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E821 and the new experiment at FNAL

The latest measurements of the muon anomalous magnetic moment in the Brookhaven 
experiment   left us with an interesting puzzle: theoretical and experimental results for g-2 
differ by about three standard deviations:  

The new experiment at FNAL aims at reducing the experimental error by a factor of
four. Assuming no changes in the central value,  the above discrepancy will increase
to 5.1 standard deviations.   By accepted standards, this will qualify as a discovery.

Given the strong potential of the g-2 experiment to clarify the situation,  it is  important to 
scrutinize the theoretical prediction once again and ensure that the theoretical result is 
actually correct within the estimated uncertainty.

aexpµ = 116 592 089(63)⇥ 10�11, athµ = 116 591 830(50)⇥ 10�11

aexpµ � athµ = (259± 81)⇥ 10�11
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The budget 

Let us briefly go through the various contributions to muon g-2 to identify what is relevant 
at the current level of precision. 

aQED
µ = 116584718.95(8)⇥ 10�11

QED  

The LO hadronic vacuum polarization aHVP,LO
µ = (6949± 37.2± 21.0)⇥ 10�11

Electroweak aEW
µ = (154± 2)⇥ 10�11

The NLO hadronic vacuum polarization aHVP,NLO
µ = �98.4⇥ 10�11

aHLBL
µ = (105± 26)⇥ 10�11The hadronic light-by-light scattering contribution

athµ = 116591830(50)⇥ 10�11
The grand total:

The dominant errors are hadronic vacuum polarization and hadroinic light-by-light. 
Everything else is -- at least nominally -- well-understood. 
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The message 
I would like to emphasize that the current understanding of g-2 theory practically excludes the 
possibility the the current level of discrepancy  between  theory and experiment is a consequence 
of a major  theoretical blunder.  It is possible to use  simple physical considerations to estimate 
and check the order of magnitude of all the relevant  theory contributions.   Although we still 
would  welcome  an independent check for various hadronic contributions ( e.g. as provided by 
the lattice), it is highly improbable that these  checks will give us a completely different version 
of the g-2 story. 

The message therefore should be clear: given the current level of discrepancy and 
all the stress-tests that the theory of g-2 was subject to, we have to conclude that the discrepancy 
is caused by one of the three things ( or their combination):

1) experimental issues;

2) a cocktail  of small (one-sigmish) shifts in central values of theoretical  and experimental  
results, all  working in the same direction;

3)  BSM physics. 

The new experiment at Fermilab will be most likely be able to tell us what it is. 
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QED
For almost all of us,  the current computations of QED corrections to muon g-2 are not 
comprehensible.  We do not know if they are right or wrong.  Yet, we must take these results 
as they are reported and make our conclusions about the significance  of the discrepancy  in  
g-2 based on them.  Given how large QED contribution is, a small change in it can cause a lot 
of trouble.  So why are we so sure that QED results are OK?  

The answer is simple: for the current level of discrepancy we only need the three-loop 
QED contribution -- which is well-known -- and enhanced contributions at four loops --that 
are well-understood.  

ln
mµ

me
⇠ 5, ⇡2 ⇠ 9

The logarithm is the consequence of RG-like running either of the fine structure constant 
or of more complex objects that can be thought of as some ``effective operators’’.  The       
enhancement shows up because several (even number) of poles of the muon propagator  can 
contribute to the final result.

⇡2

An interesting thing though is that there are two enhancement parameters: 
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QED

2) At the four loops, the pattern  repeats itself and the dominant contribution comes from same 
diagrams but with additional insertion of the  lepton vacuum polarization. The part  of the four-
loop result that is not enhanced is not important at the current level of precision.

30 2 QED Effects in the Muon Magnetic Anomaly

e

e

Fig. 2.7. The dominant four-loop diagram. Symmetric diagrams are not shown

a(4)
µ ∼

(α

π

)4 π2

2
ln2 m

me
. (2.90)

The four-loop contribution to the muon magnetic anomaly reads

a4 =
(α

π

)4 (
wlbl+vp,e

4 + w4

)
, (2.91)

where we neglect the contribution of the tau lepton at this order. The mass-
independent term w4 has been computed in [28]

w4 = −1.7502(384) . (2.92)

The term wlbl+vp, e
4 that includes the electron loop in vacuum polarization

and the light-by-light scattering diagrams reads

wlbl+vp, e
4 = 132.6823(72) . (2.93)

This value should be compared with 117.4(5) [30], that is obtained upon
evaluating the contribution to aµ due to the diagrams shown in Fig. 2.7.
It follows, that approximately ninety percent of wlbl+vp, e

4 come from a few
diagrams that are very well understood. It is precisely this feature of the four-
loop result that makes it robust; this implies that any discrepancy between
the experimental result for aµ and the theoretical expectation at the level of
100×10−11 is very unlikely to be caused by deficiencies in QED computations.

The full calculation of the five-loop contribution to aµ is not available.
Nevertheless, it is reasonable to assume that electron light-by-light scattering
diagrams dominate there and existing estimates of the five-loop contribution
[27, 31, 32] are based on this assumption.

Following our explanation of how such diagrams contribute at the three-
and four-loop level, it is easy to understand that there are two possibilities
to obtain large contributions at the five-loop level. An additional electron
loop insertion into one of the photons in the four-loop diagram Fig. 2.7 gives
additional logarithms so that its contribution to w5 can be estimated as
w5 ∼ π2 ln3 m/me ≈ 103. Alternatively, the light-by-light scattering diagram
with no electron vacuum polarization loops has four muon propagators that

a(4)µ =
⇣↵
⇡

⌘4
(132.68|lbl,vp � 1.75) a(4),approxµ = 117.4

⇣↵
⇡

⌘
4

a(4)µ � a(4),approxµ ⇡ 40⇥ 10�11 ⌧ athµ � aexpµ

1) The three-loop  contribution  is very well-established. An important point is that  the 
dominant contribution is provided by the light-by-light scattering diagram with the electron 
loop.  All other contributions  are much less important, changing the complete 3-loop result 
by about 4%. 

2.5 Three-loop QED Corrections to aµ 25

The second contribution comes from the multiplicative renormalization of the
one-loop result; we write

a(1)
µ =

(α

π

)
ZαZ2

Γ (1 + ε)m−2ε

(4π)−ε

(
1
2

+ 2ε

)
, (2.78)

from where we find

δwct,2
2 =

Γ 2(1 + ε)m−4ε

(4π)−2ε

(
− 5

24ε
− 4

3

)
. (2.79)

The final result for w2 is obtained as the sum of (2.74, 2.77, 2.79). We
derive

w2 =
197
144

+
3
4

ζ3 −
π2

2
ln 2 +

π2

12
, (2.80)

where ζ3 is given by the Riemann zeta-function ζp =
∑∞

n=1
1

np .

2.5 Three-loop QED Corrections to aµ

At the third order in the perturbative expansion in QED, the technical diffi-
culties become enormous. In addition, diagrams of the light-by-light scatter-
ing type, Fig.2.6, where, similar to hadronic vacuum polarization, all charged
particles contribute, appear at this order. Traditionally, only light-by-light
scattering diagrams with electron, muon and τ loops are included in the
QED part of the muon magnetic anomaly. The light-by-light scattering dia-
grams mediated by the electron loops turn out to be particularly important;
not only those diagrams are enhanced by lnm/me, but also coefficients of the
logarithms are large, ∼ π2. This interesting feature leads to a strong domi-
nance of the light-by-light scattering contribution, mediated by the electron
loop, in the three-loop QED contribution to aµ, and indicates that similar
diagrams are important in fourth and higher orders.

For our discussion, we split the three-loop QED correction to the muon
anomalous magnetic moment into several components

k

e, µ, τ

Fig. 2.6. The diagram with the light-by-light scattering loop

⇠
⇣↵
⇡

⌘3 2⇡2

3
ln

mµ

me
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QED

4)  We had an interesting discussion about positronium  contribution to g-2 recently.  The 
positronium contribution appears at the five-loop order (i.e. it is           )  but it requires a 
summation of infinitely many Feynman diagrams so it is hard to imagine that this is part of 
regular perturbative series.  But it is...( the g-2 is an Euclidean observable).

Interestingly, this  is a direct illustration of ``duality’’ between resonances and continuum  
that is crucial for estimates of hadronic properties using the method of  QCD sum rules.

aPS
µ =

↵5

8⇡
⇣(3)

O(↵5)

3) The complete five-loop result was recently obtained by Aoyama, Hayakawa, Kinoshita and 
Nio .  The result is well within the range of the earlier estimates of five loop results that 
utilizes the known mechanisms to enhance higher order results.

a(5)µ = 753.29
⇣↵
⇡

⌘5
⇡ 5⇥ 10�11 a(5),approxµ ⇠ (500� 1000)⇥

⇣↵
⇡

⌘
5
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In summary :  we know enough about QED contributions to the muon magnetic anomaly to 
say with absolute confidence that the current discrepancy between theory and experiment is 
not caused by it. 

Even if one is willing to doubt the validity of four- and five-loop QED results without an 
independent confirmation, this can only change  the current results by  O(40) x 10-11 , which 
is about one half of the current standard deviation. 

However, even this scenario should be considered as an extremely improbable.

QED summary
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Hadronic vacuum polarization
Hadronic vacuum polarization contribution is obtained by integrating the cross 
section for e+e- -> hadrons weighted with a kernel computable in perturbation 
theory.

3 Hadronic Vacuum Polarization

3.1 Hadronic Vacuum Polarization: The Basics

The hadronic vacuum polarization, Fig. 3.1, is the largest hadronic effect
on the muon anomalous magnetic moment; it has to be known with high
precision to match the existing experimental effort. Given the low value of
the muon mass, this task seems formidable because at low energies hadronic
interactions are strong. We are rescued by a dispersion representation of the
photon propagator that relates hadronic vacuum polarization contribution
to aµ and the experimentally measured e+e− annihilation cross section into
hadrons. In principle, this allows to account for the effects of strong interac-
tions exactly. Such an approach puts, however, a significant burden on the
experiment, requiring high precision measurement of the e+e− annihilation
cross section.

We begin by giving a crude estimate of the hadronic vacuum polarization
contribution to aµ. Following the discussion in Sect. 2.4, it is easy to see that
a hadronic state with the invariant mass Mhadr changes aµ by

ahvp
µ ∼

(α

π

)2 m2

M2
hard

. (3.1)

Taking Mhard ∼ 1 GeV as a typical scale for hadron masses, we arrive at the
estimate

ahvp
µ ∼ 6000 × 10−11. (3.2)

hadrons

Fig. 3.1. The hadronic vacuum polarization contribution to the muon anomalous
magnetic moment

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 33–87 (2006)
c© Springer-Verlag Berlin Heidelberg 2006

ahvpµ =
↵

3⇡

1Z

s0

ds

s
Rhadr(s)a(1)µ (s) R(s) =

�e+e�!hadr

�e+e�!µ+µ�

Given the measurement of e+e- -> hadrons, 
it is  straightforward to obtain its contribution  
to the muon magnetic  anomaly.  But it is also 
possible to estimate it. 

We can represent the spectral density as the sum of three  terms: 

1) chirally-enhanced two-pion contribution 

2) vector mesons

3) continuum 

a⇡⇡µ ⇡ 400⇥ 10�11, 4m2
⇡ < s < m2

⇢/2

�e+e�!V =
12⇡2�V!e+e�

mV
�(s�m2

V ) a⇢,!,�
µ ⇡ 5514⇥ 10�11

s
0

= 1 GeV2, acontµ = 1240⇥ 10�11

athµ ⇡ 7160⇥ 10�11
Since it is very  easy to obtain the result  in the right ballpark, one 
should be very cautious  when  judging the success (or lack of it) 
of prospective lattice  results on hadronic vacuum polarization 
contribution.

Thursday, September 10, 15



Hadronic vacuum polarization

This estimate compares very well with the results of detailed analyses that use 
measurements of e+e- -> hadrons annihilation cross section.

3 Hadronic Vacuum Polarization

3.1 Hadronic Vacuum Polarization: The Basics

The hadronic vacuum polarization, Fig. 3.1, is the largest hadronic effect
on the muon anomalous magnetic moment; it has to be known with high
precision to match the existing experimental effort. Given the low value of
the muon mass, this task seems formidable because at low energies hadronic
interactions are strong. We are rescued by a dispersion representation of the
photon propagator that relates hadronic vacuum polarization contribution
to aµ and the experimentally measured e+e− annihilation cross section into
hadrons. In principle, this allows to account for the effects of strong interac-
tions exactly. Such an approach puts, however, a significant burden on the
experiment, requiring high precision measurement of the e+e− annihilation
cross section.

We begin by giving a crude estimate of the hadronic vacuum polarization
contribution to aµ. Following the discussion in Sect. 2.4, it is easy to see that
a hadronic state with the invariant mass Mhadr changes aµ by

ahvp
µ ∼

(α

π

)2 m2

M2
hard

. (3.1)

Taking Mhard ∼ 1 GeV as a typical scale for hadron masses, we arrive at the
estimate

ahvp
µ ∼ 6000 × 10−11. (3.2)

hadrons

Fig. 3.1. The hadronic vacuum polarization contribution to the muon anomalous
magnetic moment

K. Melnikov and A. Vainshtein: Theory of the Muon Anomalous Magnetic Moment
STMP 216, 33–87 (2006)
c© Springer-Verlag Berlin Heidelberg 2006

ahvpµ =
↵

3⇡

1Z

s0

ds

s
Rhadr(s)a(1)µ (s) R(s) =

�e+e�!hadr

�e+e�!µ+µ�

A ``recent’’ compilation  gives

0.96 0.98 1 1.02 1.04

e+e-→π+π-

0.70-0.85 GeV

Ratio to BABAR fit

BABAR

CMD2-2003

CMD2-2006

SND

KLOE-2008

KLOE-2010

Figure 2: Ratios of the measured e+e− → π+π− cross sections from the quoted experiments
relative to the BABAR cross section fit in the mass range 0.7-0.85 GeV, excluding the ρ − ω

interference region. The quoted error bars include both statistical and systematic uncertainties.

Table 2: The results for the product Bω→ee·Bω→ππ obtained from pion form factor fits published
by the experiments are compared to the results presented in Ref. [1]. The conclusions regarding
the BABAR value and its uncertainty are radically different in the two cases.

Experiment Bω

ee
· Bω

ππ
(10−6) [exp] Bω

ee
· Bω

ππ
(10−6) Ref. [1]

CMD-2 2003 0.95± 0.18 -
CMD-2 2006 1.02± 0.09 -

SND 1.22± 0.07 -
CMD-2 + SND 1.13± 0.05 1.22± 0.04

BABAR 1.05± 0.08 1.78± 0.01

the parameters describing the ρ resonance and the interference amplitude are fitted, so
that the product of the branching ratios Bω→ee · Bω→ππ can be directly obtained. Using
the fit results published by the experiments, the values deduced for the product are given
in Table 4. The values presented in Ref. [1] are listed for comparison. The agreement
is reasonable for CMD-2 and SND, however there is a large discrepancy for BABAR.
Whereas the value from the published BABAR fit to the pion form factor agrees well
with Novosibirsk, the value from Ref. [1] is problematic: it deviates considerably from the
direct value and the quoted uncertainty is one order of magnitude too small, given the
statistical accuracy of the BABAR data. Thus the conclusion reached in Ref. [1] that the
BABAR data strongly disagree with the Novosibirsk experiments is ill-founded.

5

aµ
had,LO VP

Δα(5)
had (M 2

Z)

value (error)2

mπ

0.6

0.9

1.4
2 ∞

rad.
mπ 0.6

0.91.4
2

∞

mπ 0.6
0.9

1.4
2

4

11

∞
rad.

mπ 0.6
0.9
1.4

2

4
11
∞

Figure 18: The pie diagrams in the left- and right-hand columns show the fractions of the

total contributions and (errors)2, respectively, coming from various energy intervals in the
dispersion integrals (2) and (13). The pie diagrams for the LO hadronic contribution to

g − 2, shown in the first row, correspond to sub-contributions with energy boundaries at
mπ, 0.6, 0.9, 1.4, 2 GeV and ∞, whereas for the hadronic contribution to the QED coupling,
shown in the second row, the boundaries are at mπ, 0.6, 0.9, 1.4, 2, 4, 11.09 GeV and ∞. In the

(error)2 pie diagrams we also included the (error)2 arising from the treatment of the radiative
corrections to the data.

sum of the exclusive channels is better determined. This has prompted us to re-investigate the
sum-rule analysis including the new data in the input. We now find good agreement of the

sum-rules with the world average value of αs if the sum of exclusive channels is used, which is
slightly higher than the inclusive data, and a worsened agreement if inclusive data are input.

We therefore now use the exclusive data, which are also more accurate.

Furthermore, new much more accurate BES data are seen to be in perfect agreement with

the pQCD predictions of e+e− → hadrons in the range from 2.6 GeV up to the charm threshold.
We therefore use pQCD in this region, but with a conservative error of about 3.5% corresponding

to the accuracy of the latest BES data. Use of pQCD from 2 GeV would result in a slight shift
(−1.2 · 10−10 for aµ), with an even stronger preference for the exclusive data in the sum-rule
analysis, see Fig. 12.

In summary, we find the updated LO and HO hadronic vacuum-polarisation corrections to

be
ahad,LOVP
µ = (694.91± 4.27) · 10−10 , (16)

ahad,HOVP
µ = (−9.84± 0.07) · 10−10 . (17)

25

In practice,  important issues are: 

1) compatibility of different data sets (CMD, SND, BABAR, 
KLOE);

2) usefulness of tau-data  for hadronic vacuum polarization (my 
opinion -- not a good idea, one should not keep repeating the same 
mistake again and again);

Comparison of contributions to g-2 
from around the rho meson as 
measured in different experiments
(Davier, Malaescu)

aHVP,LO
µ = (6949± 37.2± 21.0)⇥ 10�11

The major contributions to this  result 
and to the error by the energy region  
are shown in the pie diagram to the 
right.

Hagiwara et al.
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Hadronic light-by-light
The hadronic light-by-light scattering contribution is estimated to be 105(26) x 10-11.  It is not 
large and the 25% error -- in principle -- can well be tolerated.  

However, given the persistent g-2 discrepancy, the volatile history of the hadronic light-by-light 
contribution and the fact that its calculation is only vaguely constrained by experimental data, 
there  seems to be an uneasy feeling towards it. So let me summarize a few things  that  we know 
about hadronic light-by-light scattering.

 This contribution is non-perturbative -- the muon mass is small.  There are two parameters  that 
we can use to estimate it  --  the (small) pion mass and the (large) number of colors. 
We know with certainty that the large Nc is a fairly good parameter  and the pion mass is not.  
We also know that none of these parameters is really large or small -- this  means that leading 
order estimates do not  work well and one has to use  models/extrapolations  to catch important 
and relevant physics. 

122 6 Hadronic Light-by-light Scattering and the Muon Magnetic Anomaly

4, 5, 6, 7, 8, 9, 10, 11]. Early calculations based on constituent quark approxi-
mation were always treated with caution since the effect of strong interactions
on the result was unclear. Later, application of effective low-energy theories
of strong interactions to the computation of the hadronic light-by-light scat-
tering contribution to aµ received broad recognition. Because such a descrip-
tion of strong interactions is valid at low energies only, somewhere along the
way the lore appeared that hadronic light-by-light scattering contribution to
aµ is determined, almost entirely, by low-energy degrees of freedom. Unfortu-
nately, this is incorrect. In the next two sections we give some arguments that
demonstrate that the hadronic light-by-light scattering contribution to the
muon magnetic anomaly is sensitive to high- and intermediate-momentum re-
gions.1 We then construct the low-energy model of the hadronic light-by-light
scattering [11] that incorporates model-independent constraints that follow
from short-distance properties of QCD and approximate chiral symmetry of
strong interactions. We use this model to estimate the hadronic light-by-light
scattering contribution to aµ.

6.1 Calculating the Hadronic Light-by-light Scattering
Contribution: An Overview

In this section we review, following [11], the calculation of the hadronic light-
by-light scattering contribution to the muon anomalous magnetic moment.
As we explained in the Introduction to this chapter, such calculations are
performed using theoretical models that describe interactions of photons with
hadrons at low energies. It is useful to have a theoretical parameter that
controls the validity of a model. Since perturbation theory is not an option,
we must look for a parameter other than the QCD coupling constant; the two
possibilities are the proximity of the chiral symmetry at low energies and the
large number of colors Nc [3, 4, 12]. The relevance of those parameters can
be seen from the schematic expression for albl

µ ,

albl
µ ∼

(α

π

)3
[
c1

m2

m2
π

+ c2Nc
m2

Λ2
QCD

]
, (6.1)

where it is assumed that mπ > m. Only the power dependence on m2
π is

shown; chiral logarithms ∼ ln mπ are included into the coefficients c1,2. The
first, chirally enhanced term is due to loops of charged pions in the light-by-
light scattering, Fig. 6.1a. The second, Nc–enhanced, term is due to exchanges
of neutral pion or heavier resonances, Fig. 6.1b.

Because the mass of the muon is small, it is natural to expect the chi-
ral parameter m2

π/(4πFπ)2 to be a better expansion parameter for albl
µ . This

1 In this chapter, by “high” and “intermediate” scales we mean energy scales that
are larger than or comparable to the mass of the ρ mesons.

6.1 Calculating the Hadronic Light-by-light Scattering Contribution 123

π0 , a1 , ...

π±

a b

Fig. 6.1. Hadronic contributions to the light-by-light scattering (a) charged pion
loop, (b) exchange of neutral pion and other resonances.

certainly would be valid if the mass of the pion (and the mass of the muon
as well) is an order of magnitude smaller while ΛQCD remains the same. In
the real world, however, a more careful analysis indicates that things work
differently. In what follows, we will show that the chirally enhanced charged
pion contribution is always much smaller than the Nc-enhanced contribu-
tion; although never proven from first principles, this seems to be a common
conclusion to the host of studies of the hadronic light-by-light scattering con-
tribution to the muon magnetic anomaly within various models of low-energy
hadronic interactions [3, 4, 5].

Moreover, we observed a similar situation when discussing the hadronic
vacuum polarization contribution to aµ, Chap. 3. There, we have seen that
the chirally enhanced two-pion contribution is, approximately, 4×10−9 which
should be compared with 50×10−9, the Nc–enhanced contribution due to the
ρ-meson exchange. Although we do not have a clear understanding of why
the chirally enhanced terms are sub-dominant to such an extent, we will take
the dominance of the large-Nc expansion over the chiral expansion as the
working hypothesis and build our description of the hadronic light-by-light
scattering contribution to the muon magnetic anomaly around it.

As we explained in Sect. 3.2.1, the special feature of the large-Nc QCD
is that any scattering amplitude can be written as an infinite sum of reso-
nances. This feature helps in constructing a model for hadronic light-by-light
scattering but it is insufficient. To constrain the model further, we require the
short-distance behavior of the light-by-light scattering amplitude to be con-
sistent with QCD. We derive the corresponding QCD prediction by observ-
ing that at large Euclidean photon momenta the operator product expansion
(OPE) is applicable to the hadronic light-by-light scattering amplitude. In
the following sections, we will show that the leading term in this OPE comes
from the quark box diagram enhanced by Nc; hence, the OPE constraints are
consistent with the large-Nc limit. Therefore, we require that an acceptable
large-Nc hadronic model, extrapolated to large Euclidean photon momenta,
matches the perturbative light-by-light scattering amplitude. We find that
the minimal large-Nc model which satisfies this criterion includes exchanges
of the pseudoscalar 0− mesons π0, η, η′ and the pseudovector 1+ resonances
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Hadronic light-by-light: exact results

 
1) Working in the large-Nc limit and assuming a large  mass  gap between the  pion and the 
lightest vector meson, one can calculate the double-logarithmic contribution to  HLBL 
contribution “exactly’’. 6.3 Hadronic Light-by-light Scattering: Logarithmic Terms 129

albl
µ [π0] =

(α

π

)3
3
(Nc

3

)2 m2

(4πFπ)2
ln2 Λ

mπ
+ ... , (6.14)

where the ellipses stands for uncalculated terms that contain at most sin-
gle logarithms of the ultra-violet cut-off, O(ln Λ/m). Note that since Fπ ∼
N1/2

c , the pion pole contribution to the muon magnetic anomaly scales like
albl

µ [π0] ∼ Nc. It is appropriate to make a few comments at this point.

(1) The double-logarithmic approximation for the pion-pole contribution to
aµ, (6.14), is the unique prediction of QCD that follows from its chiral prop-
erties.

(2) In the context of the low-energy effective field theory, the apparent di-
vergence ln2(Λ) in (6.14) is removed by adding counter-terms to the effective
Lagrangian

Lct = C1im µ̄γ5µπ0 + C2mµ̄σαβµFαβ , (6.15)

where C1 ∝ ln(Λ/µ), C2 ∝ ln2(Λ/µ) and the mass scale µ is associated with
hadron dynamics at around 1 GeV. A peculiar feature of these counter-terms
is that they contain the magnetic dipole operator itself; this implies that the
muon magnetic anomaly can not be computed from the low-energy effective
field theory alone. A similar situation arises in the τ -lepton light-by-light
scattering contribution to aµ considered in the previous section. Because it is
not possible to extract C2 from any observable that is simpler than the muon
anomalous magnetic moment itself, it has to be estimated from full QCD;
this fact makes the theory of the hadronic light-by-light scattering contribu-
tion to aµ highly non-trivial.

(3) Physically, the scale Λ is identified with the mass of the ρ meson
or heavier resonances. Taking Λ = mρ = 770 MeV in (6.14), we obtain
albl

µ [π0] = 120 × 10−11. However, existing calculations [8, 10] of the hadronic
light-by-light scattering contribution seem to indicate that logarithmically
enhanced terms provide too crude an estimate of the hadronic light-by-light
scattering contribution to the muon magnetic anomaly.

(4) Equation (6.14) has been used to check the numerical evaluation of the
hadronic light-by-light scattering contribution to aµ [6, 7] and thus con-
tributed to uncovering the sign error in earlier calculations of the hadronic
light-by-light component of the muon anomalous magnetic moment.

Finally, we mention that it is possible to extend the calculation of albl
µ [π0]

in such a way that terms enhanced by a single logarithm of an ultra-violet cut-
off are included. To achieve that, we need to extend the calculation described
in this section to compute the induced π0µ+µ− coupling, (6.11), up to a
constant term, in the limit of large k1. This can be done only in the model-
dependent way. Once the constant term is fixed, the subsequent integration
over k1 gives both, the O(ln2 Λ) and O(ln Λ) contributions to albl

µ [π0]. Such
a calculation is described in [10].
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π0

a b

Fig. 6.2. The “pion-pole” contribution to the hadronic light-by-light scattering
component of aµ. The second planar diagram symmetric to the diagram a is not
shown

M[π0(k1) + µ(p) → µ(p + k1)]

= −4α2Nc

3Fπ

Λ∫
d4k2

(2π)4
εµναβkα

1 kβ
2

k2
2(k1 − k2)2

ūp+k1γ
µ 1

p̂ + k̂2 − m
γνup .

(6.10)

The integration over k2 is simple in the logarithmic approximation,

Λ∫
d4k2

(2π)4
kβ
2

k2
2(k2 − k1)2

1
p̂ + k̂2 − m

≈ i

64π2
γβ ln

( Λ2

−k2
1

)
. (6.11)

Using εαµβνγµγβγν = 3! iγαγ5 and ūp+k1 k̂1γ5up = 2mup+k1γ5up we arrive
at

M[π0(k1) + µ(p) → µ(p + k1)] = −
(α

π

)2 Nc

4Fπ
mūp+k1γ5up ln

( Λ2

−k2
1

)
.

(6.12)
We use this result to get the amplitude for the diagram Fig. 6.2a by

integrating over k1,

Mpl = − ie
(α

π

)3 N2
c m

6F 2
π

Λ∫
d4k1

(2π)4
f̃νβkβ

1

k2
1(k2

1 − m2
π)

ln
( Λ2

−k2
1

)
ūpγ

ν 1
p̂ + k̂1 − m

γ5up

= − ie
(α

π

)3 N2
c m

192π2F 2
π

ln2 Λ

mπ
f̃νβ ūpσ

νβγ5up .

(6.13)

Here we retain only terms linear in the momentum of the external photon q
which is present implicitly in the dual electromagnetic field-strength f̃νβ =
ενβαµqαεµ.

Using the identity ūpσαβγ5upf̃αβ = 2iūpσαβupεαqβ , we arrive at the fol-
lowing “pion-pole” contribution to the muon anomalous magnetic moment
[6, 7]

2)  There is an OPE constraint that dictates the behavior of the four-photon scattering 
amplitude at large virtualities of the photons. This constraint prohibits any (transition) 
form factor in the (off-shell) pion-photon-photon  interaction vertex where one of the 
photons is soft.

Breaking of the chiral perturbation theory looks surprising at first sight. Indeed, the inverse chiral
parameter m2

ρ/m2
π ≈ 30 is much larger than Nc = 3. What happens is that the leading terms in the

chiral expansion are numerically suppressed, which makes chiral corrections governed not by m2
π/m2

ρ

but rather by ≈ 40 m2
π/m2

ρ . This can be checked analytically in the case of the HVP contribution
to the muon anomaly. The charged pion loop is also enhanced in this case by a factor m2

ρ/m2
π but

the relative chiral correction due to the pion electromagnetic radius (evaluated with a cutoff at m2
ρ

in the ππ spectral function) is ∼ 40 m2
π/m2

ρ ln(mρ/2mπ). Of course, if the pion mass (together with
the muon mass) would be, say, 5 times smaller than in our real world, the charged pion–loop would
dominate both in the HVP and the HLbL contributions to the muon anomalous magnetic moment.

In concluding this Section, we see that the 1/Nc expansion works reasonably well, so one can use
one–particle exchanges for the HLbL amplitude. On the other hand, chiral enhancement factors are
unreliable, so we cannot limit ourselves to the lightest Goldstone–like states, and this is the case both
for the leading and next–to–leading order in the 1/Nc expansion.

3. Short–Distance QCD Constraints.

The most recent calculations of aHLbL in the literature [1, 6, 8, 9] are all compatible with the QCD chiral
constraints and large–Nc limit discussed above. They all incorporate the π0–exchange contribution
modulated by π0γ∗γ∗ form factors F(k2

i , k2
j ), correctly normalized to the π0 → γγ decay width. They

differ, however, in the shape of the form factors, originating in different assumptions: vector meson
dominance (VMD) in a specific form of Hidden Gauge Symmetry (HGS) in Refs. [4, 5, 6]; a different
form of VMD in the extended Nambu–Jona-Lasinio model (ENJL) in Ref. [7, 8]; large–Nc models
in Refs. [1, 9]; and on whether or not they satisfy the particular operator product expansion (OPE)
constraint discussed in Ref. [9], upon which we next comment.

Let us consider a specific kinematic configuration of the virtual photon momenta k1, k2, k3 in the
Euclidean domain. In the limit q = 0 these momenta form a triangle, k1+k2+k3 = 0, and we consider
the configuration where one side of the triangle is much shorter than the others, k2

1 ≈ k2
2 $ k2

3 .
When k2

1 ≈ k2
2 $ m2

ρ we can apply the known operator product expansion for the product of two
electromagnetic currents carrying hard moments k1 and k2,

∫

d4x1

∫

d4x2 e−ik1·x1−ik2·x2 jν(x1) jρ(x2) =
2

k̂2
ενρδγ k̂δ

∫

d4z e−ik3·z jγ
5 (z) + O

(
1

k̂3

)

. (10)

Here jγ
5 =

∑

q Q2
q q̄γγγ5q is the axial current where different flavors are weighted by squares of their

electric charges and k̂ = (k1 − k2)/2 ≈ k1 ≈ −k2 . As illustrated in Fig. 3 this OPE reduces the HLbL
amplitude, in the special kinematics under consideration, to the AVV triangle amplitude.

k

k k

q 01

2 3

q 0

k3

γ γγ 5H

Figure 3: OPE relation between the HLbL scattering and the AVV triangle amplitude.

There are a few things we can learn from the OPE relation in Eq. (10). The first one is that the
pseudoscalar and pseudovector meson exchanges are dominant at large k1,2. Indeed, only 0− and 1+

states are coupled to the axial current. It also provides the asymptotic behavior of form factors at
large k2

1 ≈ k2
2 . In particular, we see that the π0γ∗γ∗ form factor F(k2, k2) goes as 1/k2 and similar

asymptotics hold for the axial–vector couplings. The relation in Eq. (10) does not imply that other
mesons, like e.g. scalars, do not contribute to HLbL, it is just that their γ∗γ∗ form factors should fall
off faster at large k2

1,2 .

5

There are two exact statements that can be made about hadronic light-by-light scattering. 

These constraints restrict the light-by-light scattering amplitude at small and large 
momentum transfers,  making them useful for phenomenology. 
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Hadronic light-by-light
One can argue  that the large Nc contribution is relatively robust. Indeed, the hadronic light-
by-light scattering contribution is Euclidean and can be thought of  as being  ``dual’’ to a 
constituent (massive) quark loop.  The quark mass is estimated  by requiring that  constituent  
quark loop reproduces the hadronic vacuum polarization contribution.  

The stability of this approach can be probed in several ways. For example,  one 
can repeat the same exercise including additional contributions with ``gluon’’ exchanges 
or modifying the theory in a way that combines a neutral pion and the constituent quark loop.
Whatever one does, the result is quite stable. 

aNc
µ |quark ⇡ (120� 150)⇥ 10�11

Current estimates of the large-Nc contributions to HLBL part of g-2 utilize  models of 
hadronic light-by-light scattering  based on pseudo-scalar and pseudo-vector exchanges, 
subject to two constraints listed on a previous slide.  The result for the large Nc part of 
HLBL contribution to g-2  is accepted to be

aNc
µ = (128± 13)⇥ 10�11
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Hadronic light-by-light

The major current issue in the theory of hadronic light-by-light seems to be the chirally 
enhanced, sub-leading in Nc contribution ( the ``charged pion’’ box).  The problem can be 
stated very clearly by looking at three numbers : the true chiral pion loop and the pion 
loops  dressed up to include higher-mass vector resonances in two different ways (vector 
meson dominance and hidden local symmetry)

a⇡µ = �43⇥ 10�11, aVDM
µ = �4.5⇥ 10�11, aHLS

µ = �19⇥ 10�11

An explanation of this behavior is that the charged pion contribution is somehow 
sensitive to larger values of the loop momenta where the importance of ``hadronic’’ 
modifications actually kicks in.  Also, one can learn from these results that first non-trivial 
power correction to the chiral limit is insufficient; one needs quite a number of such terms 
to obtain the correct result.

a⇡µ ⇡ (�19± 19)⇥ 10�11

The accepted current value of the pion box contribution is:
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Hadronic light-by-light

To what extent new approaches suggested recently for  computing hadronic light-by-light 
scattering contributions can address this issue?

One recent idea  is to use dispersion relations to make computations of hadronic light-by-
light scattering contributions less model-dependent.  To this end, one represents the  sub-
leading  Nc contributions as a sum of two terms:   the first term (four-pion cut) is 
``simple’‘ and unique,  the second term (two-pion cut) is ``difficult’’; its analysis relies on 
partial wave expansion. 

Note, however, that the first term (four-pion) is the same in VMD and HLS models (and 
any other model that does not do horrible things to a pion form factor). The difference is 
in the second ( problematic !) term.  The pion polarizability --- a potentially large 
contribution discussed  recently -- is also in the second (two-pion-two-photon) term.   

+ ?
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Conclusions 
I believe that after O(10) years of searching for reasons for the discrepancy  between the E821 
result and theoretical prediction for muon g-2, we can   say with confidence that missed SM 
effects as large as 260 x 10-11 can be  excluded. 

The three logical possibilities are then 1) coherent combination of small effects in theory and 
experiment that reduces  the discrepancy to an ``acceptable’’ level; 2)  some experimental issue 
or 3) physics beyond the Standard Model. 

The first option can be made less and less probable by systematically reducing all the relevant 
uncertainties. On the experimental side, this will happen thanks to the 
new FNAL experiment. On the theory side, this may happen as well, but it is more problematic. 
The new experiments (Novosibirsk and BEPC)  will help to understand hadronic vacuum 
polarization  better. But improving understanding of hadronic light-by-light  -- and in particular 
the part subleading in Nc - is  very difficult. 

The second option -- experimental  issue with E821 result -- will be resolved thanks to an 
independent measurement at FNAL.

The third option is, arguably,  the most exciting; the likely candidate is still the supersymmetry 
with relatively  small chargino and neutralino masses and relatively large value of tan(beta). 
Here the interplay with direct measurements  at the LHC is crucial but so far there is no 
contradiction between the LHC data and the masses of electroweakinos required to explain the 
muon magnetic anomaly.  The phase-space for other theoretical possibilities -- e.g. dark photons 
-- is being continuously squeezed. 
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