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Theory review of the muon g − 2
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Abstract. I discuss the current situation with the muon anomalous magnetic moment. I argue that a mistake
in the theoretical predictions is a very unlikely explanation of the current discrepancy between the Standard
Model value of the muon magnetic anomaly and its measured value.

1 Introduction

I was charged by the organizers of the conference with re-
viewing the theory of the muon anomalous magnetic mo-
ment. I will begin by summarizing the current situation
with the muon g − 2 and then discuss the various contri-
butions to the muon magnetic anomaly starting with the
QED one and then moving on to the hadronic vacuum po-
larization and the hadronic light-by-light scattering contri-
butions. I will not talk in any detail about the electroweak
corrections to the muon magnetic anomaly since they are
well understood by now.

The enormous interest in the muon magnetic anomaly
in the particle physics community originates from the fact
that the latest and most precise measurement of this quan-
tity by an experiment E821 performed in Brookhaven Na-
tional Laboratory left us with a persistent difference be-
tween the result of the measurement [1] and the theoretical
prediction in the Standard Model [2]. The difference

∆aµ = aexp
µ − ath

µ = (261 ± 80) × 10−11, (1)

amounts to 3.3 standard deviations. The uncertainty of the
measured value of g − 2 is 63 × 10−11; it is comparable to
the uncertainty of the theoretical result, 50 × 10−11.

The new experiment at the Fermi National Laboratory
that will start operating in 2017 aims at reducing the exper-
imental uncertainty by a factor four; if these plans succeed,
the experimental error will be brought down to 16 × 10−11

[3]. If we assume no changes in central values of all the
contributions and no changes in the theoretical uncertainty,
the final discrepancy will be more than five standard de-
viations. By the standards of high-energy physics, this
will qualify as a discovery of physics beyond the Stan-
dard Model. Hence, we see that the stakes are quite high.
We have, on one hand, a clean electroweak observable
that shows a surprising discrepancy between expected and
measured values and, on the other hand, a forthcoming ex-
periment that has a potential to increase the significance of
the discrepancy further, to the point of a discovery. These
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prospects make the physics of muon g−2 quite an exciting
and intriguing field for the next few years. At this point in
time, the best thing that the g−2 theorists can do is to keep
scrutinizing the theory predictions to ensure that theoreti-
cal results are sound and robust, at least at the level of the
accepted uncertainties. On the other hand, it is important
to realize that the current discrepancy shown in Eq.(1) is
simply too large to be explained by a blunder on the the-
ory side. This still leaves us with quite a few options to
explain ∆aµ in Eq.(1); we will describe them below.

We begin with the discussion of the magnitude of the
different contributions to ath

µ and their uncertainties. For
definiteness, we will use results as compiled in Ref.[2];
they are shown in Table 2. The QED contribution is by
far the largest one; it is known extremely precisely. For
a proper perspective, it is useful to note that the uncer-
tainty of the QED contribution is just 10−4×∆aµ, i.e. com-
pletely irrelevant at the current level of discrepancy. The
electroweak contribution is small [4], see Table 2. It is
comparable to the current discrepancy between theory and
experiment and its uncertainty is a factor of ten smaller
than the expected precision of the FNAL experiment. The
situation with hadronic contributions to the muon mag-
netic anomaly is very different. The so-called leading or-
der hadronic vacuum polarization contribution is large and
its uncertainty is sizable. The NLO hadronic vacuum po-
larization is rather small. Since its calculation uses the
same non-perturbative input as the leading order hadronic
vacuum polarization, we believe that this error estimate is
justified and, for this reason, it plays no role in the cur-
rent g− 2 discussion. The last contribution is the so-called
hadronic light-by-light scattering. It is relatively small but
for a number of reasons that we discuss below it is consid-
ered to be quite uncertain.

If we put everything together, we arrive at the theoret-
ical prediction for the muon g − 2 in the Standard Model

ath
µ = 116591830(50) × 10−11. (2)

The largest contributors to the uncertainty are the lead-
ing order hadronic vacuum polarization contribution and
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the hadronic light-by-light. The uncertainties of QED and
electroweak corrections and the hadronic vacuum polar-
ization at next-to-leading order play a minor role.

Before discussing physics of the muon magnetic
anomaly in detail, I emphasize that if we choose the cur-
rent discrepancy between theory and experiment as a mea-
sure of how well the various contributions to the muon g−2
need to be known, we have to conclude that there is basi-
cally not a single one that requires refinements. Moreover,
we can estimate the magnitude of all the different con-
tributions to the muon magnetic anomaly using relatively
simple physical considerations and in this way assure our-
selves that we do not do anything particularly wrong. Of
course, independent checks of the hadronic contributions
are very welcome but, in my opinion, it is highly improb-
able that they will give us a different version of the g − 2
story.

Therefore, given all the stress-tests that the theory of
the muon g − 2 has been subject to and the magnitude of
the discrepancy ∆aµ in Eq.(1), I believe that there are three
possible explanations of what is going on. They are as
follows:

• the experimental result is wrong;

• several ingredients that appear in the theory predictions
are “wrong” at the O(1σ) level; for some reason that is
not fully understood, the shifts are correlated;

• the discrepancy is real and is explained by physics be-
yond the Standard Model.

Thanks to the new experiment at Fermilab, we will be
able to check the first item whereas a careful re-analysis
of the many Standard Model contributions, the continued
measurements of the e+e− → hadron cross sections and
the anticipated progress in lattice computations will most
likely allow us to either confirm or disprove the second
one. Hence, it is possible to imagine that during the next
decade we will be able to find a resolution of the muon
g − 2 puzzle and understand the cause of the current dis-
crepancy.

In what follows we will discuss the different contribu-
tions starting from the QED one in Section 2 and contin-
uing with the hadronic vacuum polarization in Section 3
and hadronic light-by-light in Section 4. We conclude in
Section 5.

2 QED

A glance at the first entry in Table 2 shows that the QED
contribution to the muon magnetic anomaly is known with
the precision that exceeds the needs of the current theory-
experiment comparison. For this reason, it is tempting to
say that the QED corrections to g − 2 are well-established
and require no further discussion. However, the QED cor-
rections to the muon magnetic anomaly are large and one
can easily imagine that a tiny inconsistency in their eval-
uation will have important consequences for the interpre-
tation of the g − 2 puzzle. Since the state of the art com-
putations of the muon magnetic anomaly [5] are incom-
prehensible for most people, except for a tiny number of

QED 116584718.95(8)
Electroweak 154 ± 2
Hadronic vacuum polarization, LO 6949 ± 37 ± 21
Hadronic vacuum polarization, NLO −98.4
Hadronic light-by-light 105 ± 26

Table 1. Contributions to the muon anomalous magnetic
moment, in units of 10−11. The results are taken from Ref. [2].
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The second contribution comes from the multiplicative renormalization of the
one-loop result; we write

a(1)
µ =

(α

π

)
ZαZ2

Γ (1 + ε)m−2ε

(4π)−ε

(
1
2

+ 2ε
)

, (2.78)

from where we find

δwct,2
2 =

Γ 2(1 + ε)m−4ε

(4π)−2ε

(
− 5

24ε
− 4

3

)
. (2.79)

The final result for w2 is obtained as the sum of (2.74, 2.77, 2.79). We
derive

w2 =
197
144

+
3
4

ζ3 − π2

2
ln 2 +

π2

12
, (2.80)

where ζ3 is given by the Riemann zeta-function ζp =
∑∞

n=1
1

np .

2.5 Three-loop QED Corrections to aµ

At the third order in the perturbative expansion in QED, the technical diffi-
culties become enormous. In addition, diagrams of the light-by-light scatter-
ing type, Fig.2.6, where, similar to hadronic vacuum polarization, all charged
particles contribute, appear at this order. Traditionally, only light-by-light
scattering diagrams with electron, muon and τ loops are included in the
QED part of the muon magnetic anomaly. The light-by-light scattering dia-
grams mediated by the electron loops turn out to be particularly important;
not only those diagrams are enhanced by lnm/me, but also coefficients of the
logarithms are large, ∼ π2. This interesting feature leads to a strong domi-
nance of the light-by-light scattering contribution, mediated by the electron
loop, in the three-loop QED contribution to aµ, and indicates that similar
diagrams are important in fourth and higher orders.

For our discussion, we split the three-loop QED correction to the muon
anomalous magnetic moment into several components

k

e, µ, τ

Fig. 2.6. The diagram with the light-by-light scattering loop
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Fig. 2.7. The dominant four-loop diagram. Symmetric diagrams are not shown

a(4)
µ ∼

(α

π

)4 π2

2
ln2 m

me
. (2.90)

The four-loop contribution to the muon magnetic anomaly reads

a4 =
(α

π

)4 (
wlbl+vp,e

4 + w4

)
, (2.91)

where we neglect the contribution of the tau lepton at this order. The mass-
independent term w4 has been computed in [28]

w4 = −1.7502(384) . (2.92)

The term wlbl+vp, e
4 that includes the electron loop in vacuum polarization

and the light-by-light scattering diagrams reads

wlbl+vp, e
4 = 132.6823(72) . (2.93)

This value should be compared with 117.4(5) [30], that is obtained upon
evaluating the contribution to aµ due to the diagrams shown in Fig. 2.7.
It follows, that approximately ninety percent of wlbl+vp, e

4 come from a few
diagrams that are very well understood. It is precisely this feature of the four-
loop result that makes it robust; this implies that any discrepancy between
the experimental result for aµ and the theoretical expectation at the level of
100×10−11 is very unlikely to be caused by deficiencies in QED computations.

The full calculation of the five-loop contribution to aµ is not available.
Nevertheless, it is reasonable to assume that electron light-by-light scattering
diagrams dominate there and existing estimates of the five-loop contribution
[27, 31, 32] are based on this assumption.

Following our explanation of how such diagrams contribute at the three-
and four-loop level, it is easy to understand that there are two possibilities
to obtain large contributions at the five-loop level. An additional electron
loop insertion into one of the photons in the four-loop diagram Fig. 2.7 gives
additional logarithms so that its contribution to w5 can be estimated as
w5 ∼ π2 ln3 m/me ≈ 103. Alternatively, the light-by-light scattering diagram
with no electron vacuum polarization loops has four muon propagators that

Figure 1. Enhanced three- and four-loop QED contirbutions to
the muon g − 2.

experts, it appears to be impossible to say how reliable
these computations are without a completely independent
confirmation of the final result. Unfortunately, such a con-
firmation has not yet fully happened although an impres-
sive progress towards this goal occurred in recent years
[6]. For this reason, we must take the results of the QED
computations as they are currently reported and make our
conclusions about the significance of the g−2 discrepancy
based on this information. It is important to discuss why
we believe that this is the sensible thing to do.

The answer to this question is actually quite simple: at
the current level of discrepancy ∆aµ in Eq.(1) we do not
need the results of the most advanced QED computations.
In fact, all that is required are the three-loop QED cor-
rections and the leading contributions at four-loops. Both
the three-loop QED contributions to muon g − 2 and the
leading four-loop contributions are known since long ago
and have been checked several times (see the discussion in
Ref.[7] and references to the original papers therein). As
we will see, these results alone allow us to predict the QED
contribution to the muon magnetic anomaly with the pre-
cision that is better than 40× 10−11 which is much smaller
than ∆aµ.

The peculiarity of the QED contributions to the muon
magnetic anomaly are the two enhancement parame-
ters – the logarithm of the muon to electron mass ra-
tio ln mµ/me ∼ 5 and π2 ∼ 10 that appear in certain
cases. The logarithmic enhancement is a consequence of
the renormalization-group running of either the QED cou-
pling constant or effective operators that appear once dia-
grams that are sensitive to mµ and me are written in such a
way that contributions of disparate energy scales are sepa-
rated. We note that it is somewhat unusual in perturbative
computations to specifically address the enhancement by
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π2 factors1 but in case of the muon magnetic anomaly there
are cases when this enhancement can be sharply identified.
This happens, for example, when π2 and ln mµ/me appear
in Feynman diagrams at the same time. Such situation oc-
curs in the light-by-light scattering diagrams with the elec-
tron loop [8], see Fig. 1 The enhancement mechanism is
very strong – at three loops, the light-by-light scattering
diagrams with the electron loop provide 96% of the full
result; all other diagrams give just about four percent.

At four loops, the situation is similar. We can not
add another photon to connect the muon line and the elec-
tron loop since the resulting contribution vanishes due to
Furry’s theorem. Instead, we generate the logarithmic en-
hancement caused by the running of the coupling constant
by inserting the electron vacuum polarization diagram into
any of the photon propagators, see Fig. 1. This class of di-
agrams gives [9]

a(4),leading
µ = 117.4

(
α

π

)4
. (3)

It is instructive to compare the approximate and the exact
results

a(4),exact
µ = (132.68 − 1.75)

(
α

π

)4
, (4)

where the first term contains contributions from all dia-
grams enhanced by logarithms of mµ/me ratio and the sec-
ond represents contributions of all diagrams that are reg-
ular in the limit me → 0. The difference between the
full result and the leading contribution at four-loops trans-
lates into 40 × 10−11 shift at g − 2; this number is much
smaller than the current discrepancy in the muon magnetic
anomaly. Moreover, other potentially enhanced contribu-
tions at the four-loop level were recently re-evaluated [6],
confirming the results of the previous computations [10].
What remains unchecked at the four-loop level is the part
of the computation that is regular in me → 0 limit. We
see from Eq.(4) that it only shifts the four-loop result by
about 5×10−11 which is absolutely negligible at the current
level of discrepancy. Finally, we note that the calculation
of five-loop QED corrections to the magnetic anomaly was
recently completed [5]. The result is consistent with a few
earlier estimates [11] that utilized the possible enhance-
ment mechanisms that we discussed earlier. The five-loop
contribution shifts the muon anomalous magnetic moment
by about 5 × 10−11 which is negligible compared to the
current discrepancy.

Last year it was pointed out that the perturbative de-
scription of the QED corrections to the anomalous mag-
netic moment of an electron or a muon may be incomplete
[12]. This discussion was motivated by an observation
that contributions of QED bound states such as positronia,
dimuonia etc. change the magnetic anomaly at the five-
loop order, c.f. Fig. 2. However, since the bound states
are non-perturbative in a sense that infinitely many Feyn-
man diagrams need to be summed up to describe them,
it seems hard to imagine a mechanism that makes these

1The usual argument against this is that π2 may appear in many dif-
ferent ways in the final result and there are many known cases when large
π2 contributions are compensated by large rational contributions.

Figure 2. The contribution of a QED bound state to the anoma-
lous magnetic moment of a lepton.

bound state contributions a part of conventional perturba-
tive series. In fact such mechanism exists; it is known as
“duality” in QCD. The point is that the magnetic anomaly
is an Euclidean quantity that can be computed in QCD af-
ter the Wick rotation. If so, all the integrations over loop
momenta can be performed over paths that are far from
any of the physical singularities. For this reason, conven-
tional perturbative expansion must be applicable. How-
ever, when one performs a computation without the Wick
rotation and, in particular, uses dispersion representation
for the photon vacuum polarization function, one has to
integrate over sub-threshold positronia or dimuonia states.
The non-perturbative O(α5) correction to g − 2 is then ob-
tained. If one stops here, one concludes that there are con-
tributions in QED that are not part of conventional pertur-
bative series. However, such conclusion will be prema-
ture. Indeed, there is another non-perturbative contribu-
tion that appears in a form of a strong modification of the
continuum scattering states above the e+e− or µ+µ− pro-
duction thresholds. These non-perturbative contributions
in the continuum spectrum produce corrections to g − 2
that are equal and opposite in sign to non-perturbative cor-
rections produced by the bound states. When the sub- and
above-threshold non-perturbative contributions are added,
they cancel each other completely; the remaining part can
be obtained within conventional perturbative expansion in
QED [13, 14].2 The reason for this is the Euclidean nature
of the muon anomalous magnetic moment, as has been
mentioned already.

To summarize, I believe that QED corrections to the
muon magnetic anomaly are understood so well that they
can be discarded as a reason for the discrepancy in ex-
pected and measured values of the muon g−2. On the other
hand, another measure of how well we need to control the
QED corrections is provided by the expected precision of
the new FNAL experiment, 15 × 10−11. To match this pre-
cision, a re-calculation of the finite part of the four-loop
muon g−2 probably becomes desirable. Given impressive
recent developments in techniques for perturbative compu-
tations and their application to physics of the muon mag-
netic anomaly [6], there is no doubt that this task will be
accomplished on the time scale of a few years.

2Amusingly, this discussion was given in a more general context in
full generality almost fifty years ago [15].
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Figure 3. The spectral density R(s) that appears in the calcula-
tion of the leading order hadronic vacuum polarization contribu-
tion to the muon magnetic anomaly.

3 Hadronic vacuum polarization
contribution

The next largest correction to the muon anomalous mag-
netic moment is the hadronic vacuum polarization. The
muon mass provides the energy scale for this contribu-
tion. This scale is smaller than the non-perturbative scale
of strong interactions ΛQCD, so that perturbative QCD is
not applicable and we have to resort to non-perturbative
methods. The only viable option is to use the disper-
sion representation of the hadronic vacuum polarization
which allows us to restore the full function from its imagi-
nary part. Since the imaginary part of the hadronic con-
tribution to photon vacuum polarization is proportional
to e+e− → hadrons annihilation cross section, which is
known thanks to many experimental studies, we can calcu-
late the hadronic vacuum polarization non-perturbatively.
Its contribution to the magnetic anomaly can be written as

ahvp
µ =

α

3π

∞∫
s0

ds
s

Rhard(s) a(1)(s), (5)

where R(s) = σe+e−→hadr/σe+e−→µ+µ− and a(1)
µ is the one-

loop anomalous magnetic moment that appears due to an
exchange of a photon-like vector boson with the mass

√
s.

Note that for the evaluation of the integral in Eq.(5) the
low-energy region is of particular interest; this is so be-
cause the anomalous magnetic moment a(1)

µ decreases for
large vector boson masses a(1)

µ (s) ∼ m2
µ/s giving a stronger

weight to the low-energy part of the integrand in Eq.(5).
Before I describe the results of the most recent compu-

tations, I would like to emphasize that it is possible to esti-
mate ahvp

µ [7]. Such an estimate is interesting since, when
contrasted with data-driven evaluations, it gives us an idea
about how well such non-perturbative computations can
be controlled. This is not very important for ahvp

µ , where
data is available at the first place, but it is crucial for the
hadronic light-by-light scattering contribution albl

µ , as we
describe later.

The idea behind the estimate is quite simple. We try
to model the essential features (see Fig.3) of the spectral
density R(s) at relatively low energies by accounting for
three contributions:

• the chirally-enhanced two-pion threshold contribution
aππµ defined with an upper energy cut-off at

√
s = mρ/2;

• the contribution of ρ, ω, φ vector mesons aρ,ω,φµ ;

• the “continuum” contribution acont
µ that starts above

√
s ∼ mφ;

Numerically, we find aππµ ∼ 400 × 10−11, aρ,ω,φµ = 5514 ×
10−11, acont

µ = 1240 × 10−11. Combining the three re-
sults we obtain the theoretical estimate of the leading or-
der hadronic vacuum polarization contribution to the muon
magnetic anomaly

ahvp,th
µ = aππµ + aρ,ω,φµ + acont

µ ≈ 7160 × 10−11. (6)

This theoretical estimate can be compared with one of the
recent results of the data-driven evaluations [2]

ahvp
µ = (6949 ± 37.2 ± 21.0) × 10−11. (7)

The proximity of the two results is obvious and gives us
confidence that we understand the physics of the hadronic
vacuum polarization quite well; of course, the uncertainty
of the theoretical estimate is hard to access a’priori.

Let us discuss now to what extent the existent data-
driven evaluations are satisfactory, given the physics goals
of the current and forthcoming muon g − 2 studies.3 The
important point to emphasize in this respect is that the
hadronic vacuum polarization contribution to the magnetic
anomaly is large and it needs to be know quite precisely.
In fact, currently, it is the largest contributor to the uncer-
tainty of the theoretical prediction of the muon magnetic
anomaly. The two uncertainties in Eq.(7) have the follow-
ing origin: the first one is related to the uncertainty of the
experimental data and how they are combined; the second
one reflects the poor understanding of how QED radia-
tive corrections are applied to analyses of available data
in exclusive hadronic channels. Both of these uncertain-
ties are relatively small compared to the current discrep-
ancy between theory and experiment but, taken together,
they are not negligible. Moreover, these uncertainties be-
come quite substantial when compared to the expected
precision of the FNAL experiment, which suggests that
further effort is required to improve the measurements of
the e+e− → hadrons annihilation cross sections at low en-
ergies. It is re-assuring that the corresponding program of
measurements exists both at BEPC and at Novosibirsk, so
that substantial improvements in our understanding of ahvp

µ

can be expected on a few years time scale [16, 17].
There are several important issues that are debated cur-

rently in the context of the calculation of the hadronic vac-
uum polarization. One is the compatibility of data sets
obtained in measurements of e+e− → hadrons by CMD,
SND, KLOE, BABAR and BESS III experiments. All the
experiments measure the contributions of the kinematic re-
gion around the ρ-meson to ahvp

µ so that the results of dif-
ferent experiments can be compared directly. Such a com-
parison is shown in Fig. 4. In principle, the results of the
different measurements are consistent but there are unwel-
come systematic trends: KLOE results are smaller than the
BABAR results and somewhat smaller than SND results.

3For a detailed discussion of this question, see Ref. [16].
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Ratio to BABAR fit
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Figure 2: Ratios of the measured e+e− → π+π− cross sections from the quoted experiments
relative to the BABAR cross section fit in the mass range 0.7-0.85 GeV, excluding the ρ − ω
interference region. The quoted error bars include both statistical and systematic uncertainties.

Table 2: The results for the product Bω→ee·Bω→ππ obtained from pion form factor fits published
by the experiments are compared to the results presented in Ref. [1]. The conclusions regarding
the BABAR value and its uncertainty are radically different in the two cases.

Experiment Bω
ee · Bω

ππ (10−6) [exp] Bω
ee · Bω

ππ (10−6) Ref. [1]
CMD-2 2003 0.95 ± 0.18 -
CMD-2 2006 1.02 ± 0.09 -

SND 1.22 ± 0.07 -
CMD-2 + SND 1.13 ± 0.05 1.22 ± 0.04

BABAR 1.05 ± 0.08 1.78 ± 0.01

the parameters describing the ρ resonance and the interference amplitude are fitted, so
that the product of the branching ratios Bω→ee · Bω→ππ can be directly obtained. Using
the fit results published by the experiments, the values deduced for the product are given
in Table 4. The values presented in Ref. [1] are listed for comparison. The agreement
is reasonable for CMD-2 and SND, however there is a large discrepancy for BABAR.
Whereas the value from the published BABAR fit to the pion form factor agrees well
with Novosibirsk, the value from Ref. [1] is problematic: it deviates considerably from the
direct value and the quoted uncertainty is one order of magnitude too small, given the
statistical accuracy of the BABAR data. Thus the conclusion reached in Ref. [1] that the
BABAR data strongly disagree with the Novosibirsk experiments is ill-founded.

5

Figure 4. Comparison of recent evaluations of the ρ-meson con-
tribution to g − 2 that employ data from different experiments.
The plot is taken from Ref. [18].

Also, the spectral densities R(s) are somewhat tilted rel-
ative to each other in BABAR and KLOE measurements.
The result of the very recent measurement by BESS III
[19] is between the BABAR and KLOE results, but defi-
nitely closer to KLOE.

The other important topic that is being currently dis-
cussed is the question about the usefulness of τ data for
the evaluation of the magnetic anomaly. The central is-
sue is whether or not it is possible to control the isospin
violating effects at the precision level that is required for
the hadronic vacuum polarization to the muon magnetic
anomaly. There were several talks about this issue dur-
ing the Workshop; they seem to give an affirmative answer
to this question [20, 21]. My personal opinion about this
is that it is difficult to control the isospin violating effect
at the level that is required to have meaningful descrip-
tion of the muon magnetic anomaly which implies that the
use of τ data has the potential to create a lot of confusion.
One thing, however, is clear. The recent work on the com-
patibility of the e+e− and the τ data seems to imply that,
by and large, the data sets are quite compatible with each
other [20, 21]; the situation therefore, is different com-
pared to what was happening twelve years ago when the τ
and e+e− data gave markedly different predictions for the
muon g − 2. Interestingly, one can check the compatibil-
ity of the τ data with the results of the R(s) measurements
by CMD, KLOE and BABAR; when this is done [21], the
BABAR measurement appears to be disfavored.

4 Hadronic light-by-light scattering
contribution

We will now discuss the current situation with the hadronic
light-by-light scattering contribution to the muon anoma-
lous magnetic moment. It is estimated to be ahlbl

µ =

(105 ± 26) × 10−11 [22]. Clearly, ahlbl
µ is not large and its

uncertainty, when compared to the current difference be-
tween theory and experiment, can be tolerated. However,
given the persistent nature of the g − 2 discrepancy, the
volatile history of theoretical calculations of the hadronic
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π0

a b

Fig. 6.2. The “pion-pole” contribution to the hadronic light-by-light scattering
component of aµ. The second planar diagram symmetric to the diagram a is not
shown

M[π0(k1) + µ(p)→ µ(p + k1)]

= −4α2Nc

3Fπ

Λ∫
d4k2

(2π)4
εµναβkα

1 kβ
2

k2
2(k1 − k2)2

ūp+k1γ
µ 1

p̂ + k̂2 −m
γνup .

(6.10)

The integration over k2 is simple in the logarithmic approximation,

Λ∫
d4k2

(2π)4
kβ
2

k2
2(k2 − k1)2

1

p̂ + k̂2 −m
≈ i

64π2
γβ ln

( Λ2

−k2
1

)
. (6.11)

Using εαµβνγµγβγν = 3! iγαγ5 and ūp+k1 k̂1γ5up = 2mup+k1γ5up we arrive
at

M[π0(k1) + µ(p)→ µ(p + k1)] = −
(α

π

)2 Nc

4Fπ
mūp+k1γ5up ln

( Λ2

−k2
1

)
.

(6.12)
We use this result to get the amplitude for the diagram Fig. 6.2a by

integrating over k1,

Mpl =− ie
(α

π

)3 N2
c m

6F 2
π

Λ∫
d4k1

(2π)4
f̃νβkβ

1

k2
1(k

2
1 −m2

π)
ln

( Λ2

−k2
1

)
ūpγ

ν 1

p̂ + k̂1 −m
γ5up

=− ie
(α

π

)3 N2
c m

192π2F 2
π

ln2 Λ

mπ
f̃νβ ūpσ

νβγ5up .

(6.13)

Here we retain only terms linear in the momentum of the external photon q
which is present implicitly in the dual electromagnetic field-strength f̃νβ =
ενβαµqαεµ.

Using the identity ūpσ
αβγ5upf̃αβ = 2iūpσ

αβupεαqβ , we arrive at the fol-
lowing “pion-pole” contribution to the muon anomalous magnetic moment
[6, 7]

Figure 5. The so-called pion pole contribution to ahlbl
µ is the nu-

merically dominant one.

Breaking of the chiral perturbation theory looks surprising at first sight. Indeed, the inverse chiral
parameter m2

ρ/m2
π ≈ 30 is much larger than Nc = 3. What happens is that the leading terms in the

chiral expansion are numerically suppressed, which makes chiral corrections governed not by m2
π/m2

ρ

but rather by ≈ 40 m2
π/m2

ρ . This can be checked analytically in the case of the HVP contribution
to the muon anomaly. The charged pion loop is also enhanced in this case by a factor m2

ρ/m2
π but

the relative chiral correction due to the pion electromagnetic radius (evaluated with a cutoff at m2
ρ

in the ππ spectral function) is ∼ 40 m2
π/m2

ρ ln(mρ/2mπ). Of course, if the pion mass (together with
the muon mass) would be, say, 5 times smaller than in our real world, the charged pion–loop would
dominate both in the HVP and the HLbL contributions to the muon anomalous magnetic moment.

In concluding this Section, we see that the 1/Nc expansion works reasonably well, so one can use
one–particle exchanges for the HLbL amplitude. On the other hand, chiral enhancement factors are
unreliable, so we cannot limit ourselves to the lightest Goldstone–like states, and this is the case both
for the leading and next–to–leading order in the 1/Nc expansion.

3. Short–Distance QCD Constraints.

The most recent calculations of aHLbL in the literature [1, 6, 8, 9] are all compatible with the QCD chiral
constraints and large–Nc limit discussed above. They all incorporate the π0–exchange contribution
modulated by π0γ∗γ∗ form factors F(k2

i , k2
j ), correctly normalized to the π0 → γγ decay width. They

differ, however, in the shape of the form factors, originating in different assumptions: vector meson
dominance (VMD) in a specific form of Hidden Gauge Symmetry (HGS) in Refs. [4, 5, 6]; a different
form of VMD in the extended Nambu–Jona-Lasinio model (ENJL) in Ref. [7, 8]; large–Nc models
in Refs. [1, 9]; and on whether or not they satisfy the particular operator product expansion (OPE)
constraint discussed in Ref. [9], upon which we next comment.

Let us consider a specific kinematic configuration of the virtual photon momenta k1, k2, k3 in the
Euclidean domain. In the limit q = 0 these momenta form a triangle, k1+k2+k3 = 0, and we consider
the configuration where one side of the triangle is much shorter than the others, k2

1 ≈ k2
2 $ k2

3 .
When k2

1 ≈ k2
2 $ m2

ρ we can apply the known operator product expansion for the product of two
electromagnetic currents carrying hard moments k1 and k2,∫

d4x1

∫
d4x2 e−ik1·x1−ik2·x2 jν(x1) jρ(x2) =

2
k̂2

ενρδγ k̂δ

∫
d4z e−ik3·z jγ

5 (z) +O
(

1
k̂3

)
. (10)

Here jγ
5 =

∑
q Q2

q q̄γγγ5q is the axial current where different flavors are weighted by squares of their
electric charges and k̂ = (k1 − k2)/2 ≈ k1 ≈ −k2 . As illustrated in Fig. 3 this OPE reduces the HLbL
amplitude, in the special kinematics under consideration, to the AVV triangle amplitude.

k

k k

q 01

2 3

q 0

k3

γ γγ 5H

Figure 3: OPE relation between the HLbL scattering and the AVV triangle amplitude.

There are a few things we can learn from the OPE relation in Eq. (10). The first one is that the
pseudoscalar and pseudovector meson exchanges are dominant at large k1,2. Indeed, only 0− and 1+

states are coupled to the axial current. It also provides the asymptotic behavior of form factors at
large k2

1 ≈ k2
2 . In particular, we see that the π0γ∗γ∗ form factor F(k2, k2) goes as 1/k2 and similar

asymptotics hold for the axial–vector couplings. The relation in Eq. (10) does not imply that other
mesons, like e.g. scalars, do not contribute to HLbL, it is just that their γ∗γ∗ form factors should fall
off faster at large k2

1,2 .

5

Figure 6. The OPE relation for the photon-photon scattering
Green’s function.

light-by-light scattering contribution4 and the fact that the
calculation of ahlbl

µ only vaguely relies on the experimental
data, there seems to be an uneasy feeling towards it. As the
result, both the central value and the uncertainty estimate
are being frequently questioned.

I begin by summarizing a few solid facts that we know
about hadronic light-by-light scattering contribution. First
of all, this contribution is non-perturbative since the en-
ergy scale set by the muon mass is small. Unfortunately,
the use of robust non-perturbative methods such as e.g. the
dispersion relations with experimentally-measured spec-
tral densities, is very difficult in case of hadronic light-by-
light.5 As the consequence, most of the current computa-
tions of ahlbl

µ rely on models of low-energy hadron interac-
tions. It is important to emphasize, however, that these
models are constructed following parametric considera-
tions. Indeed, to describe low-energy strong interactions
physics, we can employ two parameters: 1) large number
of colors Nc can be used to construct the 1/Nc expansion;
2) the apparent smallness of the pion mass mπ relative to
the scale of strong interactions ΛQCD allows us to treat a
pion as a pseudo-Goldstone boson and uniquely predict
its interactions with photons to leading order in the chiral
expansion. The smallness of the pion mass suggests that
loops of charged pions should provide the dominant con-
tribution to the muon magnetic anomaly; the proximity of
Nc = 3 to Nc = ∞ suggests that Green’s functions relevant
for the description of hadronic light-by-light scattering can
be constructed as linear combination of contributions of
non-interacting hadronic resonances. The existent studies
of ahlbl

µ show that contributions that are enhanced by the
large number of colors are (numerically) more important
than the contributions that potentially exhibit the chiral en-
hancement.

Two statements can be made about hadronic light-by-
light scattering contribution that are exact in the large-Nc

4The theory prediction for ahlbl
µ changed sign several times during its

relatively short history.
5See Refs. [23–25] for the recent attempts to push forward with the

data-driven evaluation of ahlbl
µ .
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approximation. First, we know that in the large-Nc approx-
imation and in a situation where the mass gap between the
pion and the ρ-meson is large, the hadronic light-by-light
scattering contribution to the muon anomaly is given by
the following formula [26]

albl
µ [π0] =

(
α

π

)3
3
(Nc

3

)2 m2

(4πFπ)2 ln2 mρ

mπ
+ ... (8)

The ellipses stand for terms that are enhanced by a single
power of ln mρ/mπ and for terms that are regular in mρ →

∞ limit. This contribution originates from the diagrams
in Fig.5 where π0 is exchanged between the photon pairs.
In addition, there is a constraint on the behavior of the
photon-photon scattering amplitude at large virtualities of
the photons that follows from perturbative QCD [27]. It is
based on the OPE relation for the time-ordered product of
two vector currents

i
∫

d4xd4ye−iq1 x−iq2yT jµ1 (x) jµ2 (y)

=

∫
d4ze−i(q1+q2)z 2i

q2 εµ1µ2δρq
δ jρ5(z) + ... (9)

Pictorially, this equation is illustrated in Fig. 6. The axial-
vector current – that appears on the right-hand side of
Eq.(10) – has a non-vanishing matrix element between the
hadron vacuum and π0; this allows to connect the short-
distance computation of the photon-photon scattering am-
plitude where OPE is applicable and the long-distance de-
scription of the photon-photon scattering amplitude where
π0 exchange plays the primary role. The two constraints
refer to opposite momenta scales, the very small and the
very large; Eq.(10) shows that these constraints are con-
nected and can be modeled by the π0-exchange extrapo-
lated to high-invariant masses in a consistent way [27].

Our best estimates of the large-Nc part of the hadronic
light-by-light scattering contribution to the muon mag-
netic anomaly utilize models of the light-by-light scat-
tering amplitudes based on pseudo-scalar (π0, η, η

′) and
pseudo-vector (a1) exchanges , subject to two constraints
mentioned above [27–31]. The current consensual result
for the large-Nc part of the hadronic light-by-light scatter-
ing contribution to g − 2 is [22]

ahlbl,Nc
µ = (128 ± 13) × 10−11. (10)

We can check our understanding of ahlbl,Nc
µ in a number

of different ways. Since the hadronic light-by-light scatter-
ing contribution to g−2 is Euclidean, we never need to in-
tegrate over the resonance regions when evaluating ahlbl,Nc

µ .
It is then possible to think that there should be a duality
between hadronic light-by-light scattering contribution to
g−2 calculated using hadronic models and the constituent
quarks. The only parameter that a constituent quark can
have – its mass – can be estimated by requiring that the
same theory works for the leading order hadronic vacuum
polarization. This approach, pioneered in Refs.[32, 33],
gives ahlbl

µ ≈ 130 × 10−11.
One can check the stability of this result in a couple

of ways. For example, one can include the “gluon” cor-
rections to both light-by-light and hadronic vacuum po-
larization diagrams and check by how much the results

for ahlbl
µ change if one changes the gluon-quark coupling

[34]. Alternatively, one can combine the constituent quark
loop with π0 contribution to ensure that the chiral limit
of the theory is correct [35]; in this case the quark loop
contribution and the pion loop contribution must conspire
to give the correct result for ahlbl

µ . It turns out that what-
ever one does, the result comes out to be in in the range
ahlbl,Nc
µ ≈ (120− 150)× 10−11 which is perfectly consistent

with the results of more detailed computations based on
low-energy hadron models shown in Eq.(10).

Although further improvements in understanding the
large-Nc part of the hadronic light-by-light scattering con-
tributions are clearly warranted, the major current issue in
the theory of ahlbl

µ is whether the sub-leading in Nc contri-
butions are under control. The largest effect comes from
loops of charged pions, which is the leading contribution
in the chiral expansion. One finds aπ

+π−

µ = −40 × 10−11.
However, it is interesting to point out that this particular
contribution is not robust and that the pion loop changes
strongly if pion-photon interactions are modified to ac-
count for contributions of vector mesons. Another illus-
tration of this fact is that introducing such modifications in
two different ways gives two results that differ by a signif-
icant amount. The reason for this behavior was analyzed
in Ref. [27]. It was found in that reference that the pion
loop is sensitive to larger values of the loop momenta than
one naively expects. Moreover, these values of the loop
momenta are sufficiently high to be sensitive to hadronic
modifications of the interaction vertices and propagators.
One can also learn from these results that first non-trivial
power correction to the chiral limit is insufficient and one
needs quite a number of such terms to obtain the reliable
result.

A separate, but related issue is the question by how
much pion polarizability modifies the pion loop contri-
bution [38, 39]. The pion polarizability is a modifica-
tion of the pion-photon interaction due to the following
higher-dimensional operator in the low-energy Lagrangian
Lpol ∼ F−2

π π
+π−FµνFµν. This term is clearly not part of

the leading chiral Lagrangian and it is also not generated
when effects of heavy mesons are modeled by using vec-
tor meson dominance or similar models. It is argued in
Refs. [38, 39] that effects of the pion polarizability are
large and very uncertain; it is estimated in Refs. [38, 39]
that the pion loop contribution, including the polarizability
operator, is in between −10 × 10−11 and −70 × 10−11.

It is important to stress that, as the consequence of
these issues, the sub-leading in Nc contribution to muon
g − 2 is, currently, the leading source of the uncertainty in
the final theoretical estimate of ahlbl

µ . Given this situation,
it is interesting to ask to what extent our understanding of
the sub-leading in Nc contributions can be improved in the
future and we have seen some positive signs of the pos-
sible improvements during the Workshop. Indeed, it was
argued in [40] that out of the two standard references for
the pion loop contributions – the Hidden Local Symmetry
(HLS) result −4 × 10−11 of Ref. [36, 37] and the vector
meson dominance (VMD) result −19 × 10−11 of Ref.[29],
only the VMD calculation satisfies the short-distance con-
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Figure 7. Decomposition of the chirally enhanced contributions
to the photon-photon scattering amplitude in the dispersive ap-
proach of Refs.[23, 24].

straints on π+π−γγ vertex and leads, e.g. to the finite
π+ − π0 mass difference. This fact would strongly favor
the VMD result aπ

+π−

µ = −19×10−11 and would reduce the
uncertainty since the previous uncertainty estimate was de-
signed to cover both the VMD and the HLS model results.
The analysis reported in Ref. [40] also seems to disfavor
large effects of polarizability at least as long as one stays in
the kinematic regime where the chiral expansion is well-
behaved.

As we already mentioned, another interesting idea that
was put forward recently is to use dispersion relations for
the photon-photon scattering amplitude to make compu-
tations of hadronic light-by-light scattering less model-
dependent [23–25]. For the subleading-Nc contributions,
the decomposition of the photon-photon scattering ampli-
tude shown in Fig. 7 is derived in Refs. [23, 24]. The first
term on the right hand side, the four-pion cut, is simple
and unique: it is chirally-enhanced pion box contribution
modified by pion form factors on the external photon legs.
The second term, the two-pion cut, is difficult; its analysis
currently assumes the partial-wave expansion. The impor-
tant point is that the four-pion cut is the same in VMD
and HLS models and it is not affected by the pion polariz-
ability issues. This means that all the “hot topics” in the
current discussion of the hadronic light-by-light scattering
contribution to g − 2 reside in the two-pion cut contribu-
tion. This suggests that the dispersive approaches have
a great chance to establish their credibility and useful-
ness by showing that the above issues (VMD vs. HLS
and the polarizability) can be understood and clarified in a
model-independent way. If anything, this is a simpler task
than the complete model-independent analysis of hadronic
light-by-light scattering contribution to the muon magnetic
anomaly, but it is a very important one.

5 Conclusion

I would like to finish this discussion by re-iterating the
following point. I believe that after more than ten years
of searching for reasons for the discrepancy between the
E821 result and the theoretical prediction for the muon
magnetic anomaly, we can say with confidence that missed
Standard Model effects as large as ∼ 260×10−11 can be ex-
cluded as the reason for the discrepancy. The three logical
explanation of the discrepancy are then 1) an experimental
issue; 2) a coherent combination of small effects in theory
and experiment that reduces the discrepancy to an “accept-
able” level; 3) physics beyond the Standard Model.

The first item will be clarified by the new FNAL ex-
periment. The second item will require some work on the
theory side, new measurements of the e+e− → hadrons

cross sections at Novosibirsk and Beijing and a better un-
derstanding of the hadronic light-by-light scattering con-
tribution. The hope here is related to the new mode-
independent approaches that are currently being devel-
oped, the improved measurements of photon transition
form factors [41, 42] that appear to be possible at high-
luminosity e+e− colliders and with continuous progress in
applications of lattice QCD to hadronic light-by-light scat-
tering that seems to be reaching the breakthrough moment
[43].

The BSM contribution as an explanation of the dis-
crepancy in muon g − 2 is, arguably, the most exciting
option. The likely candidate is still the supersymmetry
with relatively small chargino and neutralino masses and
relatively large value of tan β. Here the interplay with di-
rect measurements at the LHC is crucial but so far there
is no contradiction between the LHC data and the masses
of electroweakinos required to explain the muon magnetic
anomaly [44].
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