bytes** aligned.

*. on most architectures
**: larger pages are available under certain cases

53



Latency in nanoseconds

70 —

60 —

50 —

40 —

30—

20—

10—

Memory latency, Linux 2.6.28 x86-64

Intel i7 940 2.93 GHz, 6GB
W\t’ ‘I

|
L ;" -ﬁ—}h.

I | | I I I | | | |
4K 16K 64K 256K 1M 4M 16M 64M 256M 1024M

Array size

[LMBENCH 2.5 results for array strides 16, 32, 64, 256, 512, 1024B]

The Memory Wall

Average memory access time
= Hit time + Miss rate x Miss penalty.

I/D$: L1 hit = 2-3 clock cycles.

I/D$: L1 miss, L2 hit =~ 10-15 cycles.
TLB: L1 miss, L2 hit =~ 8-10 cycles.
TLB: L1 miss, L2 miss =~ 30+ cycles.

What happens when you drop to
memory?

Intel Netburst Xeon (Pentium-era)
memory latency was 400-700 clock
cycles depending on access pattern
and architecture.

AMD Opteron, Intel Core 2 and later
CPU memory latency is ~200 cycles
(times any NUMA overhead if crossing
Interconnect).

Good cache efficiency matters. y



Non-Uniform memory access

RAM is not necessarily local anymore

CPU || CPU CPU | CPU
CPU ¢ CPU CPU & CPU

Cache

CPU & CPU

Cache

CPU | CPU

CPU @ CPU




Hey wait, aren’t you going to talk about objects!?

Peak performance requires etfective cache use for low latency.
How that is achieved is less important. Understanding the

language mapping from high-level constructs to low-level
behaviour helps.

With big data the answer tends to translate to hardware-aware and -friendly
Arrays of Structures (AoS) and Structures of Arrays (S0A) organisation,
e.g. partitioning problem so it fits in L1 cache, strides hardware can prefetch or
is vectorisation-friendly. Cache-defeating pointer chasing will simply not work.

Based on what we know of future processor roadmaps, the performance gap
between AoS/SoA and pointer chasing data structures will only stay or grow

bigger. If streaming units get prominent, code locality will also matter more.

Pointer-rich “proper objects” do remain immensely useful — as long as caches

are used very effectively, or performance simply doesn’t matter, for example in
GUIs, support data structures and rarely used infrastructure.

56



Array of Structures

Vv

std::vector<



Structure of Array

struct {std::vector<Jjll>; std::vector<@¥>; std::vector<>; std::vector<i>;}



Why Structures of Arrays?

class X {
vec3 pos ;
éiéat boost ;
éiéat dir ;
volid update(vec3 target)

{ dir = dot3(pos , target) * boost ; }
i

59



Why Structures of Arrays?

class X {
vec3 pos ;
éiéat boost ;
éiéat dir ;
volid update(vec3 target)

{ dir = dot3(pos , target) * boost ; }
i

| -Cache
MmISS

60



Why Structures of Arrays?

class X {
vec3 pos ;
éiéat boost ;
éiéat dir ;

volid update(vec3 target)

{ dir = dot3(pos , target) * boost ; }
D-Cache

MmISS

61



Why Structures of Arrays?

class X {

vec3 pos ;

Cache occupied

— but not used
float dir ; //// here

f”
L

float boost ;

volid update(vec3 target)
{ dir = dot3(pos , target) * boost ; }
i

62



4 executions on 4 objects - how many cycles?

void update(vec3 target)

{ dir = dot3(pos , target) * boost ; }
S mise - 200 math - 20

MISS -
D$ miss - 200 |D$ miss - 200 /D$ miss - 200
D$miss-200 |D§ miss-200 | |DS miss - 200
D$ miss - 200 |D$ miss -200 | | DS miss - 200
D$miss-200 DS miss-200 | |DS miss - 200




Change Abstraction to SoA

void update(float *dir, TargetData *data,
vec3 target, size t count)

{
for (size t 1 = 0; 1 < count; ++1)
dir[1i] = dot3(data->pos[1i], target) * data->boost[i];

Same kind of data is grouped together,
maximizing data cache usage.

64



Change Abstraction to SoA

Update an array

\4

Minimal input data

) 4

void update(

float *diré

TargetData *data,

{

for (size_

Adir[i] =
}

vec3 target, size t count)

t 1 = 0; 1 < count; ++1)
dot3 (data->pos[1], target) * data->boost[i1];

Loop over data

|

Calculation mostly unchanged

Code has been separated out

65



Timings difference

volid update(float *dir, TargetData *data,
vec3 target, size t count)

<.count; ++i)

!
for (size t.i-=-0;
dir[i] = dot3(«
}

1$ miss - 200

data->pos[i], target) *

data—>boost[i];“€

math - 20

_______________________________________________________________________________________________________________________________________________________________________________________________________________ /

D$ miss - 200  D$ miss - 200 D$ miss - 200

66



Structures of Arrays and Design

Try to view So0A vs. objects as a change in abstraction,
not as a “Do I really have to break everything I was taught
about encapsulation?”

When designing for SoA, you create higher-level
abstractions with operators and kernels which are
applied to collections of data.

You apply SoA design to the largest masses of data in the
most computation intensive parts. There are still places
for polymorphisms and more complex data structures, e.g.
graphs, but they operate in different levels, or sections of
code which are not performance sensitive.

67



Wrapping Up

The CPU - memory performance difference has profound
impact.

Memory management choices have orders of magnitude performance
impact, and among the most important design criteria after selection of
algorithms. A performance-oriented design must consider all the layers

from application to libraries/language to operating system to processor
and memory interconnect.

Bandwidth is usually adequate for all but the most demanding applications.
1-3 layers of cache help hide a very significant memory access latency if
and only if you structure the application to have excellent locality for
code, data and virtual memory pages and their tables. Best performance for
large data volumes requires hardware-predictable access of structures-of-
arrays / arrays-of-structures.

Memory access latency is non-uniform and depends on physical design and
interconnect distance to memory, thus operating system allocation strategy.

Application may need to guide operating system on strategy choices.
68






Vil‘tl.lﬂ' MEITIOI' Today’s OSes give processes a flat* linear
y y give p

virtual address space: the same linear
address in two different address spaces means

Process B Virtual two entirely different physical addresses.

Address Space

Page #137

Page #123

Virtual and real physical memory is divided in
pages, usually 4kB, but optionally 1-4MB. The
OS provides the CPU per-process page tables
to map a virtual address to a contiguous
physical page frame plus offset, which in
Frame 2937 turn translates to memory bank, row and
column.

Frare #1629 Page tables themselves use memory,

- consume L2+ cache space, and are never
swapped out.

4 N Frame #411
Even if processes share physical page frames,
Page #543 the page tables are not shared. With 4KkB
L

Physical pages, large address spaces mean big page
Memory tables, even if the memory itself is shared:
there’s over 2MB of page tables for every 1GB
of committed address space.”

Page #123 I

J 0S Kernel
\.

Page Tables * CPUs also segment or otherwise divide memory in
Process A Virtual regions; details in the references. “Flat” does not mean
Address Space “simple”, the address space can be a fairly hairy object.

+ 2GB VSIZE x 128 processes requires 0.5GB page tables.
70



Virtual Address Translation
Logical Address > Seg mﬁr?i’%ation Linear Address > Pa nllr,gg Physical Address>

x86 64-bit Linear Address Mapping, 48-bit [3-9-9-9-12 / 9-9-9-21 / 9-9-30 ] Virtual Address Space, 40-bit Physical Address Space

(0/7) Index Index Index Index Offset
64 4347 3938 3029 2120 1211 0

4 ) ’ -
Page Frame
a Y y
Page Table
d N
> y
?’ Page Directory
» v
CR3

Page Pointers
J

Page Map

Special cache hardware called TLB, A page which isn’t present or valid causes a
translation look-aside buffer, accelerates page fault. The OS handles these, e.g. code
virtual-to-physical address mapping to avoid page is read in from a file on disk on first use.
a full page table walk on every memory op. Some page table changes force a synchronous
TLB fits only a limited number of pages. update on all processors (“TLB shootdown”).

71



Starting Programs

$ cmsRun somecfg.py

OS creates a new process

— create and 1nitialise a new address space,
initial thread stack, command line args

[ ]
1]

$ readelf —1 cmsRun

Entry point 0x80519f0

— mmap code, data + other loadable segments Progran teaders:
from the main executable, dynamic linker ‘s readetr - cnsrun

\
A\

(creating page tables)
— start thread in the dynamic linker

Dynamic section at offset

Dynamic linker finishes the start-up

Tag
- mmap code, data segments recursively from s
. o X
all shared library dependencies
. . . 0x00000001
— relocate position independent code, data ’
— 1nvoke init sections, start executing Ox00000001
0x00000001
As process executes...
. 0x00000001
- page fault code, data 1n as needed
0x00000001
0x00000001
0x00000001

Type

(NEEDED)

(NEEDED)

(NEEDED)

(NEEDED)

(NEEDED)

(NEEDED)

(NEEDED)

(NEEDED)

Elf file type is EXEC (Executable file)

There are 8 program headers, starting at offset 52

0x1cO@lc contains 60 entries:

Name/Value

Shared

Shared

Shared

Shared

Shared

Shared

Shared

Shared

library:

library:

library:

library:

library:

library:

library:

library:

[libFWCoreFramework.so]

[libFWCoreService...sol]

[libFWCorePython...sol

[libDataFormatsCommon.sol

[LibFWCoreParameter...sol

[libDataFormats...sol

[1ibFWCoreMessage. ..so]

1libFWCorePlugin...so
[ g I 70



After a while. ..

Process has loaded even more code and
has allocated quite a bit of heap space
— Invoked the dynamic linker to bring in even

more shared libraries, each of which
mmaped more code and data segments

— Called sbrk, mmap to acquire additional
heap memory from the operating system

Result: 1060MB VSIZE, 850MB RSS,
600 libraries, 1370 memory regions

— Each shared library has separate code and
data pages, which is bad for virtual
address space locality and stresses TLB

- Random scatter of mapped library pages (a
security feature) X lots of libraries
= dense address map with many holes
= fragmented address space and heap

— This produced 2.3MB new page tables

— Definitely not smart — dwarfs the capacity
of even the latest hardware

2GB

1GB

0GB

1024x1024 pixel image map of the
address space of a 32-bit cmsRun
process. Every pixel is one 4096B page.
Orange = code, green = data, blue =
heap, stack. Total VSIZE 1060MB7sof
which 2230 MB i< code()






Operating System and Memory

The operating system manages processes and their address spaces.

Each process has a virtual linear address space to itself, 1solated from other
address spaces and the kernel itself. Each process has one or more threads,
which share the address space but have a separate stack and execution state.

The operating system manages memory allocation and sharing.

Memory 1s used for kernel itself and files in the buffer cache. Applications can
share memory by referring to shared physical pages: just memory blocks,
buffer cache regions, or special objects such as pipe memory with vmsplice().
Methods to share memory include fork(), mmap() or shmget().

On NUMA systems the OS also manages process-to-physical memory
mapping. In practice application affinity hinting is necessary (cf. numactl).

75



About Shared Memory

Shared memory 1s not special — 1t 1s completely natural and widely
used on modern systems, with many ways to initiate sharing:

Calling mmap() on a file in multiple processes can be used to create shared
read-only or read-write mappings, on any file region. Example: shared library
position independent code. One way to share static read-only data 1s to wrap
and load it as a shared library. Suitable use of mmap() + {f,m}advise() can map
windows of the OS buffer cache and provide hints on future use.

Calling fork() without exec() makes copy-on-write shared memory of the
entire process address space; writing to a page after fork() creates a private
copy. One of the simplest ways to create writeable transient shared memory
without file association 1s to use anonymous mmap() and then call fork().

It’s also possible to create persistent named shared memory with shmget().

Pages can be shuffled around with vmsplice(), tee() and remap file pages().

76



About Shared Memory

Process B Virtual
Address Space

B’s page #137 and A’s page
LY #123 are mapped to the same

physical frame #629, creating
—

shared memory.

#629 could be a read-only page

4 N .
of common library code,
L lmies writeable memory created with
Memory mmap() + fork() or shmget().
Page #123
0S Kernel
N / Page Tables

Process A Virtual
Address Space

77






Key Factor #3: Locality

Detecting, measuring and fixing poor locality: discussed
extensively in other sessions this week and somewhat already in
this one.

Using suitable pool allocators is known to help, but no easy-to-use analysis
tools. You can try evaluate heap trashing and allocation size distribution to
some extent with e.g. igprof heap snapshots, even GLIBC’s memusage. In
general the better your unit and regression test collection, the easier the job.

Do pay attention to excessive virtual memory use — code and
data.

A good rule of thumb is the larger the process, the slower it gets, with a few
well designed applications an exception to this. 200+ MB of machine code
from 500+ shared libraries is usually just preposterously bad packaging and /
or large-scale code bloat. Fix packaging, make big shared libraries only, use
coverage testing to figure out what you really need, fix coding problems, if

nothing else works, reorder binaries to separate “hot” and “cold” segments.
79



Memory Crisis

Closer look at locality




[Wikipedia / Intel Nehalem / By
“Appaloosa” / GFDL]

Intel Nehalem microarchitecture

quadruple associative Instruction Cache 32 KByte,
128-entry TLB-4K, 7 TLB-2/4M per thread

~ 128
Prefetch Buffer (16 Bytes) Bra'nc.h
Prediction
global/bimodal,
Predecode & loop, indirect
Instruction Length Decoder | jmp
Instruction Queue
18 x86 Instructions
Alignment
MacroOp Fusion
Complex Simple Simple Simple
Decoder Decoder Decoder| Decoder

Loop
Stream |Decoded Instruction Queue (28 POP entries) I Micro
Decoder Instruction
MlcroOp Fu3|on Sequencer

2 X
Retirement | 75 Reglster Allocatlon Table (RA :

Register
File Reorder Buffer (128-entry) fus

S T .

| Reservation Station (128-entry) fused |
Port 3

Port 2

Integer/
MMX ALU,
Branch

Integer/ FP FP
MMX ADD MUL
ALU

SSE SSE SSE
ADD ADD MUL/DIV
Move Move Move

128

Result Bus

octruple associative Data Cache 32 KByte,
64-entry TLB-4K, 32-entry TLB-2/4M

GT/s: gigatransfers per second

Integer/
MMXALU,| ¢
2xAGU |:

256

Uncore

Quick Path
Inter-
connect

>

>

|

DDR3
Memory
Controller

4 x 20 Bit
6,4 GT/s

>

113

|

Common
L3-Cache
8 MByte

—>
—>

3 x 64 Bit
1,33 GT/s

256 KByte
8-way,
64 Byte

Cacheline,
private

L2-Cache

512-entry
L2-TLB-4K

Typical Core Memory
Architecture Today

Out-of-order, super-scalar, deep pipelines.

Significant capacity to reorder and buffer
memory operations, will automatically
prefetch several different access patterns.

32kB LII + L1D caches, 128-entry LI
ITLB, 64-entry L1 DTLB = 512kB code,

256kB data addressing capacity.
512-entry L2 TLB 2MB code + data

addressing capacity — less than fits in L3
cache, but more than one core share of L3.

All this exists to combat the memory wall.

BUT for all practical purposes a modern
CPU performs well on large data volumes
only if organised as arrays-of-structures
(AoS) or structures-of-arrays (SoA)
pointer-rich “objects” will perform poorly.

81



Logical vs. Real Data Structures

This logical linked list... L s T

4GB

3GB \

RN
e

Could be scattered in virtual
2GB

address space like this... e

1GB

0GB

And in physical

memory like this...

nm

TR




Logical vs. Real Data Structures

The scatter is unimportant as
long as Ln and TLB caches hide
all latencies. Otherwise you
must explicitly arrange for a
better memory ordering.

There 1s no silver bullet to
make this problem go away.

Custom application-aware
memory managers, such as
pool / slab / arena allocators,
other data structure changes,
and affinity hints are the tools.

4GB

3GB

2GB

1GB

0GB

N N NN

ol

ud &

83



Wrapping Up

The CPU - memory performance difference has profound
impact.

Operating systems create illusion of one flat virtual address space. In
reality the virtual memory is divided into pages, and pages are mapped to
physical memory. Performance critical application must account for this
in their design for both data and code management.

A process =~ file-backed page mappings for code and read-only data plus
anonymous page mappings for stack, heap and global data. Creating
many memory regions, for example by loading many shared libraries,
harms performance because good performance requires static page
working set which fits in TLB. Frequent page table changes are costly,
some operations require a system-wide stall to synchronise the memory
views of all the processors.

Shared memory is created by pointing pages tables of several processes to
the same physical memory pages. Shared memory is common place, and
there are numerous convenient ways to create sharing. o



Exotic Efficiency Issues

Applications may need to become NUMA aware.

May have to if on NUMA hardware, and either make significant use of
concurrency and shared memory (multi-threading or multi-processing); or
need more memory than a single physical node has. Read up on numactl.

Poor cache use, not getting enough out of prefetching hardware.

Make sure you use S0A/Ao0S data structures, then see the other sessions
this week on cache awareness, proper strides, alignment, collision
avoidance, SIMD, and which tools to use identify problems and possible

solutions.

Multi-threaded systems may suffer from cache line contention for heavily
accessed data (e.g. locks). Lots of research out there; typical solution is
finer grained locks, or eliminating locking using e.g. read-copy-update

(RCU). Use multithread aware allocators (like jemalloc, TCmalloc).

Killed by large page tables or TLBs? Look into using huge pages. s



Summary

Memory management is expensive

Real-world limitations of CPUs and programming languages make
memory management a significant factor in overall performance. The
solution will vary with technical evolution. If you missed everything else,
remember this: get the latency down. May mean you have to design to use
hardware-aware AoS/SO0A data structures.

No silver bullet

There’s no silver bullet for making your applications scream. For top
performance you have to invest in real understanding and custom
application-specific solutions. Beware memory churn in particular.

Know your tools

There are tools out there which will reduce the mysteries a lot. Now we

will combine several of them for more serious exercises!
86












For the child nerd in all of us...

SO

wﬁm‘rmﬁilﬁ‘ﬁ‘éﬂnf%"rmﬂmmmﬂ
alniagagags

Old "arcade" games did not have enough raw CPU power to copy memory
around, nor enough memory to store whole levels as big images images. They
relied on the ability of the (graphics) hardware to "compose” scan-lines from

predefined tiles, superimposing the result with sprites(e.g. the player) images.
Tiles and sprites were actually sitting at fixed locations.

lfrf




For the teenage nerd inside all of us...

https://www.youtube.com/watch?v=mxfmxi-boyo

The video i1s generated (in realtime) with a 177KB
executable on 2007 hardware


https://www.youtube.com/watch?v=mxfmxi-boyo

