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What does Holographic QCD predicts for anomalous (g − 2)µ ?
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Abstract. In this talk we discuss how holographic models of QCD have been applied to the study of the light-
by-light contribution to the muon anomalous magnetic moment. After a review of the holographic procedure,
we discuss the approach we followed in a previous work, in which, using a certain set of holographic model as
a “Theory Space", we gave our estimate for the π0 exchange diagram. Our result depended also on the value of
the quark magnetic susceptibility. Thus, in the last part of the talk, we concentrate on the attempts which have
been done in the literature to apply holographic methods to the evaluation of this important order parameter of
QCD.

1 Introduction

Holographic QCD (HQCD) is a set of simple models,
aimed at reproducing relevant aspect of Large-Nc QCD in
non-perturbative regime. By simple, we mean that they
provide explicit analytic expressions for correlation func-
tions of QCD operators, covering the full energy range,
with surprisingly good results at lowest energy, where
their predictions can be compared with those of Chiral La-
grangians, Vector Meson Dominance, etc.

HQCD models are based on classical Lagrangians, al-
though defined in a (curved) five-dimensional space, con-
tain a small number of parameters, and approximate well
the almost conformal behavior of QCD at large momenta.
They naturally encode some non-perturbative features of
Large-Nc QCD, such as, for instance, the appearance of an
infinite number of narrow resonance, saturating amplitude
channels.

Many features are, however, model-dependent. Chiral
symmetry breaking (ChSB) is differently realized in differ-
ent HQCD models, each realization having its problematic
issues. The mass spectrum of vector mesons do not follow
a Regge behavior in some models. Subleading terms in the
large momentum expansion of two-point correlation func-
tions, related to QCD condensates, are badly reproduced
or completely absent in some models. Moreover, the sim-
plicity of HQCD models can be easily be spoiled, when
further aspect of real QCD are tried to be enforced into
them.

The simplicity of HQCD makes them useful for the
discussion of the Hadronic Ligh-by-Light scattering con-
tribution to the muon anomalous magnetic moment, as was
also emphasized by M.Knecht in this workshop [1].

Indeed, it is possible to extract predictions for HLbL
scattering using HQCD models, which turn out to be com-
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patible with those obtained using different models and
techniques. This strongly suggests that those (partial) as-
pects of QCD which have been encoded in the holographic
models are really (among) the ones relevant for HLbL
scattering contributions to (g − 2)µ. Although similar con-
clusions had been obtained using other models and meth-
ods, HQCD offers an additional independent confirmation.

In the following, we briefly review the basics of holo-
graphic models in Sect.2, introduce the basic tools for an
holographic calculation of the pion-pole contribution in
Sect. 3 and illustrate the strategy we used in [2] (i) to work
with several holographic models as a “Theory Space" and
(ii) to take into account a new high energy constraint in-
volving the quark magnetic susceptibility χ0. In Sect.4, we
review the various attempts to use or to extend holographic
models in order to obtain predictions on χ0. Conclusions
are drawn at the end.

2 Holographic models of QCD

HQCD models have been constructed along the lines of
the original conjectured AdS/CFT duality (equivalence)
between a four dimensional (conformal) gauge theory at
strong coupling and a (classical) five-dimensional field
theory in a curved gravitational background with Anti-de-
Sitter metric [3–5]. The conjecture can be boldly summa-
rized as follows: for any 4D operator O∆ of QCD, there
exists a corresponding field Φ(x, z), living in a curved 5D
space with (asymptotically) AdS metric, whose value on
the 4D boundary of the 5D space, Φ(x, 0), coincide with
the classical source s(x) coupled to O∆. The generat-
ing functional of correlation functions of the 4D theory
is equal to the 5D action of Φ(x, z), evaluated on-shell

exp(iW[s(x)]) ≡ 〈exp
(
i
∫

d4x s(x)O∆(x)
)
〉QCD

= exp (i S 5(Φ0(z, x))) , (1)
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where Φ0(z, x) is the solution of the 5D equation of motion
satisfying the boundary condition Φ(x, 0) = s(x).

The operator-field correspondence can be further spec-
ified leading to an holographic dictionary, relating 4D and
5D quantities as exemplified in Tab. 1

Table 1. Example of holographic dictionary. The last three lines
contain the operators relevant for HQCD (a is a flavour index).

4D operator 5D dual field
source s(x) coupled to O∆(x) on-shell Φ0(x, z)
conformal dimension ∆ mass mΦ

global symmetry gauge symmetry
conserved current q̄γµta q gauge field Va

M
axial current q̄γµγ5ta q gauge field Aa

M
quark bilinear q̄ta q scalar field Xa

with the following relation between the 5D mass mΦ

of a 5D p-form field and the conformal dimension ∆ of the
corresponding 4D operator:

m2
Φ = (∆ − p)(∆ + p − 4). (2)

One can easily check Eq.(2) for the case of 5D gauge
fields, while the tachyonic mass obtained for the 5D scalar
field is above the unitarity lower bound valid in an AdS
space.

In the case of holographic models of QCD, additional
ingredients have to be added in order to encode the effects
of confinement and chiral symmetry breaking (ChSB).
Different proposals have led to different models. Confine-
ment is realized by effectively compactifying the 5D ex-
tradimension. As a consequence of the compactification,
vector and axial vector meson resonances appear, corre-
sponding to an infinite set of normalizable 5D states. One
HQCD model was proposed by Sakai and Sugimoto [6, 7],
who actually derived it from a more sophisticated string
theory setting. The SS model is characterized by a curved
but not AdS5 metric background, contains 5D gauge fields
invariant under a local chiral symmetry, which reduces to
global chiral flavour transformation on the 4D boundary.
In the Hard Wall (HW) models of [8, 9] and [10] the ex-
tradimension of the AdS5 space is cut-off at a finite size,
while in the Soft-Wall model of [11] the extradimension is
infinite, but one still recovers infinite numbers of 4D vector
and axial vector states corresponding to 5D normalizable
modes in an effective potential generated by an additional
5D dilaton background. Figs. 1 and 2 show cartoons of
HW and SW models.

The relevant 5D Lagrangian of an HQCD model con-
tains vector and axial vector gauge fields, Va

M and Aa
M dual

to vector and axial quark currents q̄γµta qand t q̄γµγ5ta q
respectively. In some models, in particular in the HW
model considered in [8] and [9], one has also the scalar
field Xa corresponding to the quark bilinear q̄taq.

The relevant 5D Lagrangian is the following

S 5 = S YM + S X + S CS , (3)

where

S YM = −tr
∫

d4x
∫ z0

0
dz e−Φ(z) 1

8g2
5

w(z)
[
F 2

L + F 2
R

]
, (4)
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Figure 1. A pictorial representation of a Hard-Wall model. The
5D metric is AdS5 with warp factor w(z) = 1/z. The extradi-
mension z is sharply cut-off at a value z0. This compactification
generates an infinite series of 5D normalizable modes Φn(x, z)
corresponding to an infinite tower of 4D resonances with masses
m2

n ∝ n2.The mass scale is fixed by the value of the dimensional
parameter z0.
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Figure 2. A pictorial representation of the Soft-Wall model.The
5D metric is AdS5 with warp factor w(z) = 1/z and with un-
bounded extradimension z. In presence of the dilaton back-
ground φ(z) = −κ2z2, an infinite series of 5D normalizable modes
Φn(x, z) is produced, and hence 4D resonances with masses,
m2

n ∝ n, following a Regge behavior. The mass scale is fixed
by the value of the dimensional parameter κ.

S X = tr
∫

d4x
∫ z0

0
dz e−Φ(z)w(z)3

[
DMXDMX† + V(X†X)

]
,

(5)

S CS =
Nc

24π2

∫
tr

(
ALF

2
L −

i
2
A3

LFL −
1
10
A5

L

)
− (L→ R) .

(6)
In these equations:

• w(z) is the warp factor of the 5D metric ds2
5 =

w(z)2
(
dx2

µ − dz2
)
. For HW and SW models the metric

is AdS with w(z) = 1/z.

• FMN = ∂MAN − ∂NAM − i[AM ,AN] andAL,R = V ∓ A,

• In HW models the extradimension is IR cut-off at a finite
value of z0, whilst or z0 = ∞ in SW models.

• In SW models, there is also a background dilaton field
Φ(z) = −κ2z2, absent in the HW models.

• In the HW model of [8] and [9], (from here on dubbed
HW1), the 5D scalar field X(x, z), dual to q̄q, induces
ChSB, by acquiring a non trivial 5D profile X = v(z).
Such scalar field, and its action S X , do not appear in the
HW of [10] (which we shall call HW2), where chiral
symmetry between vector and axial vector fields is bro-
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ken by assigning different boundary conditions for Vµ

and Aµ on the IR wall z0.

• One may notice that the SS model [6] can be reformu-
lated as an HW2 model, with a 5D metric which is not
even asymptotically AdS for z→ 0.

• Both in the SS and in the HW2 model, the chiral field
U(x) realization of Goldstone bosons of the spontaneous
ChSB is obtained. Indeed, in these models U(x) is the
remnant of non trivial 5D Wilson lines, induced by the
ChSB boundary conditions. This makes it possible to
derive predictions for the coefficients of the low-energy
chiral Lagrangian in a straightforward way.

3 HLbL pion exchange diagram in HQCD

The main motivation of this conference was the forth-
coming improvement in the precision of the experimen-
tal measure of the muon anomalous magnetic moment,
scheduled at Fermilab, as illustrated by D. Herzog’s talk
[15]. At present, there is a discrepancy between the ex-
perimental value [16] and the prediction of the Standard
Model. To asses whether this discrepancy is real or not is
of paramount importance to understand if new physics is
required to fill the gap.

Hadronic light-by-light scattering (HLbL) is the
hadronic contribution to the muon anomaly which is less
under control from the theoretical side, as illustrated in
many reviews on the subject and in the talks by D. Mel-
nikov [17] and M. Knecht [1] at this conference. To-date,
the best estimates of the HLbL contributions are given in
Ref.[18, 19] as being (11±4)×10−10 or in Ref.[20] as being
(10.5±) × 10−10. The two different values and errors show
the difficulty to produce a world average from the plethora
of different theoretical methods that have been employed
in the literature, some of them illustrated in talks at this
conference (this one included, of course !).

HQCD models can be used to extract a prediction for
the neutral pion exchange contribution to the HLbL dia-
gram of Fig.3. In this diagram the key role is played by
the pion form factor Fπ0γ∗γ∗ (Q2

1,Q
2
2), with Q1 and Q2 the

two photon momenta. Using the HQCD action (3) explicit

FΠ Γ Γ*

FΠ Γ* Γ*

Figure 3. The neutral pion exchange diagram in the hadronic
light-by-light scattering contribution to (g − 2)µ

(analytic) expressions for K(Q2
1,Q

2
2 defined by

Fπ0γ∗γ∗

(
Q2

1,Q
2
2

)
= −

NC

12π2 fπ
K(Q2

1,Q
2
2) ,

can be obtained. For different HQCD models, they were
worked out in a series of papers [12–14].

The relevant anomalous 3-point function 〈AVV〉 is ob-
tained from the 5D Chern-Simons action (6), which con-
tains the following trilinear term

S (πVV)
CS =

Nc

4π2 ε
µνρσ

∫ z0

0
dz (∂zα(z))

∫
d4x πa

(
∂ρVa

µ

) (
∂σV̂ν

)
.

Then, using the holographic recipe (1)

K(Q2
1,Q

2
2) = −

∫ z0

0
∂zα(z)J(Q1, z)J(Q2, z) dz, (7)

which contains (i) the vector bulk-to-boundary propagator
J(Q, z), which allows to express the 5D action on-shell,
and (ii) the “pion wave function" α(z) coming from the
pion pole in the axial bulk-to-boundary propagator.

It should be stressed that any HQCD model provides
explicit expressions for J(Q, z) and α(z), obtained from
solutions of second order ordinary differential equations
(the 5D equation of motion) in the extra dimension z, and
subject to suitable boundary conditions. This leads to ex-
plicit expressions for K(Q2

1,Q
2
2) for any value of the two

virtualities. In particular, one can extract the limiting be-
havior at low momenta and in the deep Euclidean region.

3.1 An Hybrid Strategy: HQCD models as a
“Theory Space"

In Ref. [2], the questions we addressed, using HQCD,
were the following:

• Which parameters of Fπ0γ∗γ∗ mostly affect the predicted
value of (g − 2)µ ?

• What does HQCD predicts for linear and quadratic
slopes (low-Q2 expansion) of Fπ0γ∗γ∗

• Can we discriminate some HQCD models with respect
to others?

• Is Vector Meson Dominance a valid approximation or
more resonances give sizable contributions?

• Can we implement QCD low- and high-energy con-
straints in HQCD models ?

This led us to consider a certain set of HQCD models as a
sort of “Theory Space” in which to move trying to answer
the questions listed above. Thus, our approach was differ-
ent from the one followed in [21], were the pion form fac-
tor was evaluated in a specific holographic model HW1,
i.e. HW1, the Hard-Wall model with chiral symmetry
breaking induced by a 5D scalar field.

Eventually, our strategy was as follows: from the ex-
pressions for Fπ0γ∗γ∗ obtained from different HQCD mod-
els we extracted the corresponding predictions for linear
slope α̂ at low values of the two photon momenta:

K(Q2
1,Q

2
2) ' 1+ α̂ (Q2

1 +Q2
2)+ β̂ Q2

1Q2
2 + γ̂ (Q4

1 +Q4
2, ) (8)

Different HQCD models gave different results for the lin-
ear slope α̂, as shown in Table 2.
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Table 2. HQCD predictions for the linear slope. The first three
holographic models, HW1, HW2 and SW, give results is in good

agreement with the experimental value α̂exp = −1.76 ± 0.22
GeV−2, while this does not hold for the SS model and a simpler
version of HW2 with 5D flat space used for further comparison.

Model α̂ (GeV−2)
HW1 -1.60
HW2 -1.81
SW -1.66
SS -2.04
HW2 (Flat) -1.37

Somewhat surprisingly, a good agreement with the ex-
perimental value of α̂ is obtained only for models - HW1,
HW2 and SW - which reproduce the partonic log at large-
Q2, thus matching the UV behavior of QCD. Therefore,
we restricted our further analysis only to those three mod-
els. From those model we also extracted a prediction for
the curvatures β̂ and γ̂

β̂ = 3.33(32) GeV−4, γ̂ = 2.84(21) GeV−4. (9)

The investigation of (Lowest) Vector Meson Dom-
inance, using the resonance expansion of the bulk-to-
boundary propagator

J(Q, z) =

∞∑
n=1

fn
Q2 + m2

n
ψn(z) (10)

and consequently of the form factor

K(Q2
1,Q

2
2) =

∞∑
k,l=1

Bkl

(Q2
1 + m2

k)(Q2
2 + m2

l )
, (11)

led to the conclusion that dominant contributions to α̂, β̂
and γ̂ were obtained from first terms in (10), suggesting
that truncating the sums in K(Q2

1,Q
2
2) to double poles was

already a quite good approximation.
The full analytic expressions for Fπ0γ∗γ∗ , which encode

also the different spectrum of resonance of each model,
would generically lead to complicated integrals in the eval-
uation of aµ. More importantly, there is a further QCD
high-energy constraint, which we want to impose, but
which none of these HQCD models can take into account.

A list of high energy constraints on Fπ0γ∗γ∗ contains
some constraints which are satisfied in HQCD models with
asymptotic AdS metric

lim
Q2→∞

K(Q2,Q2) =
8π2 f 2

π

Nc

1
Q2 (12)

lim
Q2→∞

K(0,Q2) ∼
1

Q2 , (13)

where the second one is the Brodsky-Lepage scaling [22].
In Ref.[23], the importance a new constraint was

stressed

lim
Q2→∞

Fπ∗0γ
∗γ∗ (Q2,Q2, 0) =

fπ
3
χ0 + · · ·

where fπ is the pion decay constant and χ0 is a new or-
der parameter of QCD: the quark magnetic susceptibility,
which we shall deal with in greater detail in the next Sec-
tion. In literature

0 ≤ χ0 ≤ 9 GeV−2.

All these reasons led us to propose an interpolator
for the pion form factor (hereafter dubbed DIP and intro-
duced in kaon physics in [24]) to encode both HQCD low-
energy predictions and QCD short-distance constraints,
and whose expression was also simple enough to allow us
to use the formulas of [25] for the evaluation of the one
pion exchange to HLbL contribution to aµ:

K(DIP)(q2
1, q

2
2) = 1 + λ

 q2
1

q2
1 − m2

V

+
q2

2

q2
2 − m2

V


+η

q2
1q2

2

(q2
1 − m2

V )(q2
2 − m2

V )
. (14)

Low-energy parameters α̂, β̂ and γ̂ are easily related to λ, η
and mV and, moreover, it is easy to implement some high-
and low-energy constraints and yield predictions for the
remaining parameters. For instance, imposing

1 + 2λ + η = 0, λ + η = −
4π2 f 2

π

3m2
V

(OPE), (15)

λ

m2
V

= α̂ = −1.76 ± 0.22 (16)

one gets

mV = (0.64+0.10
−0.13)GeV, (17)

χ0 =
Nc

4π2 f 2
π

(1 + λ) = (2.42 ± 0.17) GeV−2,(18)

with the value of mV in the DIP close to the value of the
mass of the first vector resonance, ρ.

3.2 Numerical results

We defer the reader to Ref. [2] for the details of the nu-
merical analysis, which we did in order to extract our pre-
diction for aµ and estimate the error. Here, we only men-
tion that in the numerical analysis a (mild) generalization
of the interpolator was also considered, showing, however,
that numerical values were stable and very close to those
obtained with the original DIP. Our final number for the
pion-exchange HLBL contribution was

aπ
0

µ = 65.4(2.5) · 10−11 (19)

with the error mainly driven by the linear slope of Fπ0γ∗γ∗ .
We stress that the reported error in (19) has to be inter-
preted as indicating the allowed range of values of aµ in
the “Theory Space” of HQCD models that we had consid-
ered. Another caveat is that, although large values of the
magnetic susceptibility χ0 are disfavored, in the absence
of stronger bounds on χ0, an additional (10 − 15)% sys-
tematic uncertainty on the previous value for aπ

0

µ cannot
be excluded.
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Table 3. A partial list of estimates of aπ0
µ obtained using

different models for Fπ∗γ∗γ∗

Models for Fπ∗γ∗γ∗ aπ0
µ × 10−11

Modified ENJL [26–28] 59(9)
VMD/HLS [29–32] 57(4)
VMD+V (h2 = 0) [33] 58(10)
VMD+V (h2 = −10 GeV2) [33] 63(10)
VMD+V (const.Fπ0γ∗γ) [37] 77(7)
DSE [34, 36] 58(7)
Non local χQM [38] 65(2)
AdS/QCD[21, 39] 69
AdS/QCD/DIP [2] 65.4(2.5)
RχT[40] 65.8(1.2)
CχQM [41] 68(3)

Table 3 shows a partial list of values of aπ
0

µ obtained us-
ing different models, some of them discussed in other talks
at this conference. Our numerical analysis showed also
that the values of χ0 hovered around 2 GeV−2, as in the
case shown in (18), with higher values disfavored although
not definitely excluded. Higher values, e.g. χ0 ∼ 9 GeV−2,
would shift the result (19) of at most 15%. Given the pre-
cision needed for (g − 2)µ, a better control on χ0 is com-
pelling. In the next section, we shall discuss the present
knowledge about χ0 and some attempt to pinpoint its value
using (extended) HQCD models.

4 Beyond the DIP ?

Can we go beyond the approach we followed in [2] and
make a more thorough application of HQCD to the evalu-
ation of aπ

0

µ ?
Some possible options could be the following:

• Given one of the HQCD models, we could use the full
analytic expressions for K(Q2

1,Q
2
2) for the evaluation of

aπ
0

µ as it was done for HW1 in [21].

• We could try to understand if a given model HQCD
effectively comply with all the QCD constraints on
the pseudoscalar exchange, included those advocated in
[37], which led to an enhancement of the value of aπ

0

µ ,
with respect to the other competing models.

• We could try to use the extensions of HQCD models
proposed in [42, 43, 63], in which additional 5D tensor
fields were added, corresponding in the AdS/CFT dic-
tionary to quark tensor operators, in order to produce
an independent prediction on the magnetic susceptibil-
ity χ0.

On the other hand, one would readily led to some prob-
lematic issues.

• As we stressed in the introduction, none of the HQCD
models that have been proposed is free from problems.
That is why we tried the “Theory Space" approach, illus-
trated in the previous Section. For instance, it would be
nice to have a model, with resonances following Regge
trajectories, as happens in the SW model, and at the
same time recovering the full chiral field for the pion at

low momenta, which is the appealing feature of HW2.
An attempt in this direction, following some ideas in
[45], is currently under study.

• A technical problem, directly related to the evaluation
of the HLbL contribution, is that the analytical form of
K(Q2

1,Q
2
2) could not allow the use of the simpler 2-loops

integrations as it was the case with DIP. (However, more
general expression exists, see for instance the talk of M.
Procura in this workshop [46].)

• The extended models of HQCD with 5D Lagrangians
containing also to tensor fields, that we mentioned above
and that one could try to use in order to get independent
determinations of χ0, seem to have serious problems in
reproducing a satisfying QCD phenomenology.

In the following, we shall briefly consider this last issue.

4.1 Some facts about χ0

In presence of a magnetic background, the tensor current

OT,a
µν (x) = q̄(x)taσµνq(x) (20)

can acquire a non vanishing VEV

〈q̄taσµνq〉 = eqχq〈q̄q〉Fcl
µν (21)

where Fcl
µν = ∂µAcl

ν − ∂νA
cl
µ .

The operator OT is odd under C but contains both par-
ity even and odd parts and thus can create create both
JPC = 1−− and 1+− states ρ(n), b(n)

1 :

〈0|OT,a
µν (x)|b(n),c

1 (k)〉 =
i
√

2
f (n)
b εµναβε

⊥(n)α
(b) kβδace−ik·x

〈0|OT,a
µν (x)|ρ(n),c(k)〉 =

i
√

2
f T,(n)
ρ (ε⊥(n)

(ρ)µ kν − ε
⊥(n)
(ρ)ν kµ)δace−ik·x.

χ0 can be estimated using QCD sum rules, because it en-
ters in the mixed VT 2-point function

lim
q2→0

ΠVT (q2) = −χ0〈q̄q〉 (22)

Since it first evaluation, done in [47] using QCD sum rules,
many different approaches have been followed to calculate
χ0. The comparison of the various results, however, is not
immediate, partly because χ0 depends on the renormaliza-
tion scale. In comparing the results, it is common to write
the magnetic susceptibility in terms of a dimensionless pa-
rameter cχ as

χ0 = −cχ
Nc

16π2 f 2
π

(23)

where fπ = 92.4 is the pion decay constant.
Table 4 shows an incomplete list of values cχ, obtained

using different theoretical approaches.
The first four raws in Table 4 contain the results ob-

tained applying sum rules in different contexts: analysing
the of nucleon magnetic moments and ∆ → Nγ radiative
transitions [47], studying photon distribution amplitudes
in QCD [50] or radiative heavy meson decays [51].
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Table 4. Values of cχ obtained with different theoretical
methods.

Method (renormalization point) cχ
Sum rules (1 GeV) [47] 3.86 ± 0.11
Sum rules (0.5 GeV) [48] 2.56
Sum rules (1 GeV) [49] 1.98 ± 0.18
Sum rules (1 GeV) [50] 1.41 ± 0.13
Sum rules (1 GeV) [51] 1.28 ± 0.22
OPE + Pion Dominance (0.5 GeV) [52] 2
Instanton vacuum (1 GeV) [53] 1.12 ± 0.07
Zero mode of Dirac Op. (1 GeV) [54] 1.58
Lattice (1 GeV) [55] 0.695(1)
Lattice (1 GeV) [56] 1.90 ± 0.08
NJL model (0.63/ GeV) [57] -1.93
QM model (0.56 GeV) [57] -2.36
〈AVV〉 in HQCD (� 1 GeV) [58] 2.15
〈AVV〉 in HQCD [59] 2
HQCD + Tensors [60] 0.06
HQCD +Tensors [61] 1–1.5

The result cχ = 2 was obtained by Vaishtein in [52],
studying the QCD 〈AVV〉 3-point function, when two vi-
tualities of the external legs are large and one vector cur-
rent represents the constant external electromagnetic field
strength, and then using OPE and pion pole dominance.
This result is extremely important, in particular for the
comparison with the predictions obtained from HQCD
models.

Further results displayed in Table 4 were obtained by
using instantons [53], zero mode solutions of quark Dirac
equations in QCD [54], lattice [55, 56] and other models
in [57].

4.2 HQCD predictions for χ0

The last four raws in Table 4 show the results of apply-
ing (extended) HQCD models to evaluation of the quark
magnetic susceptibility.

The first two results were obtained from the study of
the anomalous three-point function 〈AVV〉 in HW1 model
[58], and in both HW1 and HW2 (SS) model in [59]. In
particular the result of [59] exactly coincides with the one
obtained in [52] using QCD OPE, non renormalization
theorems and pion pole dominance. The authors of [59]
based their results on an anomaly matching for resonances
valid in HQCD models that, if true also in real QCD, re-
produced Vainshtein result. However, their assumptions
were criticised as being actually not true in QCD [62].

The last two raws in Tab 4 show the values of for cχ
obtained in HW1 model extended to include an antisym-
metric tensor dual to the QCD operator OT,a

µν (x) in (20).
There is a great discrepancy between the result found

in [60] and those found in [58, 59], which were instead
very close or coinciding with the one of Vainshtein [52].
The authors of [61], who used the same 5D model HW1
with tensor fields as in [60], in order to make a global fit
on low energy phenomenological parameters, raised the
question about the real necessity to match the UV behavior

of holographic models with the QCD one. They advocated
that by relaxing this constraint, a better fit to low energy
properties could be obtained. In particular, regarding the
quark magnetic susceptibility, they were led to a range of
values much closer to the other ones reported in Table 4.

Actually, that was not the first time that a more phe-
nomenological use of the HQCD models was proposed in
the literature. In [61], it was argued that the UV match-
ing should be done only in the case of conserved cur-
rents, whose scaling dimensions are not modified by the
RG flow; this latter property does not hold for the ten-
sor currents OT

µν(x). Indeed, in Ref. [63], using the same
model, with holographic correlation functions of the vec-
tor and tensor operators reproducing the large-Q2 behavior
expected from QCD, a poor phenomenological agreement
of the resulting spectrum of resonances was obtained. No-
tice that already in [42], we were led to modify the UV
boundary conditions, altering the rule in Eq.(2) of the
holographic dictionary in the case of the antisymmetric
tensor field, in order to get a realistic resonance spectrum.

5 Conclusions
HQCD models allow many analytic calculations of phys-
ical quantities which are relevant for non perturbative
regime of QCD. In particular, they capture important as-
pect of QCD at low and intermediate energies, where
QCD is at strong coupling, reproducing features like chi-
ral symmetry breaking, vector meson dominance, includ-
ing whole families of vector and axial vector resonances
of increasing masses.

However, there is not yet a model prevailing on the
others: any of them has some problematic issue, even-
tually not shared by the others. This state of affairs led
us to consider, in the evaluation of HLBL contribution to
(g − 2)µ, the idea of playing in the “Theory Space” of a
set of HQCD models, in order to extract generic predic-
tions. The result for the pion exchange contribution to the
hadronic ligh-by-light that we obtained is compatible with
those obtained in other models.

Our result depends on an additional UV constraint con-
taining the quark magnetic susceptibility χ0. We have re-
viewed the attempts that have been made in the literature to
get predictions for this quantity, by extending some Hard-
Wall models through the introduction of tensor fields dual
to QCD tensor operators. These models, however, have
not led to an improvement of predictive power. The re-
sults for χ0 can be considered at most preliminary.

We still have to understand how far we can go trying
to strike the right balance between the simplicity of the
HQCD models and their predictivity.
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