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3¢ Introduction: the hadronic light-by-light (HLbL) contribution to the anomalous
magnetic moment of the muon. Dispersive approach to the HLbL tensor

3§ Lorentz structure of HLbL tensor: gauge invariance and crossing symmetry

3¢ Master formula for the HLbL contribution to (g-2).

3¢ Mandelstam representation for pion pole and pion box contributions

& Conclusions and outlook

Colangelo, Hoferichter, Procura, Stoffer, arXiv: 1506.01386, JHEP, in print



Introduction
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3¢ Limiting factor in the accuracy of SM predictions for a, = (g — 2),/2 is control over
hadronic contributions, responsible for most of the theory uncertainty

3¢ Hadronic vacuum polarization can be systematically improved

P> unitarity and analyticity relate it directly to o (€ e — = hadrons)

WQMM

B dedicated e" e~ program (BaBar, Belle II, BESIII, CMD3, KLOE2, SND)
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# Limiting factor in the accuracy of SM predictions for a, = (g — 2), is control over
hadronic contfributions, responsible for most of the theory uncertainty

3¢ Hadronic light-by-light (HLbL) is more problematic.
Only model calculations have been performed so far
and they are characterized by large uncertainties in
the individual contributions

Table 13

Summary of the most recent results for the various contributions to ﬁjlfi':h:d x 10", The last column is our estimate based on our new evaluation for the
pseudoscalars and some of the other results.

Conrtribution BPP HKS KN MV BP PdRV N/JN

x® n.n 85+13 827 +£64 83112 114 + 10 - 114 £ 13 99 + 16
7, K loops —19=x=13 —45 8.1 - - - —19+19 —19+ 13
m, K loops + other subleading in N, - - - 0+ 10 - - -

Axial vectors 25410 j 3 o i (o - 2245 - 15+ 10 2245
Scalars —68+20 - - - - — T+ 7 —74+2
Quark loops 2143 9.7 +11.1 - - - 231+ 2EE3
Total 83+32 8906 £ 154 80 + 40 136 £ 25 110 &= 40 105 & 26 116 &= 39

Jegerlehner and Nyffeler (2009)
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J Limiting factor in the accuracy of SM predictions for a, = (g — 2), is control
over hadronic contributions, responsible for most of the theory uncertainty

3¢ Hadronic light-by-light (HLbL) is more problematic.
Only model calculations have been performed so far
and they are characterized by large uncertainties in
the individual contributions

P> a reliable uncertainty estimate is still an open issue

3¢ How to reduce model dependence? Recent strategies for an improved calculation :

P lattice QCD

P> dispersion theory to make the evaluation as data driven as possible



Our strategy
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J€ Exploit fundamental principles :

P> gauge invariance and crossing symmetry

P> unitarity and analyticity

J€ Relate HLbL to experimentally accessible quantities through a dispersive approach

¥ Much more challenging task than for the hadronic vacuum polarization due to the
complexity of the HLbL tensor, which is the key object of our analysis

(for dispersive treatment of the HLbL contribution to Pauli FF, see talk by Pere)



The HLbL tensor

W
3€ The fully off-shell HLbL tensor :

1427 (q1, g2, g3) = —i / d'z dydiz em et vt e 2 (O (L (2) 6 (y) o (2)m (0)}0)

3 Mandelstam variables:

s=(p+@)t=(@+qg) u=(0p+qg)

HLbL

p one photon will be taken on shell (¢; =0)

€ For the evaluation of a



Lorentz structure of HLbL tensor
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3€ Based on Lorentz covariance the HLbL tensor can be decomposed in 138 structures
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3¢ In 4 space-time dimensions there are 2 linear relations among these 138 structures

Eichmann, Fischer, Heupel, Williams (2014)

3¢ Scalar functions encode the hadronic dynamics and depend on 6 kinematic variables

¥ This set of functions is hugely redundant: Ward identities imply 95 linear relations
between these scalar functions (kinematic zeros)



Lorentz structure of HLbL tensor

e ————

J€ Following Bardeen and Tung (1968) - "BT”- we contracted the HLBL tensor with

w_v A O
I,uy 71 42 41 ])\O‘ _ Ao 4493
12 — 49 ; 34 —

d1 - 42 43 - 44

P> 95 structures project to zero
3¢ removed the 1/q;- ¢ and 1/¢s - qu poles by taking appropriate linear combinations

¢ This procedure introduces kinematic singularities in the scalar functions :
degeneracies in these BT Lorentz structures as ¢ -¢ —0,¢3-q1 — 0

Z qu,'chiw)\a = q - q2XZ{.LV)\O' + g3 - q4Y;’uV>‘J
k



Lorentz structure of HLbL tensor
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#€ Following Tarrach (1975) we extended BT set to incorporate X", v/*** (“BTT")

-\
1" (g1, G2, g3) ZTW/\U S, 1, u; q])

V,

P> Lorentz structures are manifestly gauge invariant

P> crossing symmetry is manifest (only 7 genuinely different structures, the
remaining ones being obtained by crossing)

> the BTT scalar functions are free of kinematic singularities and zeros :
their analytic structure is dictated by dynamics only, suitable for a
dispersive treatment



Master formula for a,Htel
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3¢ Differentiating the Ward identity with respect to qu,

, 0
g (q1,92,94 — @1 — @2) = —qj4 0e" 00 (91,92, 94 — g1 — G2)
4

one obtains the relation

HLbL _ _
H 48m,,

0 Tr ((p + my) 0", 771 + m)T o ()

with

HLbL () _ 6 d'q d*qp PHd, +mu)  (P—d,+mu)
Lo (P) = /(27T)4 et pra)?—mz ' (p—a—mp’

1 0

X IL,oa0(q1,92,94 — q1 — @2
?q3(q1 + q2)2 0 1" o )

qs=0



Master formula for a,Htel
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3¢ Differentiating the Ward identity with respect to g4,

, 0
g (q1,92,94 — @1 — @2) = —qj4 0e" 00 (91,92, 94 — g1 — G2)
4

one obtains the relation

P = o T (4 m) BN T )

3¢ Since there are no kinematic singularities in the BTT scalar functions,

HLbL _ e’ / d*qr d*qe 1 1 1
8 8m,, J (2m)* 2m)* ¢fas(qr +q2)* (P +@1)? —mi (p— q2)* —m,

X T ((p + 1) 2,7 (B + M)y (B + gy + )7 (B =y + )y

XZ(@ 2 /,LI/)\O' QI QQ7Q4_Q1_Q2)>

I1;(q1, 92, —q1 — q2)
q4=0




Master formula for a,Htel
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HLbL |,

#€ Only 12 linear combinations of the scalar functions contribute to a,,

r

12 R
Ti(q1, g2; p)1Li(q1, g2, —q1 — @2
qHLBL _ 6 / d4€11 d46]2 1; ( ) ( )

g 2m)* 2m)* ¢igs (1 + @2)*[(p + @1)? — m2][(p — q2)* — m?]

¥ we determined the integration kernel functions 7,
3¢ five out of eight integrals can be performed analytically

J€ Wick rotation of q1,q2 and p (allowed even in the presence of anomalous cuts)



Master formula for a,Htel
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J€ Obtained a general master formula

QLPL / dQl/ dQQ/ drv/'1 —12Q3 Q3 ZT (Q1,Q2, T)IL;(Q1,Q2,7)

where T; are known integration kernels and the scalar functions I1; are linear
combinations of the BTT II,

¥ Q?= —q? are Euclidean momenta and Q3 = Q7 + Q3 + 20Q1Q>7

3¢ Generalization of the formula for the pion pole in Knecht and Nyffeler (2002)



Mandelstam representation of the [l
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

__ 1y°-pole box B
HMV)\U o H,Lu/)\a + H,LU/)\U + HMVAU T



Mandelstam representation of the [l
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

70- =
H,uy)\a — I pole —+ TTPoX -+ H/W)\J -+ ...

UV AT UV IO
4 - T

one-pion intermediate state :




Mandelstam representation of the [l
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

__ 1y°-pole box B
HMV)\U o H,Lu/)\a + H,LU/)\U + HMVAU T

\

two-pion intermediate state in both channels :




Mandelstam representation of the [l
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

__ 1y°-pole box B
HMV)\U o H,Lu/)\a + H,LU/)\U + HMVAU T

/

two-pion intermediate state in the direct channel:




Mandelstam representation of the [l
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€ Analytic properties of scalar functions relevant for the evaluation of a
right- and left-hand cuts, double spectral regions (box topologies)

HLbL .
L :

3¢ Very complex analytic structure: approximations are required. We order the
contributions according to the mass of intermediate states: the lightest states are
expected to be the most important (in agreement with model calculations)

3 Here we consider the 2 lowest-lying contributions: one- and two-pion
infermediate states in all channels

70- =
H,uy)\a — I pole —+ TTPoX -+ H/W)\J -+ ...

UV AT UV IO /

higher intermediate states: neglected so far




The pion pole contribution
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3 From the unitarity relation with only n° intermediate state, the pole residues in
each channel are given by products of doubly-virtual and singly-virtual pion
transition form factors ( Fy-y+r0 and Foyxyqo )

3¢ Pion transition FFs are input for a numerical analysis of the master formula:
formulation of a dispersive framework in Hoferichter et al. (2014)



Pion box contribution
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3 Defined by simultaneous two-pion cuts in two channels

3¢ Discontinuities as a dispersive integral over double spectral functions

:_/ ds'dt’ S_SS t/) )+(tHu)—|—(sHu)

3% Dependence on q? carried by the pion vector FFs for each off-shell photon

3¢ SQED loop projected onto the BTT basis fulfills the same Mandelstam
representation of the pion box, the only difference being the pion vector FFs :




Numerics for the pion box contribution
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3§ Pion vector form factor in the space-like region :

ll T | T | T | T | T
09— o NA7(1986)
B ¢ ETMC - quadratic fit .
08— m  ETMC - logarithmic fit —
= A Volmer et al. (Fpi coll.) (2001) .
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s(GeVz)

3¢ Preliminary results:

am® = —15.9-10"", 7P VMP = _16.4.107"



The remaining 1rm contribution

3& Two-pion cut only in the direct channel

J€ LH cut due to multi-particle intermediate states in the crossed channel neglected
J unitarity relates this to the helicity amplitudes for the subprocess v*y*) — mr

3% no double spectral region: partial wave expansion is possible. S-wave contribution
discussed in Colangelo, Hoferichter, Procura, Stoffer (2014). BTT formalism
facilitates the generalization to D-waves

3¢ Goal: reconstruct dispersively helicity partial waves for ~*v* — o7 . Treat nim
rescattering using the Omnes method (inclusion of resonance effects)



Conclusions and Outlook
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J€ Dispersive approach to HLbL scattering based on general principles: gauge
invariance and crossing symmetry, unitarity and analyticity

¥ Derivation of a set of structures according to Bardeen-Tung-Tarrach (BTT) such
that the scalar functions are free of kinematic singularities and zeros

¥ Derivation of a master formula for a, " in terms of BTT functions

3¢ Single- and double-pion intermediate states are taken into account

J€ Future work: model estimates for higher intermediate states (with more than 2 pions).
Investigate and incorporate high-energy constraints

J€ First step towards a reduction of model dependence of HLbL: within a dispersive
framework, relations with experimentally accessible (or dispersively reconstructed)
quantities
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A roadmap for HLbL
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GC, Hoferichter, Kubis, Procura, Stoffer arxiv:1408.2517 (PLB '14)
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