Big Data: Lessons learned by a
confused novice

Tim Mattson,
Intel Parallel Computing Lab



Introduction
I am a simple kayak instructor, .

To support my kayaking habit I
work as a parallel programmer

Which means I know how to turn
math into lines on a speedup plot




My Journey into Big Data

| spent a few
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My Journey into Big Data

| spent a few
years working on
Parallel Graph
algorithms

1

A = the adjacency matrix ...
Elements nhonzero when vertices
are adjacent

Graphs in the Language of
Linear Algebra

These two diagrams are equivalent
representations of the same graph.
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My Journey into Big Data

| spent a few
years working on Multiple-source breadth-first
ParaIIeI_Graph search
algorithms
[
[
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« Sparse array representation => space efficient

« Sparse matrix-matrix multiplication => work efficient

» Three possible levels of parallelism: searches, vertices, edges
» Highly-parallel implementation for Betweenness Centrality*

*: A measure of influence in graphs, based on shortest paths

Source: Aydin Buluc, et. al. The Graph BLAS effort and its implications for Exascale




My Journey into Big Data

| spent a few

years workingon| A “new” conceptual framework

Parallel Graph for aravh alaorithms
algorithms orarap 99

« Jeremy Kepner, John Gilbert
and friends showed how you
can build the full range of
parallel graph algorithms on top

of a linear algebra foundation. Graph Algorithms in the

Language of Linear Algebra

* Aydin Buluc working with John
Gilbert at UCSB showed how
to make them fast with the
combinatorial BLAS.




My Journey into Big Data

| spent a few

years working on The Graph BLAS effort
Parallel Graph

algorithms

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology). Jon Berry (Sandia National
Laboratory). Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert
(University of California at Santa Barbara). Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory). Jeremy Kepner (Massachusetts Institute of Technology). Charles
Leiserson (Massachusetts Institute of Technology). Andrew Lumsdaine (Indiana University). David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation),
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a large collection of
graph algorithms in terms of linear algebraic operations is mature enough to
support the emergence of a standard set of primitive building blocks. This paperis

a position paper defining the problem and announcing our intention to launch an
open effort to define this standard.

» The Graph BLAS Forum: http://istc-bigdata.org/GraphBlas/




My Journey into Big Data

| spent a few

years working on The Graph BLAS effort
Parallel Graph

algorithms

Standards for Graph Algorithm Primitives

Tim Mattson (Intel Corporation), David Bader (Georgia Institute of Technology). Jon Berry (Sandia National
Laboratory). Aydin Buluc (Lawrence Berkeley National Laboratory), Jack Dongarra (University of Tennessee),
Christos Faloutsos (Carnegie Melon University), John Feo (Pacific Northwest National Laboratory), John Gilbert
(University of California at Santa Barbara). Joseph Gonzalez (University of California at Berkeley), Bruce
Hendrickson (Sandia National Laboratory). Jeremy Kepner (Massachusetts Institute of Technology). Charles
Leiserson (Massachusetts Institute of Technology). Andrew Lumsdaine (Indiana University). David Padua (University
of Illinois at Urbana-Champaign), Stephen Poole (Oak Ridge National Laboratory), Steve Reinhardt (Cray
Corporation), Mike Stonebraker (Massachusetts Institute of Technology), Steve Wallach (Convey Corporation).
Andrew Yoo (Lawrence Livermore National Laboratory)

Abstract-- It is our view that the state of the art in constructing a Iarge collection of
graph algorithms in terms of linear algebr

supportthe emergence of a standardset| *°° and sSince _graphs are
a position paper defining the problem anc heav||y used IN B|g Data,

open effort to define this standard. that means I,m 3 “Big
- The Graph BLAS Forum: http://istc-bigd Data Expert”




.. 2 years ago
Intel made me
responsible for a
big data research
center

# ISTC

BIG DATA

ISTC Research themes

Data Analytics & Processing Platforms
Scalable Math and Algorithms

Visualization I was WAY out of my league ... but
Architecture I'm slowly coming up to speed.
I've learned 4 key lessons over the
last year!

C
Vofiregie m Portland State
UNIVERSITY

University



Lesson 1: Hype Abounds

 This truly is the most overly hyped field I've ever touched.

BIG DATA: A REVOLUTION THAT WILL TRANSFORM
HOW WE LIVE, WORK, AND THINK ... big-data analytics is
revolutionizing the way we see and process the world ...
compare its consequences to those of the Gutenberg printing

press.
The Big Data Big Data has ended privacy as
Revolution will be we know it ... Big Data will let
bigger than the Big-Government/Big-Business
internet. control your life.
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Understanding the structure of hype

Hype Cycle

of Innovation

Peak of Inflated
Expeectations

Positive Negative Plateau of
H Hype aNra
ype A Productivity

Slope of
Enlightenment

Innovation -
Trigger Disillusionment

Gartner

Source: http://www.calisto.bg/userfiles/file/Mastering%20Hype%?20Cycle%?20-%20Sofia.pdf (collected Oct 12, 2014)



Understanding the structure of hype

This pattern is very

common
Amazon stock price, 1998 to 2005

Gartner

Source: http://www.calisto.bg/userfiles/file/Mastering%20Hype%?20Cycle%?20-%20Sofia.pdf (collected Oct 12, 2014)




Understanding the structure of hype

The origin of the
hype curve

Expectations due to
engineering &

- Expectations due
| \ to excitement
/I \

and aspiration business progress
\
/ \
Early
4 “ Embryonic Emerging Adolescent Mainstream
p
|\
(] ] \
[
! \
/ \
s’ AN
Techndogy Pesk of Trough of Siope of Piateau of

Trigger Exx::cm'cms Disdlusionment  Enlightenment Productivity G artn er

Source: http://www.calisto.bg/userfiles/file/Mastering%20Hype%?20Cycle%?20-%20Sofia.pdf (collected Oct 12, 2014) 13



Understanding the structure of hype

The big question for
Big Data ... where are

Hype Cynt:

curve?
of Innovation

Peak of Inflated
Expeectations

Positive Negative Plateau of
H Hype a a
ype A Productivity

Slope of
Enlightenment

Innovation ~Jrough o

Trigger Disillusionment

Gartner

Source: http://www.calisto.bg/userfiles/file/Mastering%20Hype%?20Cycle%?20-%20Sofia.pdf (collected Oct 12, 2014)



Lesson 2: Big Data isn’t that big (so far)

» Most Big Data data-sets are not that Big compared to modern
storage technologies.

» Consider the following

— 300 Million people in the U.S..

— A genome has 3 billion base pairs, but we only need to store the
differences relative to a reference genome ... maybe 1 percent.

— The genetic code uses four nucleotides ... i.e. a 2 bit code.
— So | can store key genomic data on entire US population in:
— 3*1078 people * 3*10"9 base-pairs * 0.01*2 bit * 1 byte/8 bit = 2 Petabytes

— And there is so much similarity between genomes, this data could be
compressed an additional one or two orders of magnitude.

So if it's not the size, what is big data really all about?

15



Big Data: It’s more than the size

The Need For New Data Platforms

Big Data =» “Volume, Velocity, Variety”
Velocity, Variety Present the Biggest Challenges

* Examples:

— Velocity: Transaction processing: how to handle
hundreds of millions of transactions per day?
* How to exploit growth of main memory, manycore?

— Variety: Array Databases: increasingly people want
machine learning & predictive analytics on data
* These algorithms are expressed on arrays
* How to take advantage of manycore platforms?

— Graphs, networks, etc...

. ‘ (Y o S s Carnegie
mtel) I I I 1 S W Mellon - Portland State
< N Ll University UNIVERSITY
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Big Data: It’s more than the size

The Need For New Data Platforms

* Big Data = “Volume, Velocity, Variety”
e \/olacity \arietyu PDrocoant the Rigooct Challonagac

Response ... automation; i.e. You can’t do Big Data “by
hand”:

« Automatically Stream data into your data store system
« Automatically condition data so you can use it

« Automatically generate classifiers and find trends

« Automatically discover “actionable knowledge”

— Graphs, networks, etc...

Portland State

IIIIIIIIII




Lesson 3: Move queries, not data

» A motivating example:

— Use fMRI data to connect the mind to e
the brain ... requires processing at Ryt
human-interactive speeds (~ 1 Sec.). / o

— Assume a typical data center:
— High speed network (2 GB/s).
— Separate data and computer

Autocorrelation
field (6-D)

servers.

— Data set is 480 GB. Do the math: Patterns of

- 480 GB * (1 sec/2 GB) >4 Min Raw MR correlated
voxels

— But it's even worse ...

— We actual want to do correlations 1 subject, ~480 Gbytes raw data

Image Sources: Princeton Neuroscience Institute and Wikipedia

across hundreds of subjects ... 400
minutes just to move data around!

Compute on Data where it is stored ...
move queries, not the data

18



Lesson 4: One size does not fit all

* The application/source dictates the structure of the data:
— Arrays
— Tables
— Documents
— Other?

Different applications mean different structure.

A mismatch between Data and its Data store means the
queries don't fit the data ... leading to inefficiency or messy
programming.

The structure of the data must match the Data store

19



So what will we be
doing at our ISTC?

BIG DATA

ISTC Research themes
 Data Analytics & Processing Platforms

e Scalable Math and Algorithms
* Visualization
 Architecture

] ® e Cc ol
( mtel) I [ I i |- i Mellon' Portland State
Univel'sity UNIVERSITY



Big Data in the real world

* Consider patient data in an Intensive Care Unit
(e.g. MIMIC Il data set™)

 EKG traces ﬁ

Demographic

. Caregiver
Blood ) /(rzép\\ e
oxyger o 03 _

 Blood /L// Medical
pressure y&%ﬂ charts

- EEG traces 6 Lab test

results
« Xray, MRI,
etc.

The challenge ... apply predictive analytics across all data ... so we
can show up to restart a heart before it stops beating!!!

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

21



(e.g. MIMIC Il data set™)

Arrays

Time Series

Time Series

Arrays

Big Data in the real world

Messy, heterogeneous, complex, streaming ...
* Consider patient data in an Intensive Care Unit

EKG traces
Blood
oxygen
Blood
pressure
EEG traces

]

(

Demographic [tables

Caregiver
notes
Medical
charts

Lab test
results
Xray, MRI,
etc.

documents

tables

tables

#images

Time series and tabular data are stored in a DBMS.

Other data? Flat files

* MIMIC: Multiparameter Intelligent Monitoring in Intensive Care, http://www.physionet.org/mimic2/

# MIMC doesn't include images. We are talking to several groups to add an image database to our project 22



Analysis of published MIMICII papers

7))

.

v,

%1000A * Datain databases is used;
o P

w 100 [ databases* data in files is not

. B — Data in files is nearly

2 107 equivalent to deleting the
= 1 | |

< 1000x >

GB TB PB
Data Volume

A disruptive idea: Match data to the data-store
technology but present as a single Data Base
Management system to the end-users ... A disruptive
idea we call Polystore.

) . *Based on PhysioNet
Source: Vijay Gadepally of MIT Lincoln labs MIMIC2 ICU data



BigDawg: An integrated polystore system:?'\'i IRTC

Applications
e.g., Medical data, astronomy, twitter, urban sensing, loT

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

BigDAWG Query Language “Narrow Waist”
and Data Federation layer Provides Portability

StreanL/p / \ S~ T

Spill
Real Time DBMSs — Analytics DBMSs

S-Store || SciDB | |MyriaX| | TupleWare | | TileDB

Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

24



BigDawg: An integrated polystore systemk Ty

Applications
 e.g., Medical data, astronomy, twitter, urbar| Let’s focus on
this layer ... the
heart of
BigDAWG

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development

e.q, APIs for traditiong

mgrrages, Julia, GraphMat,

BigDAWG Query Language “Narrow Waist”
and Data Federation layer rovides Portability

Stream \

Spill

Real Time DBMSs— Analytics DBMSs
S-Store rSciDB| |MyriaX\ \TupleWare TileDB
Analytics

e.g., PLASMA, ML algos, plsh, GrabhBLAS, other analytics packages

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

25




BigDAWG Data Federation

High risk
» Two Key Components: transfﬁrmative
. research ... many
— BigDAWG Query Language or BQL: | people think this is
— the quest for “one query language to rule them all” impossible.

— BigDAWG Data Federation API:

— Islands: a collection of data stores that share a data Based on ISTC research
model and query language over the last 3 years,

— Shims: to translate queries between islands we th“?c'; ‘g’ce) mgw how
— Casts: to move data from one island to another

€

| Clients | Visualizations | Streams |  Apps

BigDAWG Query Language and Data Federation layer

Array Island Relational Island Island X

Array DBMS RDBMS Y Streaming

RDBMS X
RDBMS = relational DBMS



Our VLDB’2015 Demo

A Demonstration of the BigDAWG Multi-Database System

A. Elmore J. Duggan M. Stonebraker M. Balazinska U. Cetintemel V. Gadepally J. Heer B. Howe J. Kepner
Univ. of Chicago Northwestern MIT Univ. of Wash. Brown MIT-LL Univ. of Wash. Univ. of Wash. MIT-LL
T. Kraska S. Madden D. Maier T. Mattson S. Papadopoulis J. Parkhurst N. Tatbul M. Vartek S. Zdonik
Brown MIT Portland St U. Intel Intel / MIT Intel Intel / MIT MIT Brown
ABSTRACT BigDAWG stores MIMIC II in a mixture of backends, includ-

ing Postgres, which stores the patient metadata, SciDB [4], which

This paper presents BigDAWG, a reference implementation of a
stores the hrstorlcal waveform data in a trme serres (array) database

new architecture for “Big Data” applications. Such applications

| Clients | Visualizations | Streams |  Apps

BigDAWG Query Language and Data Federation layer
Array Island GEEGLEINEL Island X

Array DBMS RDBMS X RDBMS Y Streaming



Our VLDB’2015 Demo

A Demonstration of the BigDAWG Multi-Database System

A. Elmore J. Duggan M. Stonebraker M. Balazinska U. Cetintemel V. Gadepally J. Heer B. Howe J. Kepner
Univ. of Chicago Northwestern MIT Univ. of Wash. Brown MIT-LL Univ. of Wash. Univ. of Wash. MIT-LL
T. Kraska S. Madden D. Maier T. Mattson S. Papadopoulis J. Parkhurst N. Tatbul M. Vartek S. Zdonik
We have preliminary results targeting MyriaX, SciDB, S-store, D4M, graphulo
AB and several visualization packages. includ-

1115 I Ubtslbb, WIIIUVIT STUTIUS UUIv Patlbllt I iagaata, SvIipD l_—r_], Wthh

stores the hrstorlcal waveform dataina trme serres (array) database

Al |

This paper presents BigDAWG, a reference implementation of a
new architecture for “Big Data” applications. Such applications

—

L Clients | isualizations | Streams ) J EEEERE =0,
—_——
Array Island B MyriaQ | Island X

Shim “Shim

S~
Streaming




(@ Myria

Oceanography, Astronomy, Biology, Medical Informatics

~

MyriaQ

MyriaL Datalog SQL 7?

Relational Algebra + Iteration

\\ Compiler Compiler Compiler Compiler Compiler /

MyriaX Grappa Serial C++ SQL Spark

Magda Balazinsk, Bill Howe, Dan Suciu, Dan Halperin http://myria.cs.washington.edu/



The App: Hypotension Predictor

* Problem: blood pressure drops (hypotension) >shock = death. Early intervention is key
for survival.

* Solution: Machine learning over heterogeneous data (from MIMIC Il) to identify patients
about to suffer from a severe drop in blood pressure?

e Algorithm (from Saeed and Mark*) build a classifier .. Haar transforms over MIMICII time
series data, summarize as histograms, and performs a K nearest neighbor search.
Correlate with patient data.

Hypotension Classifier
Runtime in seconds (lower is better)

20
15
10

SciDB Myria-X AJyriaX +SciDB

Source: Magdalena Balazinska and Brandon Haynes, university of Washington.
*A Novel Method for the Efficient Retrieval of Similar Multiparameter Physiologic Time Series Using Wavelet-Based Symbolic
Representations. Mohammed Saeed and Roger Mark, http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1839671/



BigDawg: An integrated polystore system:?'\'i IRTC

Applications
e.g., Medical data, astronomy, twitter, urban sensing, loT

Visualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetching

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

BigDAWG Query Language “Narrow Waist”
and Data Federation layer Provides Portability

StreanL/p / \ S~ T

Spill
Real Time DBMSs — Analytics DBMSs

S-Store || SciDB | |MyriaX| | Tupleware (T TileDB

Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon

31



Arrays in Big Data problems

* Data is often naturally considered as an array:
— An object with multiple dimensions (e.g. 2)
— The dimensions define a logical coordinate space
— A cell “exists” at each point in the coordinate space.
— A cell has one or more attributes which collectively define the

“value” at that cell.  8x108
] 1.6x10° |
* Data is usually sparse .
— E.G. the AIS data set e

showing ship locations
as a function of time in

8 -
and around U.S. waters 1210

1x10° F

7 N ' ' ' '
8x10
0 2x10’ ax10”  6x10’ 8x10’ 1x10®  1.2x10%



TileDB a new array data storage manager:
optimized for Sparse Arrays

Logical representation Physical representation
attribute values coordinates Files
(ay, ay, ..., a,)

cell segment
Y
empty cell tile
y X tile
Jimensions Tile: Atomic unit of processing

Segment: Atomic unit of 1/0

Manage array storage as tiles of different shape/size in the
index space, but with ~equal number of non-empty cells




Loading data into TileDB

«\i}\/y
A Impose a global order

Files sorted on cell id

sort
Pack cells, create book-

keeping structures
(make tiles)

Logical
representation




TileDB use case: genomic data

* Consider data representing differences from a reference genome stored in the
standard “genomic variant Call format” (gVCF).

— A sample is one subject’s exome (the portion of the genome that is
“translated” into protein) ... ¥ 10MB

— Each line in the gVCF file corresponds to a range of chromosome
positions.

— The value at each position is a measure of the probabilistic similarity/
dissimilarity to a reference sample at that position.

gVCF example segment

hr20 287125 . T ; . PASS END=287126;BLOCKAVG_min30p2a GT:DP:GQX:MQ 0/0:40:78:40
hr20 287137 . G . ] LowGQX . GT:DP:GQX:MQ  0/0:42:11:42
87138 C PASS END=287178;BLOCKAVG_min30p2a GT:DP:GQX:MQ 0/0:36:96:42
chr20 287179 C T 310.01 PASS Bas=QRankSum=-0.721;DP=37;Dels=0.00;F5=14.994;HaplotypeScore=0.0000; MLEAC=1; MLEAF=0_500; MQ=52.29:MQ0=
0:MQRankSum=-1.091:0QD=8_38;ReadPosRankSum=-1_962;5B=-1_901e+01  GT:AD:DP:GQ:PL:MQ:GQX 0/1:24,13:37:99:240.0.810:52:99
hr20 287180 . G ; ; PASS END=287245;:BLOCKAVG_min20p3a GT:DP:GQX:MQ 0/0:32:78:49
chr20 287246 . G A 567.01 PASS BaseQRankSum=-0.718;DP=33;Dels=0.00;F5=5.093;HaplotypeScore=2_ 2995, MLEAC=1  MLEAF=0_500: MQ=45.01:MQ0=0
MQRankSum=1.050;QD=17_18:ReadPosRankSum=0_129;5B=-2_920=+02 GT:AD:DP:GQ:PL-:MQ:GQOQX 0/1:13,20:32:99:597.0.343:49:99
hr20 287247 . C ; ; PASS END=287259;BLOCKAVG_min30p2a GT:DP:GQX:MQ 0/0:27:75:4¢

A genomics center has lots of these files ... E.G. the Broad has 1K in their
public data set and 100K in their internal data sets! These numbers will
grow radically over time.




Processing over gVCF data

* An important use of gVCF data is compare
many genomes to identify mutations at

specific positions (e.g. joint genotyping).
e Qur collaborators at the Broad Genomics

institute™ gave us a joint genotyping proxy
application:

— Load gVCEF files and compute median values over
5000 positions across all samples

* The authors of the famous GATK genome processing software.



Data Loading cost

1000.00
900.00
800.00

= 700.00

3 .

M  600.00

E 500.00 -*-TileDB

=  400.00 -=-BCF

—t

G 30000 BCF: GATK SW

~  200.00 - Optimized by
100.00 Intel
0.00

0 200 400 600 800 1000 1200

# samples

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, Cent0S6.6, Western
Digital 4 TB WD4000F9YZ-0 as a ZFS RAIDO pool. Single thread/core results.



Joint Genotyping Benchmark®

45
40 -
35
—
3 30
D
— 25
% —~TileDB
g X ~=-BCF
2 15
& BCF: GATK SW
~ 10

s Optimized by
5 // Intel
—

0
0 200 400 600 800 1000 1200

# samples

*Benchmark jointly developed by Intel and the Broad Genomics Institute. Each sample is
10MB. Compute correlations across samples at ~5000 positions.

Intel® Xeon® E5 2697 v2 CPU, 12 cores, dual socket, 128 GB RAM, Cent0S6.6, Western
Digital 4 TB WD4000F9YZ-0 as a ZFS RAIDO pool. Single thread/core results.



BigDawg: An integrated polystore system% IRTC

Applications
e.g., Medical data, astronomy, twitter, urban sensing, loT

isualization & presentation
e.g., ScalaR, imMens, SeeDB, Prefetchin

SW Development
e.g, APIs for traditional languages, Julia, GraphMat, ML Base

BigDAWG Query Language “Narrow Waist”
and Data Federation layer Provides Portability

StreanL/p / \ S~ T

Spill
Real Time DBMSs — Analytics DBMSs

S-Store || SciDB | |MyriaX| | TupleWare | | TileDB

Analytics
e.g., PLASMA, ML algos, plsh, GraphBLAS, other analytics packages

Hardware platforms
e.g., Cloud and cluster infrastructure, NVM simulator, 1000 core simulator, Xeon Phi, Xeon
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Visualization

* Visualization is the primary way user’s
consume data

* Has been an afterthought in data-intensive
systems

* Tremendous opportunities to improve
performance and usability of vis by tightly
coupling with data processor

et
—_—

. ) - EE Carnegie
nted WiT F W

Portland State
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SeeDB

Parameswaran (Stanford) et. al. VLDB 2014

* Key idea: help users find interesting things
in data sets

* Visualizations are (usually) plots of 2 (or 3)
attributes
— E.g., sales by region

 What makes a visualization interesting?

— Relevant to user
— Highly variable
— Not too many or too few distinct values

(l nte’l I I I I I 5 > Umvers1ty m PortlangiN §Etaesl|tTev




Approach

e SeeDB searches through all visualizations of 2,3,...,n dimensions
— Using an efficient techniques to compute all group by queries
* Finds most interesting view

)
Given query Q over subset of data D’ of database D one oé\.,ga
interestingness = Q(D’) — Q(D-D’) ?“’Z@m

i.e., data with most variation in user-specified D’ vs entire D
Example: Compute average sales-by-region (Q) in database D,
where user focuses on subset of sales of electronics (D’)

Max(Q(D’) — Q(D-D’)) = places where sales-by-region of electronics
most different from sales-by-region of all other products

mtel) I [ I i |- ' Vel © Portland State
BN lver51ty UNIVERSITY



“Most Interesting” Group Bys

Contributor Profession vs Fraction S’s

contbr_occupation vs contb_recelpt_amt

B reg=dem.
B reg=repub.

@O L€ & O c}?‘ :x‘“ (59
s 0 <
‘?g’ ‘(‘* f’;@'}:‘j \‘9\’9 C’O*." N”‘

m

MIII“nﬂllﬂyn

\‘ C
&‘o’
& o0

(mtel) iy &

University



Scorpion

(Sam Madden and Eugene Wu, MIT)

e After SeeDB: you found something interesting, now what?

.;&- gt (}" ‘J" dc ‘4“ 6" S
{\ =
& {\(., ,&’\s \\(4 \,9\, C e -6“0 Q.k\f‘ oo

\\‘&Q ‘_@
e Common problem: outliers

* Need: a method to discover why outliers exist

intel)“ I I I i |- Viniiecgie m Portland State

UNIVERSITY

University



Definition of Why

Given an outlier group, find a predicate over the inputs
that makes the output no longer an outlier.

i = Input Data Output Visualization

4 Outlier Group

taly rance Spain uUsS
p = predicate
intel)’” I [ I i EE Veflons® Portland State
II g University UNIVERSITY




Definition of Why

Given an outlier group, find a predicate over the inputs
that makes the output no longer an outlier.

I = Input Data

Output Visualization

I ©

ltaly

p = predicate
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Definition of Why

Given an outlier group, find a predicate over the inputs
that makes the output no longer an outlier.

i = Input Data Output Visualization
e
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Removing the predicate makes US no longer an outlier
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Big Concerns over Big Data

« Big Data methods find hidden information buried in massive
piles of data

* If one is not careful:
— Over fitting simple models ... confuse your self with noise
— Becoming confused by spurious correlations
— Bad data can’t magically give you good knowledge.
— Pretending that prediction is knowledge.
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Spurious Correlations

* Does correlation imply causality?

m US spending on science, space, and technology

Suicides by hanging, strangulation and suffocation
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Source: http://www.tylervigen.com/, collected 10/15/2014
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Spurious Correlations

* Does correlation imply causality?

= Honey producing bee colonies (US)

m Juvenile arrests for possession of marijuana (US)
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Source: http://www.tylervigen.com/, collected 10/15/2014
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Google Flu

* Google claims that they can track influenza outbreaks in the
U.S. just by tracking the queries that people post in their web
searches.

* The concept is interesting, but there are issues.

« My biggest problem is that as of fal’Google has never
published the details of which queries they track or how they
process them to lead to their predictions.

— It's hard to do science when there is no transparency
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Google results are poor and misleading

% ILI

« Compare Google Flu results to CDC'’s results (based on
verified records doctor’s visits.

10 Google Flu Lagged CDC
Google Flu + CDC  ——— (DC
8 .
Google estimates more
6 than double CDC estimates
4 —
2 —
O 1 1 I 1 I
07/01/09 07/01/10 07/01/11 07/01/12 07/0V/13
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Google results are poor and misleading

Error (% baseline)

« Compare Google Flu results to CDC'’s results (based on

verified records doctor’s visits.

150 —
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Influenza Positive Tests Reported to CDC by U.S. WHO/NREVSS
Collaborating Laboratories, National Summary, 2013-14
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Summary

« Big Data Computing on real world workloads will require:
— Computing where the data resides
— Analytics integrated with the DBMS
— Good usability so data scientists can get their job done

At the Big Data Intel Science And Technology Center (BD-
ISTC) we are working on a solution stack to address these
and related topics.

« Stay tuned as we:

— Address basic research questions on unified query languages and
data-analytics/DBMS integration

— Build a prototype to test our concepts (between now and 2017).



